JPS58174285A - Method and device for deoxidizing feed water - Google Patents

Method and device for deoxidizing feed water

Info

Publication number
JPS58174285A
JPS58174285A JP5392282A JP5392282A JPS58174285A JP S58174285 A JPS58174285 A JP S58174285A JP 5392282 A JP5392282 A JP 5392282A JP 5392282 A JP5392282 A JP 5392282A JP S58174285 A JPS58174285 A JP S58174285A
Authority
JP
Japan
Prior art keywords
hydrogen
water
water supply
supplied
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5392282A
Other languages
Japanese (ja)
Other versions
JPS6039436B2 (en
Inventor
Jun Kaneko
金子 準
Shokichi Hashimoto
橋本 昭吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Chemical Industry Co Ltd
Original Assignee
Kowa Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Chemical Industry Co Ltd filed Critical Kowa Chemical Industry Co Ltd
Priority to JP5392282A priority Critical patent/JPS6039436B2/en
Publication of JPS58174285A publication Critical patent/JPS58174285A/en
Publication of JPS6039436B2 publication Critical patent/JPS6039436B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To prevent the corrosion of a feed water system and to deoxidize feed water quickly, by mixing the hydrogen which is supplied through a reducing valve from a pressure vessel contg. a hydrogen occluding material with the feed water, and supplying the mixture to a vessel containing a catalytic resin thereby deoxidizing the feed water. CONSTITUTION:Heated fluid such as steam, hot water or the like is supplied through a pipeline 39 and a flow rate controlling valve 39a to a mixer 44, and cooling fluid such as cold water is supplied through a pipeline 40 and a flow rate controlling valve 40a to the mixer 44,where both are mixed to the fluid of the controlled temp. The temp. thereof is checked with a thermometer 43, whereafter the mixture is supplied through a flow rate controlling valve 43 and a pipeline 41 into a heat transmitting coil 5. The temp. of the hydrogen occluding material 4 in a hydrogen storage vessel 1 is controlled to a suitable value, and is discharged through a pipeline 45 and a valve 46. The heated fluid may be supplied independently through a pipeline 41 in the stage of releasing the gaseous H2 occluded therein and the cooling fluid may be flowed independently through the pipeline 41 in the hydrogen occluding stage.

Description

【発明の詳細な説明】 この発明は給水の脱酸素。方法とその装置に関“′1 する。[Detailed description of the invention] This invention deoxidizes water supply. Regarding the method and its equipment "'1 do.

近時ボイラの給水特に高温高圧のボイラにおいては給水
中の含有酸素量はPPb級にすることが強く要求されて
おる。一方低圧のlo′Y!g級の使用圧の低いものに
おいてもまた酸素含有量を低減することが強く要求され
ている。これは給水中の不純物除去手段が改善され、従
来スケール分が多くそのスケール付着層により酸素腐食
の防止がされていたものがスケールが少ないことにより
酸素腐食の問題が登場することとなったものである。
In recent years, there has been a strong demand for the oxygen content in the feed water of boilers, particularly in high temperature and high pressure boilers, to be in the PPb class. On the other hand, low pressure lo'Y! There is also a strong demand for reducing the oxygen content in G-class products with low operating pressures. This is because the means for removing impurities in the water supply has been improved, and the problem of oxygen corrosion has appeared because there is less scale than in the past, which had a large amount of scale and a layer of scale adhesion that prevented oxygen corrosion. be.

従来給水中に含有する酸素の除去は化学薬品によりされ
ていた。その薬剤の一つとして使用されている亜硫酸ソ
ーダは高圧、高温になるほど分解しやすく、これにより
SO2ガスを発生し、これが過熱器中で酸化されてso
3となりタービンの低圧段で蒸気の凝縮と共にH2SO
4となり低圧段の部材を腐食せしめるとともに、復水の
PH値を低下させ、系統腐食の一因になるという問題が
ある。
Conventionally, oxygen contained in water supply has been removed using chemicals. Sodium sulfite, which is used as one of the chemicals, decomposes more easily at higher pressures and temperatures, which generates SO2 gas, which is oxidized in the superheater and becomes SO2.
3, and as the steam condenses in the low pressure stage of the turbine, H2SO
4, causing corrosion of the members of the low-pressure stage and lowering the pH value of condensate, which is a cause of system corrosion.

またヒドラジン(N2H4)は次式に示すように酸素と
反応して水と窒素をつくるので従来好ましい脱酸素剤と
して大いに使用されている。
Furthermore, hydrazine (N2H4) has been widely used as a preferred oxygen scavenger since it reacts with oxygen to form water and nitrogen as shown in the following formula.

N2H4+ 02  ”  2H20+ N2    
、、、(1)しかしN2H4は特異な体質をもつ人には
毒性をもつこととなり注意が必要である。
N2H4+ 02 ” 2H20+ N2
(1) However, N2H4 is toxic to people with specific constitutions, so caution is required.

またこのヒドラジンの供給は給水中の含有酸素量を低下
させるため算出した理論値より若干多口に供給せねばな
らず、過剰のヒドラジンはそのま\蒸発するか、または
式(2)に示すようにアンモニアと窒素に分解する。
In addition, this hydrazine must be supplied in a slightly larger amount than the calculated theoretical value in order to reduce the amount of oxygen contained in the water supply, and the excess hydrazine either evaporates as it is, or evaporates as shown in equation (2). decomposes into ammonia and nitrogen.

3N2H,→4NH3+N2     ・・・(2)こ
こに生成したアンモニアは復水中に入り復水ノPH値ヲ
高いものとするし、このアンモニアが多過ぎると銅系の
金属を腐食するようになるとシ)う問題がある。いずれ
にしても薬剤による脱酸素手段では適正な供給量の制御
が強く要求され、しかもなお給水系、復水系において部
材腐食という問題を生じている。
3N2H,→4NH3+N2... (2) The ammonia generated here enters the condensate and makes the PH value of the condensate high, and if there is too much ammonia, it will corrode copper-based metals. There is a problem. In any case, chemical deoxidation means strongly require proper control of the supply amount, and still cause the problem of member corrosion in the water supply system and condensate system.

この発明は低圧の水素ガスを給水中に供給し給水中の酸
素除去を容易かつ効率よくする新たな脱酸素方法とその
装置を提案することを目的とする。
The object of the present invention is to propose a new deoxidation method and device for supplying low-pressure hydrogen gas into water supply to easily and efficiently remove oxygen from the water supply.

しかし給水中の酸素除去のため単に気体であろ水素ガス
を給水中に供給しても給水に充分溶は込まず、水中の酸
素と反応することが充分にされず逸脱する量が多くなり
、加えて高圧の水素ボンベの取扱いは責任者の監督を必
要とし重いボンベの取扱いは容易でない。
However, even if hydrogen gas is simply supplied into the water supply to remove oxygen from the water supply, it will not dissolve sufficiently into the water supply, and will not react sufficiently with the oxygen in the water, resulting in a large amount of hydrogen gas being added. The handling of high-pressure hydrogen cylinders requires the supervision of a responsible person, and handling heavy cylinders is not easy.

この発明は圧力の低い容器から安定したHpスを供給す
ることを可能ならしめ、かつ給水と充分混合してとけこ
ませ、加えて給水を好適な触媒樹脂のベッドを通過させ
その触媒作用により充分に0看除去する操作を連続して
行なう方法とその装置を提案することを特徴とする。
This invention makes it possible to supply a stable HPS from a low-pressure vessel, which mixes well with the feed water to dissolve it, and in addition passes the feed water through a bed of a suitable catalytic resin to provide sufficient catalysis due to its catalytic action. The present invention is characterized in that it proposes a method and an apparatus for continuously performing operations for removing 0 points.

この発明の実施にかかる装置を以下図面により説明する
。水素ガスを水素ボンベより供給しようとすると高圧水
素ボンベは内圧150¥Igもありその圧力に耐えるボ
ンベの肉厚は厚いものとなり、一本のボンベの重量は重
いものとなり加えて高圧の危険物であることよりその取
扱いはむつかしい。また液体水素では一253℃のもの
を常温低圧のガスにするためには附属装置が多く、その
取扱いもむつかしい。
An apparatus according to the present invention will be explained below with reference to the drawings. If you try to supply hydrogen gas from a hydrogen cylinder, the high-pressure hydrogen cylinder has an internal pressure of 150 yen Ig, and the cylinder must have a thick wall to withstand that pressure.In addition, each cylinder is heavy, and it is a high-pressure dangerous substance. It is more difficult to handle than it is. Furthermore, in order to convert liquid hydrogen from -253°C to gas at room temperature and low pressure, there are many attached devices, which are difficult to handle.

発明者等は近時開発されている水素貯蔵用合金の吸蔵能
力に着目しこれを使用した発明をした。
The inventors focused on the storage capacity of recently developed hydrogen storage alloys and created an invention using this.

第1図はこの発明の実施にか\る装置機器を接続する管
系読図である。符号1は水素貯蔵容器である。第2図は
その縦断面図で内圧20〜30¥Igの圧力に耐える容
器で材料はAI又はA1合金等容器を軽くする材料を使
用することができる。胴本体1aの7ランジと底部圧力
室2を形成する半球状の下部蓋1bのフランジとの間に
拡散板3を位置させる。拡散板3は胴内に収容する水素
吸蔵材(粉、小塊状)4が底部圧力室2に漏洩すること
がなく、かつ水素ガスを通過させうる多孔質の板(多孔
質のセラミック材。
FIG. 1 is a diagram showing a piping system for connecting equipment according to the embodiment of the present invention. Reference numeral 1 is a hydrogen storage container. FIG. 2 is a vertical sectional view of the container, which can withstand an internal pressure of 20 to 30 yen Ig. Materials that make the container lighter, such as AI or A1 alloy, can be used. A diffuser plate 3 is positioned between seven flanges of the trunk body 1a and a flange of a hemispherical lower lid 1b forming a bottom pressure chamber 2. The diffusion plate 3 is a porous plate (porous ceramic material) that prevents the hydrogen storage material (powder, small lump form) 4 housed in the body from leaking into the bottom pressure chamber 2 and allows hydrogen gas to pass through.

焼結金属板または小孔を有する金属板)で作られている
。また拡散板は金網をその外面にもつ耐熱(最高120
℃に耐えること)の合成繊維等で織ったキャンパスでも
よい。胴の上部フランジにはほぼ半球状の上部Mlcが
7ランジ接続される。フランジ面には気密パツキン、気
密材を用い水素の漏洩のない構造とする。要すればフラ
ンジ接続部周をシール溶接したものとしてもよい。また
胴la内には伝熱コイル5を位置させ、この伝熱コイル
に温水、蒸気や冷却用水又は冷却ガスを通し胴内温度の
調節をする。またその温度は温度発信器6により計測さ
れその温度信号は制御箱12に送るとともに計器表示を
可能とする。水素貯蔵容器1内の水素吸蔵材には水素ボ
ンベ7等の水素源から減圧弁8.下部蓋に接続する弁9
を経由し、さらに圧力室2゜拡散板3を通し水素を供給
し吸蔵させる。第1図には水素貯蔵容器lは1基だけし
か示してないが2基以上並列に設け(水素貯蔵容器の出
口弁11b、110のみ示す)水素ガス供給主管路(以
下単に水素主管路と称す) 10に接続し、水素貯蔵容
器の出目弁11a、 11b、 llcは記憶と指令信
号を出す制御箱12の指令信号により又は手動操作によ
り切換えて水素ガスの脱醸素容器34への供給を連続し
てすることができる。水素貯蔵容器1内の圧力は上部蓋
ICに接続するゝ圧力計13から圧力信号として制御箱
12に送られる。
made of sintered metal plate or metal plate with small holes). In addition, the diffuser plate has a wire mesh on its outer surface and is heat resistant (maximum 120
It may also be a canvas woven from synthetic fibers, etc. that can withstand temperatures of A substantially hemispherical upper Mlc is connected to the upper flange of the barrel by seven flange. The flange surface uses airtight packing and airtight material to create a structure that prevents hydrogen leakage. If necessary, the periphery of the flange connection portion may be sealed and welded. Further, a heat transfer coil 5 is located inside the shell la, and hot water, steam, cooling water, or cooling gas is passed through the heat transfer coil to adjust the temperature inside the shell. Further, the temperature is measured by the temperature transmitter 6, and the temperature signal is sent to the control box 12 and can be displayed on the instrument. The hydrogen storage material in the hydrogen storage container 1 is supplied with a pressure reducing valve 8 from a hydrogen source such as a hydrogen cylinder 7. Valve 9 connected to the lower lid
Hydrogen is supplied and stored through the pressure chamber 2 and the diffusion plate 3. Although only one hydrogen storage container l is shown in Figure 1, two or more hydrogen storage containers are installed in parallel (only the outlet valves 11b and 110 of the hydrogen storage container are shown), and a hydrogen gas supply main pipe (hereinafter simply referred to as the hydrogen main pipe) is provided. ) 10, and the hydrogen storage container outlet valves 11a, 11b, llc are switched by memory and a command signal from the control box 12 that outputs a command signal, or by manual operation, to supply hydrogen gas to the deodorizing container 34. Can be done continuously. The pressure inside the hydrogen storage container 1 is sent to the control box 12 as a pressure signal from a pressure gauge 13 connected to the upper lid IC.

水素貯蔵容器l内の圧力20〜305gの水素ガスは出
口弁11aより水素主管路lOより減圧弁14で減圧さ
れ5〜85gの水素放出圧力の水素ガスとなる。その調
節は減圧弁14の前後の水素主管路10に設けた圧力発
信器15a、 15 bを目視して手動調節するか又は
これら圧力発信器15a、15b  からの信号を受け
る制御箱12からの指令信号により制御される。減圧さ
れた水素ガスは水素ガス流量計16止め弁25を通り水
素給水混合器17に供給される。
The hydrogen gas at a pressure of 20 to 305 g in the hydrogen storage container 1 is reduced in pressure by the pressure reducing valve 14 from the outlet valve 11a to the main hydrogen pipe 10, and becomes hydrogen gas at a hydrogen release pressure of 5 to 85 g. The adjustment can be done manually by visually observing the pressure transmitters 15a, 15b installed in the main hydrogen pipe 10 before and after the pressure reducing valve 14, or by commands from the control box 12 that receives signals from these pressure transmitters 15a, 15b. Controlled by a signal. The reduced pressure hydrogen gas passes through the hydrogen gas flow meter 16 and the stop valve 25 and is supplied to the hydrogen feed water mixer 17 .

水素給水混合器(以下単に混合器と称す)17はその一
例としては第3図にその断面を示す構造のものとする。
An example of the hydrogen supply water mixer (hereinafter simply referred to as mixer) 17 has a structure whose cross section is shown in FIG.

給水Wは軟水装置18.軟水タンク19.給水ポンプ2
0を経由し給水用の管路21給水流量制御弁22.給水
流量計23を経由して混合器17に供給される。なお、
軟水タンク又は給水用の管路21には給水中の02を計
測する02メータ24が設けられその給水中の02含有
量は計器表示されるとともに制御箱12に信号として送
られる。
Water supply W is water softener 18. Soft water tank19. Water pump 2
0 via a water supply pipe line 21 and a water supply flow rate control valve 22. The water is supplied to the mixer 17 via the water supply flow meter 23. In addition,
The soft water tank or water supply pipe 21 is provided with an 02 meter 24 for measuring 02 in the supplied water, and the 02 content in the supplied water is displayed on the meter and sent as a signal to the control box 12.

混合器17の構造を第3図、第4図により説明する。混
合器17はベンチュリ一部17aとバッフル混合部17
bとよりなる。水中へのガス溶は込み量を大きくするに
はHIスについては水温が50℃以下であることが好ま
しい。
The structure of the mixer 17 will be explained with reference to FIGS. 3 and 4. The mixer 17 includes a venturi part 17a and a baffle mixing part 17.
It consists of b. In order to increase the amount of gas dissolved in water, it is preferable that the water temperature for HI gas is 50° C. or lower.

第5図は圧力’760mmHgの圧力で水/ mlに溶
解するH2の体積をO’C,’760mmHgに換算し
た値a (Bunsen吸収係数)XIO”を縦軸に、
温度を横軸にして示す線図である。圧力についてはHe
nryの法則で「温度が一定のとき一定量の液体に対す
る気体の溶解度はその気体の分圧に正比例する」ことに
より鴨の溶解度は圧力の高いほどよい。従って容器のH
吸蔵材料容量、肉厚、価格等の条件より20〜30’J
5gの容器圧力を選定しこれを5〜8Vgに減圧して使
用するのがよい。この5〜aVgに減圧されたH、f7
”スは水素主管路10から止め弁25を経由しベンチュ
リ一部17aの気室26に供給され、ベンチュリーのス
ロート部27に設けた複数のノズル28より給水中に供
給されJlと微細な気泡となり混合する。一方給水は管
路21よりベンチュリ一部17aに入りスロート部27
でH!スの供給を受けこれと混合しバッフル混合部17
bに流れバッフル29の抵抗を受は乱流となリーガスと
よく混合し、管路30主流量制御弁31.給水噴霧供給
器32を経由し、この給水噴霧供給器32に設けた複数
のノズル32aから触媒樹脂層33を有する脱酸素容器
34内の給水中に噴出し水中の02とH2の良好かつ充
分な接触をし触媒層を通りその触媒作用により02と反
応し水(H2O)となり脱酸素をされる。この脱酸素さ
れた給水は流量制御弁35.送水ポンプ36、送水流量
計37を経由し管路38から給水を必要とするボイラそ
の他の装置に供給される。
Figure 5 shows the volume of H2 dissolved in water/ml at a pressure of 760 mmHg, O'C, a value a (Bunsen absorption coefficient) XIO'' converted to 760 mmHg, on the vertical axis.
It is a diagram showing temperature on the horizontal axis. For pressure, He
According to Nry's law, ``When the temperature is constant, the solubility of a gas in a given amount of liquid is directly proportional to the partial pressure of that gas.'' The higher the pressure, the better the solubility of duck. Therefore, the H of the container
20~30'J depending on the storage material capacity, wall thickness, price, etc.
It is preferable to select a container pressure of 5 g and reduce the pressure to 5 to 8 Vg for use. H, f7, which was depressurized to this 5~aVg
The gas is supplied from the main hydrogen pipe 10 via the stop valve 25 to the air chamber 26 of the venturi part 17a, and is supplied into the water supply from the plurality of nozzles 28 provided at the throat part 27 of the venturi, forming Jl and fine bubbles. On the other hand, the water supply enters the venturi part 17a from the pipe 21 and enters the throat part 27.
And H! Baffle mixing section 17
The flow under the resistance of the baffle 29 becomes turbulent and mixes well with the gas, and the main flow control valve 31. Via the water supply spray supply device 32, a plurality of nozzles 32a provided in the water supply spray supply device 32 are ejected into the supply water in the deoxidizing container 34 having the catalytic resin layer 33 to ensure a good and sufficient amount of 02 and H2 in the water. It contacts, passes through the catalyst layer, reacts with 02 due to its catalytic action, becomes water (H2O), and is deoxidized. This deoxygenated feed water is supplied to the flow control valve 35. The water is supplied from a pipe 38 via a water pump 36 and a water flow meter 37 to boilers and other devices that require water supply.

つぎに水素貯蔵容器1内に収容する水素吸蔵材料につき
説明する。近時開発されたTiMn合金は吸蔵能力、取
扱いの点で極めて好ましい材料である。水素吸蔵に際し
ての水素の挙動は、で△Hは発熱量で7.0K01LI
/H21!+101である。
Next, the hydrogen storage material accommodated in the hydrogen storage container 1 will be explained. The recently developed TiMn alloy is an extremely preferable material in terms of storage capacity and handling. The behavior of hydrogen during hydrogen storage is: △H is the calorific value of 7.0K01LI
/H21! It is +101.

”Mrll、 5H2,+4固溶体の形態をとり、水素
を放出すると微細粉粒となり、水素を吸蔵すると粒。
``Mrll, It takes the form of a 5H2,+4 solid solution, and when it releases hydrogen, it becomes fine powder particles, and when it absorbs hydrogen, it becomes granules.

小塊状となる性質を有する。H!スの吸蔵放出は実験で
は数1000回(6000回)してもその吸蔵能力の低
下は認められなかった。
It has the property of forming small lumps. H! In experiments, no decrease in the storage capacity was observed even after several thousand times (6000 times) of storage and release of gas.

水素吸蔵材料のTiMn合金の性質は下記の通りである
The properties of the TiMn alloy as the hydrogen storage material are as follows.

(イ)水素貯蔵能力 合金1g当り180〜220 c
cice当り1.134〜1.386 C (ロ)水素放出率  平均88% (ハ)水素放出圧力 5〜8気圧(20〜40°C)第
6図はTiMn  及びTiFe−Hの温度と水素1.
5H 放出圧力との関係を示す線図である。
(a) Hydrogen storage capacity: 180 to 220 c per gram of alloy
1.134 to 1.386 C per cice (b) Hydrogen release rate Average 88% (c) Hydrogen release pressure 5 to 8 atm (20 to 40°C) Figure 6 shows the temperature of TiMn and TiFe-H and hydrogen 1 ..
5H is a diagram showing the relationship with discharge pressure.

このような水素吸蔵材料を使用することにより常温によ
る水素の供給はきわめて容易なものとなり、水素の貯蔵
量も比較的大きく、常温でほぼ一定の圧力で水素の放出
を可能とし、−吸蔵材料も比較的安価である等の効果を
この発明の実施にかかる給水の脱酸素装置にもたらすも
のである。
By using such a hydrogen storage material, it is extremely easy to supply hydrogen at room temperature, the amount of hydrogen stored is relatively large, and it is possible to release hydrogen at an almost constant pressure at room temperature. The feed water deoxidizer according to the present invention has advantages such as being relatively inexpensive.

水素貯蔵容器1内の伝熱コイル5に流す流体につき第1
図により説明する。蒸気又は温水。
The first for the fluid flowing into the heat transfer coil 5 in the hydrogen storage container 1.
This will be explained using figures. Steam or hot water.

熱ガス等の加熱された流体は管路39.流量制御弁39
aを経由し混合器44へ供給し、また冷水等の冷却流体
は管路40.流量制御弁40aを経由し混合器44に供
給して混合し、調節された温度の流体とし、温度計43
でその温度を確認したのち流量制御弁42を経由し管路
41から伝熱コイル5に供給する。水素貯蔵容器1内の
水素吸蔵材4の温度を適当なものとし管路45弁46を
経由して排出される。加熱された流体は吸蔵しているH
2ガスを放出するとき単独に管路41経由供給し、冷却
流体は水素吸蔵材料時に単独に管路41経由し混合器を
通しても混合間作をすることなく流してもよい。
Heated fluid such as hot gas is passed through line 39. Flow control valve 39
A cooling fluid such as cold water is supplied to the mixer 44 via the pipe 40.a. The fluid is supplied to the mixer 44 via the flow rate control valve 40a and mixed to obtain a fluid at a controlled temperature.
After confirming the temperature, it is supplied to the heat transfer coil 5 from the conduit 41 via the flow rate control valve 42. The temperature of the hydrogen storage material 4 in the hydrogen storage container 1 is adjusted to an appropriate temperature, and the hydrogen storage material 4 is discharged via a pipe 45 and a valve 46. The heated fluid absorbs H
When the two gases are released, they are supplied individually through the pipe 41, and when the hydrogen storage material is used, the cooling fluid may be supplied separately through the pipe 41 and passed through the mixer without mixing.

拡散板3を水素貯蔵容器に設けることは水素吸蔵前の水
素吸蔵材が微細粉粒状をしているので水素ボンベ7から
供給される水素ガスにより容器内の微細粉粒が流動層を
形成し、H2ガスとの接触面積は大きいものとなりかつ
均一に水素ガスと接触し吸蔵時間をいちぢるしく短縮す
る効果を奏するものである。
The reason why the diffusion plate 3 is provided in the hydrogen storage container is that since the hydrogen storage material before hydrogen storage is in the form of fine powder, the hydrogen gas supplied from the hydrogen cylinder 7 causes the fine powder in the container to form a fluidized bed. The area of contact with the H2 gas is large and uniformly contacts the hydrogen gas, which has the effect of significantly shortening the storage time.

つぎに脱酸素容器34内における弓と02との反応たる
脱酸素につき説明する。この装置は一般に使用されるイ
オン交換樹脂を使用する容器と類似する構造をもつもの
である。容器内の多孔゛  板34a(樹脂層は板)上
にはイオン交換樹脂層33が位置し、上端の鏡板にはイ
オン交換樹脂供ノズル50、止め弁51が設けられる。
Next, deoxidation, which is the reaction between the bow and 02 in the deoxidation container 34, will be explained. This device has a structure similar to a commonly used container using ion exchange resin. An ion exchange resin layer 33 is located on a porous plate 34a (the resin layer is a plate) inside the container, and an ion exchange resin supply nozzle 50 and a stop valve 51 are provided on the upper end plate.

下端の鏡板には給水排出ノズル52とこれに接続する脱
酸素した給水の主管路54が設けられる。主管路54よ
り分岐する管路55には止め弁53a、53b及びこの
2つの止め弁間の管路55に接続する逆洗用管路56が
設けられている。
A water supply discharge nozzle 52 and a main conduit 54 for deoxygenated water supply connected to the water supply discharge nozzle 52 are provided on the lower end plate. A conduit 55 branching from the main conduit 54 is provided with stop valves 53a, 53b and a backwash conduit 56 connected to the conduit 55 between these two stop valves.

使用するイオン交換樹脂はこの脱酸素を主にする触媒樹
脂でありゲル型の強塩基性I型アニオン交換樹脂である
。これはパラジウムをll加しである触媒樹脂でその表
面で反応がされ水溶液中の脱酸素に格別の効果を有する
こととなる。
The ion exchange resin used is a catalyst resin mainly used for deoxidizing, and is a gel type strongly basic type I anion exchange resin. This is because a reaction occurs on the surface of the catalytic resin containing palladium, and it has a special effect on deoxidizing the aqueous solution.

−例では商品名レパチツ) O(1! 1045がある
。使用安定温度はloo’c以下とする。
- In the example, the product name is Lepachitsu) O (1! 1045).The stable temperature for use is below loo'c.

この装置を使用し水素含有給水を供給する試験並びに実
験において水素の供給相が僅かにその化学理論量よりも
少くなると残留酸素の量が増大することが確められた。
In tests and experiments using this device to supply hydrogen-containing feed water, it has been determined that when the hydrogen feed phase becomes slightly less than its stoichiometric amount, the amount of residual oxygen increases.

第71,1はその実験結果を示すもので化学理論量より
も多くH2を供給しているときの残留酸素量は符号A域
の線図で示され、化学理論量よりも僅かに少くすると符
号D域の線図となり更に少くするとC,D域の線図とな
る。これに化学理論量よりも僅かに多くのH?:供給す
ると急激に残留0遅は減少し符号D域に示すものとなり
その敏速な効果が確認された。また触媒樹脂層を通過す
る給水の速度nv/h  @1ooj水/h/樹脂層i
)は遅いほど脱酸素の効果あることは勿論であり第8図
に示すようなものとなる。
No. 71, 1 shows the experimental results. The amount of residual oxygen when H2 is supplied in an amount larger than the chemical theoretical amount is shown in the diagram in the area of code A, and when H2 is supplied slightly less than the chemical theoretical amount, the residual oxygen amount is shown in the diagram with the sign A region. It becomes a diagram of area D, and if it is further reduced, it becomes a diagram of areas C and D. This contains slightly more H than the stoichiometric amount? : When supplied, the residual 0 delay rapidly decreased to a value in the D range, confirming its rapid effect. Also, the speed of water supply passing through the catalyst resin layer nv/h @1ooj water/h/resin layer i
) Of course, the slower the time, the more effective the deoxidation is, as shown in Figure 8.

第9図にこの発明の実施にかかる制御系統を示す、機器
部材の符号は第1図の符号に対応するものである。前述
の如く好適な水中の02除去のためにはこの02量に対
応する化学理論量のH2量より多いH2ガスを供給する
必要がある。このため供給する給水中の02量は給水流
量計23の流量信号と給水中のOA計測する02)を−
夕24の02量信号とを制御箱12に送りその積により
得られる。これに必要とするH2量は水素ガス流量計1
6の流量信号と圧力計15bの圧力信号とが制御箱12
に送られ演算される。混合器17に送られる顯ガスの圧
力は水素貯蔵容器1内の圧力を計測する圧力計13の信
号と、圧力発信器15a、15bの信号が制御箱12に
送られ、減圧弁14を制御することにより調節される。
FIG. 9 shows a control system according to the present invention, and the symbols of equipment members correspond to the symbols in FIG. 1. As mentioned above, in order to properly remove O2 from water, it is necessary to supply H2 gas in an amount greater than the stoichiometric amount of H2 corresponding to the amount of O2. Therefore, the amount of 02 in the supplied water is determined by the flow rate signal of the water supply flowmeter 23 and the 02) that measures the OA in the water supply.
24 and the 02 quantity signal are sent to the control box 12 and obtained by multiplying them. The amount of H2 required for this is hydrogen gas flow meter 1
6 and the pressure signal of the pressure gauge 15b are transmitted to the control box 12.
is sent to and calculated. The pressure of the head gas sent to the mixer 17 is determined by a signal from the pressure gauge 13 that measures the pressure inside the hydrogen storage container 1 and a signal from the pressure transmitters 15a and 15b, which is sent to the control box 12 to control the pressure reducing valve 14. It is adjusted by

また出目弁11a、 llb、 llaの切替によりH
2ガスの送出は連続したものにでき、一方においてH!
スの吸蔵操作をすることができる。水素貯蔵容器1内の
H,ffス圧力は第6図の線図にもあるように温度発信
器6の温度と送出するHIス量により定まるので、水素
ガス流量計16の流量信号と温度発信器6の温度信号と
を制御箱12に送り伝熱コイル内を流す流体温度を湿度
計43の信号をもとにして流量制御弁39a、40aを
調節制御することによりH!スの発生量がきまり、結果
として圧力計13に表示されることとなるという制御が
される。
In addition, by switching the exit valves 11a, llb, and lla, H
The delivery of the two gases can be continuous, with H!
It is possible to perform occlusion operations. As shown in the diagram in FIG. 6, the H, ff gas pressure in the hydrogen storage container 1 is determined by the temperature of the temperature transmitter 6 and the amount of HI gas sent out. The temperature signal from the heat transfer coil is sent to the control box 12, and the temperature of the fluid flowing through the heat transfer coil is adjusted and controlled by the flow rate control valves 39a and 40a based on the signal from the hygrometer 43. Control is performed such that the amount of gas generated is determined and the result is displayed on the pressure gauge 13.

混合器17に送られる給水量は給水流量制御弁2zによ
り制御される。
The amount of water supplied to the mixer 17 is controlled by the water supply flow rate control valve 2z.

送水量は02メーター57による残留02量の信号と送
水流量計37の信号を制御箱12におくり弁35及び又
は主流量制御弁31を制御することにより調節される。
The amount of water to be fed is adjusted by sending a signal of the remaining 02 amount from the 02 meter 57 and a signal from the water flow meter 37 to the control box 12 and controlling the valve 35 and/or the main flow control valve 31.

また脱酸素した給水の供給先の装置の負荷信号(図示せ
ず)を制御箱12に入れ装置制御の因子として加えるこ
ともできる。
Further, a load signal (not shown) of the device to which the deoxygenated feed water is supplied can be input into the control box 12 and added as a factor for controlling the device.

この発明を実施することにより適量のH,ttスが給水
と共に脱酸素容器34に供給され触媒樹脂層33でH2
Oとなるためボイラの給水系統、タービンプラントの腐
食を生ずることもなく、H2ガス供給装置は20〜3 
OYet g級の低圧のものを採用することができ、H
!スの吸蔵、放出の制御も容易になり吸蔵金属材料も繰
返し使用でき、しかも短時間で脱酸素の反応が得られヒ
ドラジン等の脱酸素薬剤を不用とするなど種々の効果を
奏するものである。
By carrying out this invention, an appropriate amount of H, tt gas is supplied to the deoxidizing container 34 together with the water supply, and the catalyst resin layer 33
O, so there is no corrosion of the boiler water supply system or turbine plant, and the H2 gas supply equipment is
OYet G class low pressure can be used, H
! The storage and release of gas can be easily controlled, the storage metal material can be used repeatedly, and furthermore, the deoxidizing reaction can be achieved in a short period of time, eliminating the need for deoxidizing agents such as hydrazine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にか\る装置の配管系統を示す図面、
第2図は水素貯蔵容器の断面図、第3図は混合器の縦断
面図、第4図は第3図のI−■断面視図、第5図はHガ
スの水に対する溶解度についての水温とBunsen吸
収係数の関係を示す線図、第6図はTiMn 1.5H
合金と、Ti1Pθ−H合金の湿度と水素放出圧力の関
係を示す線図、第7図は供給する町−が給水中のOJこ
対する化学理論量より多い場合(A)と少い場合(B、
 C,D)における残留酸素量の変化を時間を横軸にし
て示すIIs図、第8図は脱酸素容器内における流速と
処理水中の残留酸素との関係を示す線図、第9図は第1
図に示す装置の制御系統図である。 1・・・・・・水素貯蔵容器 11a、llb、1lc−−・出口弁 12・・・・・・制御箱 14・・・・・・減圧弁 17・・・・・・混合器 2o・・・・・・給水ポンプ 31・・・・・・主流量制御弁 34・・・・・・脱酸素容器 36・・・・・・送水ポンプ
FIG. 1 is a drawing showing the piping system of the device according to the present invention.
Figure 2 is a cross-sectional view of the hydrogen storage container, Figure 3 is a vertical cross-sectional view of the mixer, Figure 4 is a cross-sectional view taken along I-■ in Figure 3, and Figure 5 is the water temperature regarding the solubility of H gas in water. Figure 6 shows the relationship between TiMn 1.5H and Bunsen absorption coefficient.
A diagram showing the relationship between humidity and hydrogen release pressure for Ti1Pθ-H alloy and Ti1Pθ-H alloy. ,
IIs diagram showing the change in the amount of residual oxygen in C and D) with time as the horizontal axis, Figure 8 is a diagram showing the relationship between the flow rate in the deoxidizing container and the residual oxygen in the treated water, and Figure 9 is 1
FIG. 2 is a control system diagram of the device shown in the figure. 1...Hydrogen storage containers 11a, llb, 1lc--Outlet valve 12...Control box 14...Pressure reducing valve 17...Mixer 2o... ...Water pump 31...Main flow control valve 34...Oxygen removal container 36...Water pump

Claims (1)

【特許請求の範囲】 1、 水素吸蔵材料を収容する圧力容器から減圧弁を経
由し供給される水素を給水と混合して触媒樹脂を収容す
る容器に供給し脱酸素することを特徴とする給水の脱酸
素方法。 2、 水素吸蔵材料をTiMn系合金とし、触媒樹脂を
アニオン交換樹脂の粗粒品にパラジウムを附加したもの
とすることを特徴とする特許請求の範囲第1項記載の給
水の脱酸素方法。 3、 水素と混合する前の給水中の酸素含有量を計測し
これと反応し水となるための化学理論量以上の量の水素
を供給することを特徴とする特許請求の範囲第1項また
は第2項記載の給水の脱酸素方法。 4、 加熱流体と冷却流体を切換えまたは混合してa渇
とし供給することを可能とする伝熱コイルを内蔵しかつ
水素吸蔵材料を収容した水素貯蔵容器、減圧弁、水素ガ
ス流量計、水素給水混合器、主流量制御弁、脱酸素容器
内に位置する給水噴霧供給器とを管路で接続した水素含
有給水供給管路と、給水タンク、給水ポンプ、給水流量
制御弁、給水流量計を給水温度計を有する管路で接続し
た給水管路と、主流量制御弁と、前記給水噴霧供給器を
内蔵しかつ触媒樹脂層を有する脱酸素容器とよりなるこ
とを特徴とする給水の脱酸素装置。 5、水素給水混合器を給水の供給を受けるベンチュリ一
部と、このベンチュリ一部のスロートに設けたノズルか
らスロートに水素ガスを供給する水素ガス室と、このベ
ンチュリ一部に接続し4以上のバッフルを有スルバッフ
ル混合室とを接続して形成したことを特徴とする特許請
求の範囲第4項記載の給水の脱酸素装置。 6、特許請求の範囲第4項記載の給水の脱酸素装置にお
いて、水素貯蔵容器から供給する水素ガス圧力を減圧す
る減圧弁前後の圧力差のの信号と、水素ガス流量計の流
量信号と、脱酸素した給水の残留酸素量信号と送水流量
計の流量信号とを受ける記憶と指令信号を出す制御箱を
設け、水素貯蔵容器の出口弁、減圧弁、水素を混入した
給水の主流量制御弁、水素混入前の給水の給水流量制御
弁、脱酸素済みの給水の流量制御弁を制御する給水制御
系統を設けたことを特徴とする給水の脱酸素装置。 7、水素貯蔵容器内温度を温度信号として制御箱に送り
、温度調節をした流体を水素貯蔵容器内に設けた伝熱コ
イルに供給することを特徴とする特許請求の範囲第6項
記載の給水脱酸素装置。
[Claims] 1. A water supply characterized in that hydrogen supplied from a pressure vessel containing a hydrogen storage material via a pressure reducing valve is mixed with water supply and supplied to a container containing a catalyst resin for deoxidation. How to remove oxygen. 2. The method for deoxidizing feed water according to claim 1, wherein the hydrogen storage material is a TiMn-based alloy, and the catalyst resin is a coarse anion exchange resin to which palladium is added. 3. The content of oxygen in the supplied water is measured before it is mixed with hydrogen, and hydrogen is supplied in an amount greater than the stoichiometric amount for reacting with the oxygen to form water. The method for deoxidizing feed water according to paragraph 2. 4. A hydrogen storage container containing a hydrogen storage material and a built-in heat transfer coil that can switch or mix the heating fluid and the cooling fluid to supply a dry supply, a pressure reducing valve, a hydrogen gas flow meter, and a hydrogen water supply. The hydrogen-containing water supply pipe connects the mixer, the main flow control valve, and the water spray supply device located in the deoxidizing container with a pipe, and the water supply tank, the water supply pump, the water supply flow rate control valve, and the water supply flow meter are connected to the water supply pipe. A water supply water deoxidizer comprising a water supply pipe connected by a pipe having a thermometer, a main flow control valve, and a deoxygenation container incorporating the water supply spray supply device and having a catalytic resin layer. . 5. A hydrogen supply water mixer is connected to a part of a venturi that receives water supply, a hydrogen gas chamber that supplies hydrogen gas from a nozzle provided in the throat of this venturi part to the throat, and a part of this venturi, and 5. The feed water deoxidizer according to claim 4, characterized in that the baffle is formed by connecting the baffle-equipped mixing chamber. 6. In the feed water deoxidizer according to claim 4, a signal of a pressure difference before and after a pressure reducing valve that reduces the pressure of hydrogen gas supplied from a hydrogen storage container, and a flow rate signal of a hydrogen gas flow meter; A control box is provided to receive the residual oxygen amount signal of the deoxygenated feed water and the flow rate signal of the water supply flow meter, and to output a command signal, and the outlet valve of the hydrogen storage container, the pressure reducing valve, and the main flow control valve of the feed water mixed with hydrogen are installed. A feedwater deoxidation device characterized in that a feedwater control system is provided for controlling a feedwater flow rate control valve for feedwater before hydrogen mixing and a flow rate control valve for deoxygenated feedwater. 7. The water supply according to claim 6, characterized in that the temperature inside the hydrogen storage container is sent as a temperature signal to a control box, and the temperature-adjusted fluid is supplied to a heat transfer coil provided inside the hydrogen storage container. Oxygen absorber.
JP5392282A 1982-04-02 1982-04-02 Deoxygenation method and device for water supply Expired JPS6039436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5392282A JPS6039436B2 (en) 1982-04-02 1982-04-02 Deoxygenation method and device for water supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5392282A JPS6039436B2 (en) 1982-04-02 1982-04-02 Deoxygenation method and device for water supply

Publications (2)

Publication Number Publication Date
JPS58174285A true JPS58174285A (en) 1983-10-13
JPS6039436B2 JPS6039436B2 (en) 1985-09-05

Family

ID=12956205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5392282A Expired JPS6039436B2 (en) 1982-04-02 1982-04-02 Deoxygenation method and device for water supply

Country Status (1)

Country Link
JP (1) JPS6039436B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175596A (en) * 1983-11-10 1985-09-09 ウエスチングハウス エレクトリック コ−ポレ−ション Removal of dissolved oxygen from aqueous medium
US4789488A (en) * 1983-11-10 1988-12-06 Westinghouse Electric Corp. Catalyzed oxygen removal with hydrogen for steam generator systems
JPH03293092A (en) * 1990-04-10 1991-12-24 Ebara Res Co Ltd Method for removing dissolved oxygen in water
JP2008531992A (en) * 2005-02-23 2008-08-14 ダイオネックス コーポレイション Ion chromatography system using catalytic gas exclusion
US11090606B2 (en) 2013-12-05 2021-08-17 Dionex Corporation Gas-less electrolytic device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524404Y2 (en) * 1985-08-23 1993-06-22

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175596A (en) * 1983-11-10 1985-09-09 ウエスチングハウス エレクトリック コ−ポレ−ション Removal of dissolved oxygen from aqueous medium
US4789488A (en) * 1983-11-10 1988-12-06 Westinghouse Electric Corp. Catalyzed oxygen removal with hydrogen for steam generator systems
JPH0416236B2 (en) * 1983-11-10 1992-03-23 Westinghouse Electric Corp
JPH03293092A (en) * 1990-04-10 1991-12-24 Ebara Res Co Ltd Method for removing dissolved oxygen in water
JP2008531992A (en) * 2005-02-23 2008-08-14 ダイオネックス コーポレイション Ion chromatography system using catalytic gas exclusion
JP2012002826A (en) * 2005-02-23 2012-01-05 Dionex Corp Ion chromatography system using contact type gas removal
US8308952B2 (en) 2005-02-23 2012-11-13 Dionex Corporation Ion chromatography system using catalytic gas elimination
US8784655B2 (en) 2005-02-23 2014-07-22 Dionex Corporation Ion chromatography system using catalytic gas elimination
US11090606B2 (en) 2013-12-05 2021-08-17 Dionex Corporation Gas-less electrolytic device and method

Also Published As

Publication number Publication date
JPS6039436B2 (en) 1985-09-05

Similar Documents

Publication Publication Date Title
US4769221A (en) Chemical reaction apparatus
JPS58174285A (en) Method and device for deoxidizing feed water
EP2495215B1 (en) Apparatus for continuous production of monopersulfuric acid
JPS6347771B2 (en)
JPH04180816A (en) Method of introducing treating medium into exhaust gas from combustion process
US3574560A (en) Device for producing gaseous reactants particularly hydrogen and oxygen for fuel cells
WO2008139146A2 (en) Method and apparatus for controlling gaseous hydrolysis production
JPS59133293A (en) Reaction tube for carrying out exothermic gas reaction, especially methanation by heterogeneous catalyst activity
CA1160367A (en) Device for removing hydrogen gas from the containment of a nuclear reactor plant
US4986296A (en) Method and apparatus for chlorinating water with liquefied chlorine
CN212204025U (en) Odorization system
JPH0711147Y2 (en) Urea solution manufacturing equipment
CN208756997U (en) Urea distillation system and urea preparation system
CN211328810U (en) Antimony pentachloride tail gas absorbing device
CN209696640U (en) A kind of super-pressure solid denitrating system
KR100242413B1 (en) Device and method for preparing ozone contained water
RU52972U1 (en) DISPENSER FOR LIQUID REAGENTS
JPH01148333A (en) Method for feeding reducing agent for denitration
CN209259825U (en) Closed loop ozone treatment sewage apparatus
CN212982561U (en) System for supplying water and adding ammonia for power plant
WO2024157609A1 (en) Generation device and generation method
GB342067A (en) Improvements in or relating to apparatus for dispensing liquids
CN207605570U (en) A kind of ClO 2 solution, which is produced, uses absorption tower
JPH0210893B2 (en)
JPS6327052B2 (en)