JPS58174401A - Method and apparatus for continuous coagulation of polymer latex - Google Patents

Method and apparatus for continuous coagulation of polymer latex

Info

Publication number
JPS58174401A
JPS58174401A JP5873082A JP5873082A JPS58174401A JP S58174401 A JPS58174401 A JP S58174401A JP 5873082 A JP5873082 A JP 5873082A JP 5873082 A JP5873082 A JP 5873082A JP S58174401 A JPS58174401 A JP S58174401A
Authority
JP
Japan
Prior art keywords
coagulation
polymer latex
tube
polymer
inner tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5873082A
Other languages
Japanese (ja)
Inventor
Tsuichi Shimokawa
下河 津一
Satoshi Iura
井浦 里志
Saburo Tanaka
三郎 田中
Kazuo Yamamoto
和生 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, Japan Synthetic Rubber Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP5873082A priority Critical patent/JPS58174401A/en
Publication of JPS58174401A publication Critical patent/JPS58174401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain solid polymer having high slurry concentration, uniform particle size and excellent blocking resistance, by supplying a solution of a coagulant to the outer tube of a coagulating apparatus furnished with a double-walled tube, and supplying a polymer latex to the inner tube, thereby contacting both compnents instantaneously under specific condition. CONSTITUTION:The inner tube 2 is inserted into the outer tube 1 having one open end and one closed end leaving a gap between both tubes. The inner tube is made shorter than the outer tube. A guiding blade 8 is placed between the outer tube 1 and the inner tube 2. A solution of a coagulant is supplied through the outer tube 1, and at the same time, a polymer latex is supplied through the inlet port 3 attached at one end of the outer tube and through the inner tube 2 to the coagulating apparatus countercurrently to the coagulant solution. Both liquids are brought into contact instantaneously with each other in the coagulation chamber in the outer tube at the outlet part of the inner tube. The Reynolds number of the mixture of the polymer latex and the coagulant solution in the coagulation chamber 4 is maintained at 100,000-300,000, and the solid polymer concentration is kept to 3-25wt% during the coagulation operation to obtain the solid polymer.

Description

【発明の詳細な説明】 本発明祉重合体ツテ、クスから綱固剤を用いた凝固法に
よって重合体固形物を連続的に得る方法及びその装置に
関し・、詳しくは微細な粒子を含まない重合体固形物(
以下り2ふと呼称する)を簡単な装置で効率よく、容易
に製造し得る重合体ラテックスの新規な凝固法及び凝固
装置を提供する−のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and an apparatus for continuously obtaining a polymer solid material from a copolymer tree and a coagulation method using a steel solidifying agent. Combined solids (
The purpose of the present invention is to provide a novel coagulating method and a coagulating device for polymer latex, which can be efficiently and easily produced using a simple device.

ここで言う凝固法とは安定化状態にあるゴム質重合体2
テ、クスのミセルを破壊する能力のある凝固剤12例え
ば無機塩類あるいは無機酸屯しくけ有機酸の溶液又は親
水性極性溶剤等を用いて、上記重合体ラテックスを粒子
状に#析凝集させ、重合体をクラム状あるいは他の形状
で取得する仁とを意味する。
The coagulation method referred to here refers to the rubbery polymer 2 in a stabilized state.
The polymer latex is coagulated into particles using a coagulant 12 capable of destroying the micelles of rice cakes, such as a solution of an inorganic salt or an inorganic acid, an organic acid, or a hydrophilic polar solvent. It means obtaining a polymer in crumb form or other form.

凝固法の一般的な工業的操作は重合体2テ。A common industrial operation of the coagulation method is polymerization.

クスと凝固剤溶液を攪拌槽勢に供給し、1分線作あるい
は連続操作で重合体ラテックスを凝析凝集させ、オず重
合体をクラム状又は他の形状とし、次いで固液分離、洗
浄、脱水、乾燥の各後処理工程を経て固形物として取得
するもので質の優れた固形物を得るためには、凝固工程
で生成すゐクラムの性状が極めて重要となる。
The coagulant solution and the coagulant solution are fed into a stirred tank, and the polymer latex is coagulated and flocculated by one-minute line drawing or continuous operation, and the tin polymer is made into crumb-like or other shapes, followed by solid-liquid separation, washing, and coagulation. The properties of the crumb produced during the coagulation process are extremely important in order to obtain a solid product that is of excellent quality through post-processing steps such as dehydration and drying.

即ちクラムが微細な粒子を多く含む場合は、固液分離工
程において、目詰シによる操業率O低下及び分離液中へ
の微細な幹干の流出による収率低下が問題となる。又凝
固が不完全で未凝固状態の重合体ラテックスが残る場合
、そO後の後処理工程でそれらが遊離し操作に支障を来
九すけか如でなく、品質低下の原因にもなゐ。
That is, when the crumb contains many fine particles, problems arise in the solid-liquid separation step, such as a decrease in the operating rate O due to clogging and a decrease in yield due to the outflow of fine stems into the separation liquid. Furthermore, if coagulation is incomplete and uncoagulated polymer latex remains, it will be liberated in the subsequent post-processing process, which will not only hinder operations but also cause quality deterioration.

又凝固したクラムが多孔性に乏しい場合は、洗浄、乾燥
が困難となる。さらに凝固したクラムが強度に欠ける場
合は、その後の工程で微細な粒子に破壊されて、安定な
操業が困難となる。
Furthermore, if the coagulated crumb has poor porosity, it will be difficult to wash and dry it. Furthermore, if the solidified crumb lacks strength, it will be broken into fine particles in subsequent steps, making stable operation difficult.

かように凝固操作で得られるクラムの性状、具体的には
、クラムの粒子径、粒径分布、多孔質性(ポーラス性)
、耐プロ、キング性及び未凝固状態の重合体ラテックス
の有無が、凝固工程以降の固液分離、洗浄、脱水、乾燥
などの工業的操業性および得られる固形物の品質を大き
く左右するものである。
The properties of the crumb obtained through the coagulation operation, specifically, the particle size, particle size distribution, and porosity of the crumb.
The presence or absence of polymer latex in a non-coagulated state, as well as its resistance to polymerization and kinging, greatly affect the industrial operability of solid-liquid separation, washing, dehydration, and drying after the coagulation process, as well as the quality of the solid product obtained. be.

従来一般に工業的規模で実施されている攪拌槽による凝
固操作ではクラムサイズの調節は攪拌強度に依存し、攪
拌羽根の形状、回転速度がクラムサイズ決定の重要な因
子となる。本来攪拌は目的物の混合を適切に行うことを
狙いとすい。アあ、1.ゎパ。。。、5.ヤイ。。□の
ためにその攪拌強度を変化させることは攪拌槽の安定操
作を犠牲にすることに本な夛、回転機器の保守及び維持
管理に多大の労力と費用を必要とする。攪拌槽を用いる
場合の凝固においては、重合体2テ、クスを包んだカプ
セルを攪拌力によって打砕き、凝固を進行させるため、
クラムサイズが大きくなる!IM固完結に時間を要し、
従って攪拌槽での滞留時間の延長を余儀なくされ、攪拌
槽の大型化、基数の増加につながる。又クラムサイズの
粒径分布の成因は攪拌強度によることは前述の通シであ
るが、この攪拌強度は槽内において均一にすることは殆
ど不可能であり、従って粒径分布は広くなシ、粗大クラ
ム及び微細なりう五の発生を完全に防止することはでき
ない。
In the conventional coagulation operation using a stirring tank, which is generally carried out on an industrial scale, the control of the crumb size depends on the stirring intensity, and the shape and rotational speed of the stirring blade are important factors in determining the crumb size. Originally, the purpose of stirring is to mix the target substances appropriately. Ah, 1. Wapa. . . ,5. Yay. . Changing the stirring intensity for □ necessarily sacrifices the stable operation of the stirring tank, and requires a great deal of effort and expense to maintain and manage the rotating equipment. In coagulation when using a stirring tank, the capsules enclosing the polymer 2 and cubes are crushed by the stirring force to advance coagulation.
The crumb size will increase! It takes time to complete IM,
Therefore, the residence time in the stirring tank is forced to be extended, leading to an increase in the size of the stirring tank and the number of bases. Also, as mentioned above, the particle size distribution of crumb size depends on the stirring intensity, but it is almost impossible to make this stirring intensity uniform in the tank, so the particle size distribution is not wide. The generation of coarse crumbs and fine crumbs cannot be completely prevented.

一方攪拌槽に変わる凝固法として、管状1IAl!d装
置を用いた凝固法(4I開昭56−18602、特開昭
56−18623)  が提案されているが、この方法
でも以下のごとき問題点があった。
On the other hand, as a coagulation method that replaces the stirring tank, tubular 1IA1! A coagulation method using a D device (4I 18602/18602, 18623/1983) has been proposed, but this method also has the following problems.

ω 凝固によって得られるクラムの粒径のコントロール
が極めて難かしい。即ち凝固すべき重合体ラテックスの
性状によって極端に微細クラムが多いもの又はクラムが
ブロック化して粗大クラムが多いもの等が生ずる場合が
多い。
ω It is extremely difficult to control the particle size of crumbs obtained by coagulation. That is, depending on the properties of the polymer latex to be coagulated, there are many cases where there are extremely many fine crumbs, or where the crumbs are formed into blocks and there are many coarse crumbs.

■ 微細クラム生成防止の為、凝固装置内での混合液の
レイノルズ数(即ち流速)を大きくすることが難かしく
、凝固すべき重合体ラテ、クス量が多い場合、凝固装置
が極めて大型     ゛の龜のKなる。
■ In order to prevent the formation of fine crumbs, it is difficult to increase the Reynolds number (i.e. flow rate) of the mixed liquid in the coagulation equipment, and when there is a large amount of polymer latte or crumbs to be coagulated, the coagulation equipment is extremely large. It's K of K.

G)粗大クラムの防止の為、凝固室内において経済的に
不利な(例えば0.1〜2.5重量−の)低いクラム濃
W!(以下スラリー濃度と呼称する)し41使用できな
い。
G) To prevent coarse crumbs, use a low crumb concentration W that is economically disadvantageous (for example, 0.1 to 2.5 weight) in the coagulation chamber! (hereinafter referred to as slurry concentration) and 41 cannot be used.

そこで本発明者らは、管状凝固装置に於て、凝固内のス
ラリー濃度をあげかつクラムがプR2り化してポーラス
性に欠ける粗大クラムが生成することを防止できる凝固
法および凝固装置を開発する仁とを目的として鋭意検討
の結果、本発明を完成するに至った。
Therefore, the present inventors developed a coagulation method and a coagulation device that can increase the slurry concentration in the coagulation in a tubular coagulation device and prevent the formation of coarse crumbs that lack porous properties due to the formation of coarse crumbs due to the formation of coarse crumbs that lack porous properties. As a result of intensive research with the aim of achieving this goal, the present invention has been completed.

すなわち本発明は ■ 二重管を有する凝固装置を用いて、凝固剤溶液を凝
固装置の外管を通して一方から他方へ供給するとと〆も
に重合体ラテックスを内管を通して凝固剤溶液に対して
並流で供給するシとKより両者を瞬間的に接触させて重
合体ラテックスから重合体固形物を得る方法において、
凝固室における重合体ラテックスと凝固剤溶液との混合
液のレイノルズが100,000〜300,000、か
つ重合体固形物濃度が3〜25重量−の条件下で操作す
ることを特徴とする重合体ラテックスの連続的凝固法。
That is, the present invention uses a coagulation device having a double tube, supplies a coagulant solution from one side to the other through the outer tube of the coagulation device, and simultaneously supplies the polymer latex through the inner tube in parallel to the coagulant solution. In a method for obtaining a polymer solid from a polymer latex by bringing the two into instant contact with each other through a flow of water and K,
A polymer characterized in that the operation is performed under conditions in which the Reynolds of the mixed solution of the polymer latex and the coagulant solution in the coagulation chamber is 100,000 to 300,000, and the polymer solid concentration is 3 to 25% by weight. Continuous coagulation of latex.

・■ 一端(イ)が刺じられ、他端に)が開放された本
体筒1、本体筒1の端(イ)側から本体筒1との間に間
隙をもつように、本体筒1に挿入した。
・■ Main body cylinder 1 with one end (A) pierced and the other end) opened, and main body cylinder 1 so that there is a gap between the end (A) side of main body cylinder 1 and main body cylinder 1. Inserted.

本体筒1よシ短い内筒2、本体筒1と内筒2との間に備
え良案内羽根8、本体筒1の端(へ)K備えた供給口3
、からなり、内筒2に重合体ラテックスを供給し、供藉
口3から本体筒、: 1に凝固剤溶液を供給し、両液を本体筒1内の内筒2の
末端の前部の凝固室4にて接触させるようKした重合体
ラテックスの凝固装置を提供するものである。
An inner cylinder 2 that is shorter than the main cylinder 1, a good guide vane 8 provided between the main cylinder 1 and the inner cylinder 2, and a supply port 3 provided at the end (to) of the main cylinder 1.
, supplying polymer latex to the inner cylinder 2, supplying a coagulant solution to the main cylinder from the supply port 3, and coagulating both solutions at the front end of the inner cylinder 2 in the main cylinder 1 A device for coagulating polymer latex which has been brought into contact in chamber 4 is provided.

先ず本発明の凝固操作の一奥旅態様を図IKよって説明
する。図の凝固装置は円形の断面をした本体筒1とその
中に内管2を有している。
First, a further aspect of the coagulation operation of the present invention will be explained with reference to FIG. IK. The coagulation device shown in the figure has a main body cylinder 1 with a circular cross section and an inner tube 2 therein.

供給ノズル2及び3からそれぞれ重合体ラテックスA及
び凝固剤溶液Bを凝固室4に供給し、ここで凝固及び成
形を行って、排出部7から排出させ、その後、図示され
ていない固液分離、洗浄、脱水、乾燥岬の後処理工程へ
送る。重合体ラテックスを凝固室4内へ内管2の出口5
より、凝固剤溶液の流れと並流に一定の流速で流出させ
ると、重合体ラテックスはノズル3より供給された凝固
剤溶液と液滴状で瞬間的に接触し、一旦黴細な粒子群と
なり、凝固室4内で流れ方向及び流れと直角の方向へ拡
散するが、それぞれの拡散距離は凝固室内の流体の流速
及び凝固室の壁6により′て制約を受け、凝固直彼の1
:11昌 微細な粒子群は自己の持つ粘着性によって凝固室4と類
似な断面をし丸棒状に成形され九クラムとなる。tた凝
固室内においては、凝固室の壁と成形されたクラムとの
間隙には常時、凝固剤溶液が流れているため、クラムと
壁との接触はなく、よって凝固室内における重合体の壁
付着、堆積は全く起らない。図1において内管2に案内
羽根8がとシっけられているが、本発明の方法に用いら
れる二重管凝固装置には、案内羽根8がなくてもよい。
Polymer latex A and coagulant solution B are supplied from supply nozzles 2 and 3 to the coagulation chamber 4, where they are coagulated and formed, and discharged from the discharge section 7, followed by solid-liquid separation (not shown). Sent to the post-processing process of washing, dehydration, and drying. The polymer latex is passed through the outlet 5 of the inner tube 2 into the coagulation chamber 4.
When the polymer latex is allowed to flow out at a constant flow rate in parallel with the flow of the coagulant solution, the polymer latex momentarily contacts the coagulant solution supplied from the nozzle 3 in the form of droplets, and once becomes a group of fine particles. , diffuse in the flow direction and in the direction perpendicular to the flow within the coagulation chamber 4, but each diffusion distance is restricted by the flow velocity of the fluid in the coagulation chamber and the wall 6 of the coagulation chamber, and
:11 The fine particles are formed into a round rod shape with a cross section similar to that of the coagulation chamber 4 due to their own adhesive properties, resulting in nine crumbs. In the coagulation chamber, the coagulant solution is constantly flowing in the gap between the wall of the coagulation chamber and the formed crumb, so there is no contact between the crumb and the wall, and therefore the polymer does not adhere to the wall in the coagulation chamber. , no deposition occurs. In FIG. 1, guide vanes 8 are installed in the inner tube 2, but the guide vanes 8 may not be provided in the double tube coagulation apparatus used in the method of the present invention.

本発明の特徴は高スラリー濃度に於ても、クラムのプロ
、り化を押え、適当な粒径のクラムを得ることKあシ、
この為の凝固条件は以下のごときである。
The feature of the present invention is that even at high slurry concentrations, it is possible to suppress crumb formation and obtain crumbs of appropriate particle size.
The coagulation conditions for this purpose are as follows.

凝固剤溶液は、重合体ラテックスと接触する際、通常十
分整流されてお9、凝固剤溶液と重合体ラテックスの混
合液の凝固室内におけるレイノルズ数Fi100,00
0〜300,000. 好I L<1t150,000
〜300,000にとる必要があシ、100.000未
満ではクラムのプロ、り化の恐れがあjり、300,0
00をこえると、クラムを成形する効果がなくなる。(
ここでレイノルズ数はρ DU?/μで表わされ、Dは凝固室の内径、Uはρ 混合液の流速、学は混合液の密度、声は混合液の粘度で
ある。) 次に上記によって得られた微細な粒子群を適当なりラム
サイズへ成形するには凝固室内のスラリー濃度及び凝固
室の壁の制約及び流動状態によってなされる。つt、b
クラムの成形は粒子自体の粘着力と流動による分散力の
バランスによって決まる。従ってスラリー濃度が高い場
合岐粒子間距離が小さくなシ緻密な構造のクラムが得ら
れる。スラリー濃度が低い場合は粒子間距離が大きくな
シボ−ラスな構造のり2ムが得られるが、微細クラムの
生成につながる。このため凝固室内のスラリー濃度は3
〜25重量%、好ましくは5〜15重量−である。3−
未満では、微細クラムの生成を防止することが困難で、
25sをこえると、粗大クラムの生成を防止することが
困難である。
When the coagulant solution comes into contact with the polymer latex, it is usually well rectified9, and the Reynolds number Fi in the coagulation chamber of the mixture of coagulant solution and polymer latex is 100,00.
0~300,000. Good I L<1t150,000
It is necessary to set it to ~300,000, if it is less than 100,000, there is a risk of crumbling.
If it exceeds 00, the effect of forming crumbs will be lost. (
Here, the Reynolds number is ρ DU? /μ, where D is the inner diameter of the coagulation chamber, U is the flow rate of the mixed liquid, ρ is the density of the mixed liquid, and V is the viscosity of the mixed liquid. ) Next, the fine particles obtained above are shaped into a suitable ram size depending on the slurry concentration in the coagulation chamber, the constraints of the wall of the coagulation chamber, and the flow state. Tsut,b
Crumb formation is determined by the balance between the adhesive force of the particles themselves and the dispersion force caused by the flow. Therefore, when the slurry concentration is high, crumbs with a dense structure and a small distance between particles can be obtained. When the slurry concentration is low, a shibbolus structure with a large interparticle distance is obtained, but this leads to the formation of fine crumbs. Therefore, the slurry concentration in the coagulation chamber is 3
-25% by weight, preferably 5-15% by weight. 3-
It is difficult to prevent the formation of fine crumbs when the
If the time exceeds 25 seconds, it is difficult to prevent the generation of coarse crumbs.

スラリー濃度の調節は、通常重合体ラテックスの固形分
濃度を公知の方法にょ)1ml整する。
To adjust the slurry concentration, the solid content concentration of the polymer latex is usually adjusted to 1 ml using a known method.

凝固剤溶液は、通常十分整流された状態で重合体ラテッ
クスと接触すれば特に流動状態に制約はない。
There are no particular restrictions on the fluidity of the coagulant solution as long as it comes into contact with the polymer latex in a sufficiently rectified state.

ここで整流状態とは、凝固管入口の乱れの影響のなくな
った状態の凝固剤溶液の流動状態を画うものである。
Here, the rectified state refers to the flow state of the coagulant solution in a state where the influence of turbulence at the inlet of the coagulation tube has disappeared.

通常凝固条件に於ては内管出口  5近傍で表わされ、
Dは外管内径、dは内管外径、υ′は凝固剤溶液の流速
、μ′は凝固剤溶液の密度、μ′は凝固剤溶液の粘度で
ある。) 又、重合体ラテックスの  内管2内のレイノルズ数は
通常5,000以上である。
Under normal solidification conditions, it is expressed near the inner tube outlet 5,
D is the inner diameter of the outer tube, d is the outer diameter of the inner tube, υ' is the flow rate of the coagulant solution, μ' is the density of the coagulant solution, and μ' is the viscosity of the coagulant solution. ) Also, the Reynolds number in the inner tube 2 of polymer latex is usually 5,000 or more.

本発明の凝固fIK8滲琳##は、通常の乳化重合によ
って作られたゴム質重合体ラテックスに好適に応用され
る。具体的にはスチ′し/−ブタジェンゴム(8BR)
、アクリロニトリル−ブタジェンゴム(NBR)、ボ’
J7’タジエンコ゛ム、アクリルゴム、酢酸ビニル共重
合体ゴム、クロロプレ/ゴムもしくはそれらの混合物等
のラテックスがあげられる。凝固剤は重合体ラテックス
に対し凝固能力のあるものであればいかなるものでもよ
い。公知の凝固剤は酸や塩の水溶液である。適当な酸水
溶液は硫酸、塩酸、りん酸、酢酸等の単独又は混合水溶
液である。適当な塩の水溶液はCa (NOs)m、 
Ale (Son)s、NaC1等の単独又は混合水溶
液である。他の公知の凝固剤は有機溶剤であシ、例えば
ケトン(例ア七トン)、アルコール(例エチルアルコー
ル、メチルアルコール、)およびそれらの混合物である
。凝固剤の使用量祉重合体うテ、クスO1!固性あるい
は凝固剤の凝固能力によって決定される。従って酸、塩
の水溶液を使用する場合は上記の理由から酸、塩の濃度
は一定ではない。
The coagulated fIK8 resin ## of the present invention is suitably applied to rubbery polymer latex made by conventional emulsion polymerization. Specifically, steel/butadiene rubber (8BR)
, acrylonitrile-butadiene rubber (NBR),
Examples include latexes such as J7'tadiene rubber, acrylic rubber, vinyl acetate copolymer rubber, chloropre/rubber, or mixtures thereof. Any coagulant may be used as long as it has the ability to coagulate the polymer latex. Known coagulants are aqueous solutions of acids and salts. Suitable acid aqueous solutions include sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid, etc. alone or in combination. A suitable aqueous solution of salt is Ca(NOs)m,
It is a single or mixed aqueous solution of Ale (Son)s, NaCl, etc. Other known coagulants are organic solvents, such as ketones (eg acetone), alcohols (eg ethyl alcohol, methyl alcohol, etc.) and mixtures thereof. How much coagulant to use? It is determined by the solidity or coagulation ability of the coagulant. Therefore, when an aqueous solution of an acid or salt is used, the concentration of the acid or salt is not constant for the reasons mentioned above.

本発明の実施のとき、凝固装置に供給する原料の温寒け
、通常、重合体ラテックス、凝固剤溶液それぞれ307
90℃、好ましくは40〜80℃である。
When carrying out the present invention, the temperature of the raw materials supplied to the coagulation device is usually 307 mL each for polymer latex and coagulant solution.
The temperature is 90°C, preferably 40-80°C.

本発明の好ましい凝固装置は、一端(へ)が封じられ、
他端(ハ)が開放された本体筒1、本体筒1の端(へ)
側から本体筒1との間に間隙をもつように本体部IK挿
入した本体筒1より短かい内筒2、本体筒1と内管2と
の間に備えた案内羽根8、本体筒1の端(イ)K供えた
凝固剤溶液の供給口3からなりたっている。
A preferred coagulation device of the invention is sealed at one end;
Main body cylinder 1 with the other end (c) open, end of main body cylinder 1 (to)
An inner tube 2 shorter than the main tube 1 inserted into the main body IK with a gap between it and the main tube 1 from the side, a guide vane 8 provided between the main tube 1 and the inner tube 2, and a guide blade 8 of the main tube 1 The end (a) consists of a supply port 3 for the coagulant solution.

内管2の長さは、図1においてnである。(す々わちn
 (m )  内管2の末端の前部が凝固室4である。
The length of the inner tube 2 is n in FIG. (Suzuwachi n
(m) The front end of the inner tube 2 is the coagulation chamber 4.

内!2の外径に対して本体筒1の内径の好ましい比Fi
2〜10倍である。
Inside! The preferred ratio Fi of the inner diameter of the main body cylinder 1 to the outer diameter of the main body cylinder 1 is
It is 2 to 10 times.

本体筒lと内管2の間隙において、内管2の外面に案内
羽根が設けられている。好ましい案内羽根8は、凝固剤
溶液の流れに旋回流を与える構造を持ったもので、図1
に示しであるらせん状の案内羽根8である。該羽根にお
いてピッチ(図1において5)Fi通常本体筒1と内管
2との関11hの1〜10倍であって、高さHFi、内
管2が本体筒1から引きぬくこと、が可能であるように
決定される。
Guide vanes are provided on the outer surface of the inner tube 2 in the gap between the main body cylinder l and the inner tube 2. A preferable guide vane 8 has a structure that gives a swirling flow to the flow of the coagulant solution, as shown in FIG.
This is a spiral guide vane 8 shown in FIG. In the blade, the pitch (5 in FIG. 1) Fi is usually 1 to 10 times the distance 11h between the main body tube 1 and the inner tube 2, and the height HFi allows the inner tube 2 to be pulled out from the main body tube 1. is determined to be.

ピッチの数は通常lピッチ以上である。図1においてら
せん状の案内羽根8は1枚羽根のシングルタイプである
が、2枚羽根のダブルタイプ(図2参照)、3枚羽根の
トリプルタイプ等であってもよい。
The number of pitches is usually l pitches or more. In FIG. 1, the spiral guide blade 8 is a single type with one blade, but it may also be a double type with two blades (see FIG. 2), a triple type with three blades, or the like.

らせん状の案内羽根を使用すると、凝固剤溶液の流れが
旋回流になることによって、重合体ラテックスとの接触
後生酸する凝固微粒子が凝固剤溶液によってつつみ込ま
れる形となシ、凝固微粒子が管径方向にブロック化する
のを押えることができる。
When a spiral guide vane is used, the flow of the coagulant solution becomes a swirling flow, so that the coagulant solution envelops the coagulant fine particles that produce acid after contact with the polymer latex. Block formation in the radial direction can be suppressed.

内管2の出口が凝固剤溶液の供給ノズル3日よプも下流
に配設されている。
The outlet of the inner tube 2 is also arranged downstream of the coagulant solution supply nozzle 3.

凝固剤溶液の供給ノズル30と重合体ラテ。Coagulant solution supply nozzle 30 and polymer latte.

合体ラテックスの内管の出口に達する時間が02秒以上
になる距離である。本体筒1及び内管2の径は、凝固剤
溶液と重合体ラテックスとの混合溶液の凝固室における
レイノルズ数等によって決まるが、実用的な本体筒の内
径Fiis〜150■pが適当であゐ。凝固室の長さ#
′i(図においてm)混合溶液の滞留時間(すなわちク
ラムの成形時間)によって決められるが、好ましい混合
溶液の滞留時間は0,5〜20秒である。
The distance is such that the time it takes for the combined latex to reach the outlet of the inner tube is 0.2 seconds or more. The diameters of the main body cylinder 1 and the inner tube 2 are determined by the Reynolds number in the coagulation chamber of the mixed solution of coagulant solution and polymer latex, etc., but a practical internal diameter of the main body cylinder Fiis ~ 150 μp is appropriate. . Coagulation chamber length #
'i (m in the figure) is determined by the residence time of the mixed solution (i.e. crumb forming time), and the preferred residence time of the mixed solution is 0.5 to 20 seconds.

本発明の方法及び装置によって次のような利点を生じる
The method and apparatus of the present invention result in the following advantages.

(1)一般の管状#置方法では、実施できない高クラム
スラリー濃度の凝固に於てもポーラス性に富む適当なサ
イズの凝固り2ムを得る事ができる。
(1) Even when coagulating a high crumb slurry concentration that cannot be performed using a general tubular # placement method, it is possible to obtain a coagulated mass of an appropriate size that is highly porous.

■ 高クラムスラリー濃度で凝固できる事から、ストが
安価である。
■ Because it can coagulate at a high crumb slurry concentration, it is inexpensive.

(3)  希釈用水が少量で済む為、希釈用水の輸送コ
ストが低下すると共に、凝固剤のロスを少なくする事が
可能で凝固の、i、:ランニングコストを大幅に低減で
きる。  ′ 以上の如く本発明による凝固方法及び凝固装置によって
工業的に有利な凝固プロセスを完成し得、その工業的価
値は大きい。
(3) Since only a small amount of dilution water is required, the cost of transporting dilution water is reduced, and the loss of coagulant can be reduced, resulting in a significant reduction in the running cost of coagulation. ' As described above, an industrially advantageous coagulation process can be completed by the coagulation method and coagulation apparatus according to the present invention, and its industrial value is great.

以下に本発明を実施例を挙げて具体的に説明する。The present invention will be specifically described below with reference to Examples.

8.1−声、外径10.5+wm8)よシアクリロニト
リルーブタジエンゴム(日本合成ゴム社製JSRN23
08)の重合体ラテックス(25℃)を毎時3−で供給
し、ノズル3よシ硫酸マグネシウムを重合体固形物に対
して6重量−になるように調整された凝固剤水溶液(8
0℃)を毎時0.4−〜20m’の範囲で供給し1、凝
固完結したスラリーはその温度で平均滞留時間10.分
の攪拌槽(図示せず、内径1m12jで、内部に3枚プ
ロペラ2段の可変速攪拌機を有する)に受け、充分安定
化した後得られたクラムの性状は第1表の通りであった
。なお重合体ラテックスの開本体筒は内径23置ののも
のを使用し、長されは凝固室内の混合溶液の平均滞留時
間が0.6秒になるように調整した1、 ! 又図に示した十の長さは500■である。らせん状の案
内羽根はピッチ(D)5oIw11高さくH)4−のシ
ングル構造である。
8.1-Voice, outer diameter 10.5 + wm8) Cyacrylonitrile-butadiene rubber (JSRN23 manufactured by Japan Synthetic Rubber Co., Ltd.
The polymer latex (25°C) of 08) was fed at a rate of 3°C per hour, and the aqueous coagulant solution (8°C) adjusted to have magnesium silosulfate at 6% by weight relative to the polymer solids was fed through the nozzle 3.
0°C) is supplied in the range of 0.4-20 m'/hour1, and the solidified slurry has an average residence time of 10.0 m' at that temperature. The properties of the crumb obtained after being sufficiently stabilized were placed in a stirring tank (not shown, with an inner diameter of 1 m12 and a variable speed stirrer with 2 stages of 3 propellers) as shown in Table 1. . The polymer latex open body cylinder used had an inner diameter of 23 mm, and its length was adjusted so that the average residence time of the mixed solution in the coagulation chamber was 0.6 seconds. Also, the length of the tens shown in the figure is 500 square meters. The spiral guide vane has a single structure with a pitch (D) of 5oIw11 and a height of H)4-.

(以下火口) 第   1   表 第1表に示すように、凝固室内に於ける混合液のレイノ
ルズ数によってクラムの粒径分布がことなることがわか
る。表においてクラム含水率(ドライベース)は、クラ
ムのポーラス性の代用特性として用いるもので、サンプ
ル採取後30秒間水を切った後、クラム中に含まれる水
分を測定して乾燥ゴム量基準で示したものである。り2
ム含水率の値の大きい方がポーラス性にとんでいる。
(Hereinafter referred to as Crater) Table 1 As shown in Table 1, it can be seen that the particle size distribution of crumbs varies depending on the Reynolds number of the mixed liquid in the coagulation chamber. In the table, the crumb moisture content (dry base) is used as a substitute for the porous nature of the crumb, and is expressed on a dry rubber basis by measuring the moisture contained in the crumb after draining the sample for 30 seconds. It is something that Ri2
The larger the value of the water content, the more porous the material.

実施例2、比較例2 実施例1の装置において案内羽根8をとりのぞいた以外
は実施例1と同一の装置を用い、第1表の実験番号2に
おけるラテックス流量を1〜17m’/HRに変えた以
外は実施例1と同じ条件で凝固を行なった 結果を第2
表に示す、第   2   表 第2表に示すように、凝固室内に於ける混合液のレイノ
ルズ数によってクラムの粒径分布がことなることがわか
る。
Example 2, Comparative Example 2 Using the same equipment as in Example 1 except for removing the guide vane 8 from the equipment in Example 1, the latex flow rate in Experiment No. 2 in Table 1 was set to 1 to 17 m'/HR. Coagulation was performed under the same conditions as in Example 1 except for the changes.The results are shown in Example 2.
Table 2 As shown in Table 2, it can be seen that the particle size distribution of crumbs varies depending on the Reynolds number of the mixed liquid in the coagulation chamber.

実施例3、比較例3 実施例1の装置を用い、第1表の実験番号2と同じ流量
条件で凝固室内のスラリー鎖度(重量S)が、2.5〜
35チになるように重合体ラテックスの固形分濃度を一
整して凝固を行った。
Example 3, Comparative Example 3 Using the apparatus of Example 1 and under the same flow rate conditions as Experiment No. 2 in Table 1, the slurry chain degree (weight S) in the coagulation chamber ranged from 2.5 to
The solid content concentration of the polymer latex was adjusted to 35 cm, and coagulation was performed.

結果を第3表に示した。表よシ、凝固室内のスラリー濃
度によってり2ムの流径分布がことなることがわかる。
The results are shown in Table 3. As shown in the table, it can be seen that the flow diameter distribution of 2 mm varies depending on the slurry concentration in the coagulation chamber.

得られるクラムの性状は凝固室内のスラリー濃度が高い
程クラムの内部構造は緻密となシフラムの含水率は小さ
くなる。
The properties of the resulting crumb are such that the higher the slurry concentration in the coagulation chamber, the denser the internal structure of the crumb and the lower the moisture content of the syfram.

逆にスラリー濃度が低く表ると、クラムはポーラスとな
り含水率は高く&る。
Conversely, when the slurry concentration is low, the crumb becomes porous and has a high moisture content.

実施例4、比較例4 実施例2の装置を用い、第2表の実験番号4と同じ流量
条件で凝固室内のスラリー濃度(重量慢)が25〜3.
5俤に彦るように重合体ラテックスの固形分濃度を調整
して凝固を行った。
Example 4, Comparative Example 4 Using the apparatus of Example 2, under the same flow rate conditions as Experiment No. 4 in Table 2, the slurry concentration (heavy weight) in the coagulation chamber was 25 to 3.
The solid content concentration of the polymer latex was adjusted so that the solid content of the polymer latex was 500 mm.

結果を第41Pに示した。表より凝固室内のスラリー濃
度によってクラムの粒径分布がことなることがわかる。
The results are shown in page 41. From the table, it can be seen that the particle size distribution of crumbs varies depending on the slurry concentration in the coagulation chamber.

(yス下@ら) 実施例5 の重合体ラテックスによる実験番号1.2と同様のテス
トを行った。(但し実験番号11は実施例2の凝固装置
を使用した。) 但し凝固剤水溶液は硫酸マグネシウムを重合体固形物に
対して10重量%になるように調整された水溶液を用い
た。結果を第5表に示す。
(Ysu bottom @ et al.) A test similar to Experiment No. 1.2 using the polymer latex of Example 5 was conducted. (However, in Experiment No. 11, the coagulation apparatus of Example 2 was used.) However, the coagulant aqueous solution used was an aqueous solution containing magnesium sulfate adjusted to 10% by weight based on the polymer solids. The results are shown in Table 5.

(以下架b) 第  5  表 表よりクラムの性状はアクリロニトリル−ブタジェンゴ
ムの場合と全く同じような形状及び含水率のものとなり
、未凝固ラテックスもなく、微細な粒子を含まない粒径
分布がシャープなものが得られた。
(Hereinafter referred to as rack b) Table 5 shows that the crumb properties are exactly the same in shape and moisture content as in the case of acrylonitrile-butadiene rubber, with no uncoagulated latex and a sharp particle size distribution without containing fine particles. I got something.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明の凝固装置の1例の説明用断面図である。 図2は、2枚羽根構造を示す1例の2・・・重合体ラテ
ックス供給ノズル(内管)3・・・凝固剤溶液供給ノズ
ル 4・・・凝 固 室 7・・・排 出 部 8・・・案  内  板       □A・・・重合
体ラテックス     □B・・・凝固剤溶液
FIG. 1 is an explanatory cross-sectional view of one example of the coagulation apparatus of the present invention. FIG. 2 shows an example of a two-blade structure. 2. Polymer latex supply nozzle (inner tube) 3. Coagulant solution supply nozzle 4. Coagulation chamber 7. Discharge section 8 ...Guidance plate □A...Polymer latex □B...Coagulant solution

Claims (1)

【特許請求の範囲】 ■ 二重管を有する凝固装置を用いて、凝固剤溶液を凝
固装置の外管を通して一方から他方へ供給するとと4に
重合体ラテックスを内管を通して凝固剤溶液に対して並
流で供給することにより両者を瞬間的に接触させて重合
体2テ、クスから重合体固形物を得る方法において、凝
固室における重合体ラテックスと凝固剤溶液との混合液
のレイノルズ数が100ρ00〜aoo、ooo、かつ
重合体固形物横変が3〜25重量−の条件下で操作する
ことを%像とする重合体ラテックスの連続的凝固法。 ■ 、一端印が封じられ、他端(−が開放され九本体筒
1、本体#1の端印側から本体筒1との間に間隙をもつ
ように本体筒1に挿入した本体l111よ〕短い内筒2
、本体筒1と内筒2との間に備え良案内羽根8、本体筒
1の端頓に備えた供給口3、からなシ、内筒2に重合体
ツテ、クスを供給し、供給■3から本体筒IK凝固剤溶
液を供給し、両液を本体筒1内の内筒2の末端の前部の
凝固室4にて接触させるようにし九重合体クチ、クスの
凝固装置。
[Claims] ■ Using a coagulation device having a double tube, the coagulant solution is supplied from one side to the other through the outer tube of the coagulation device, and (4) the polymer latex is supplied to the coagulant solution through the inner tube. In a method of obtaining a polymer solid from a polymer latex and a coagulant solution by bringing them into instant contact by supplying them in parallel flow, the Reynolds number of the mixture of polymer latex and coagulant solution in the coagulation chamber is 100ρ00. - aoo, ooo, and a continuous coagulation method of a polymer latex, which operates under conditions where the lateral change of the polymer solids is from 3 to 25% by weight. ■ , One end mark is sealed and the other end (- is opened, nine main body cylinder 1, main body #1 inserted into main cylinder 1 so that there is a gap between the end mark side and main body cylinder 1) short inner cylinder 2
, a good guide vane 8 provided between the main cylinder 1 and the inner cylinder 2, a supply port 3 provided at a small part of the main cylinder 1, a hollow, a polymer tube and a rice cake to the inner cylinder 2, and a supply. 3, a coagulant solution is supplied from the main body cylinder IK, and both liquids are brought into contact with each other in a coagulation chamber 4 at the front end of the inner cylinder 2 in the main body cylinder 1.
JP5873082A 1982-04-08 1982-04-08 Method and apparatus for continuous coagulation of polymer latex Pending JPS58174401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5873082A JPS58174401A (en) 1982-04-08 1982-04-08 Method and apparatus for continuous coagulation of polymer latex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5873082A JPS58174401A (en) 1982-04-08 1982-04-08 Method and apparatus for continuous coagulation of polymer latex

Publications (1)

Publication Number Publication Date
JPS58174401A true JPS58174401A (en) 1983-10-13

Family

ID=13092614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5873082A Pending JPS58174401A (en) 1982-04-08 1982-04-08 Method and apparatus for continuous coagulation of polymer latex

Country Status (1)

Country Link
JP (1) JPS58174401A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509467A (en) * 2009-10-29 2013-03-14 ソルヴェイ・スペシャルティ・ポリマーズ・イタリー・エッセ・ピ・ア Method for isolating sulfonyl fluoride polymer and polymer obtained thereby
JP2016533426A (en) * 2014-09-03 2016-10-27 エルジー・ケム・リミテッド Method for producing resin powder and integrated aggregator therefor
JP2020500991A (en) * 2016-12-09 2020-01-16 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Method for producing elastomer aggregate composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509467A (en) * 2009-10-29 2013-03-14 ソルヴェイ・スペシャルティ・ポリマーズ・イタリー・エッセ・ピ・ア Method for isolating sulfonyl fluoride polymer and polymer obtained thereby
JP2017031431A (en) * 2009-10-29 2017-02-09 ソルヴェイ・スペシャルティ・ポリマーズ・イタリー・エッセ・ピ・ア Process for isolation of sulfonyl fluoride polymer and polymer obtained therefrom
JP2016533426A (en) * 2014-09-03 2016-10-27 エルジー・ケム・リミテッド Method for producing resin powder and integrated aggregator therefor
JP2020500991A (en) * 2016-12-09 2020-01-16 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Method for producing elastomer aggregate composition

Similar Documents

Publication Publication Date Title
RU2448129C2 (en) Method of producing artificial latex
US2366460A (en) Method of coagulating dispersions
US4265939A (en) Particulate rubber process
CA1207946A (en) Method and apparatus for continuously coagulating a rubbery polymer latex
US4429114A (en) Method for treating emulsified latex
JPS6157625A (en) Method and apparatus for dissolving polymer into water
CA1091391A (en) Process for coagulating polymer latices using screw- type extruder
CN105579478B (en) Prepare the method for toner and the integrated coagulator for this method
US3306342A (en) Fluid processes useful in precipitation of dissolved solids
JPS6157624A (en) Method and apparatus for dispersing dry polymer to water
JPS58174401A (en) Method and apparatus for continuous coagulation of polymer latex
DE3886805T2 (en) Method and use of a device for producing coagulated grains from a polymer latex.
Rollin et al. The effect of flow regime on the continuous emulsion polymerization of styrene in a tubular reactor
WO1997022739A1 (en) Laminar flow process of preparing cellulose diacetate fibers
JP3987755B2 (en) Polymer recovery method
EP1229056B1 (en) Process for producing polymer particles
JP2000239315A (en) Production of polymer
JP3813011B2 (en) Method and apparatus for collecting polymer solids
JPH09227838A (en) Apparatus for continuously forming stock paste by dissolution
GB1463881A (en) Fluid separation apparatus and process
JPS58176218A (en) Coagulation of latex
JPH0151483B2 (en)
WO2001091877A2 (en) Apparatus and method for forming polymer crumb
JPH03223303A (en) Production of particulate polymer
SU766882A1 (en) Apparatus for coagulating latexes