JPS58174279A - Method for recovering useful element from industrial waste - Google Patents

Method for recovering useful element from industrial waste

Info

Publication number
JPS58174279A
JPS58174279A JP57055093A JP5509382A JPS58174279A JP S58174279 A JPS58174279 A JP S58174279A JP 57055093 A JP57055093 A JP 57055093A JP 5509382 A JP5509382 A JP 5509382A JP S58174279 A JPS58174279 A JP S58174279A
Authority
JP
Japan
Prior art keywords
dust
sludge
coolant
nonferrous metal
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57055093A
Other languages
Japanese (ja)
Inventor
Toshihiko Fujita
敏彦 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57055093A priority Critical patent/JPS58174279A/en
Publication of JPS58174279A publication Critical patent/JPS58174279A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE:To accumulate and concentrate nonferrous metal contained in dust and sludge and to recover the nonferrous metal by decarbonizing the dust and sludge produced in ironworks then mixing a specific amt. of quick lime powder therewith and using the granules thereof as a coolant for iron making. CONSTITUTION:Dust or the like contg. C and S in a high rate is first charged into the thickener of a blast furnace and is thus subjected to a decarbonization treatment. The treated dust and ordinary dust or the like are mixed with 5- 30wt% quick lime powder and the mixture is dehydrated, solidified and granulated to 5-70mm. diameter. The granules are charged into a steel making furnace and are used as a coolant. Nonferrous metal in the coolant in this case is totally evaporated, but said metal is cooled to solidify and again granulated. The granules are again used as the coolant. Thus, the nonferrous metal is concentrated and the nonferrous metal is recovered economically on a commercial base.

Description

【発明の詳細な説明】 この発明は製鉄所等で発生するダストやスラジ類を有効
利用してPζ 0分を回収し、かつ、その中に含まれて
いる有用金属を経済的で、効果的に濃縮して精錬用原料
を製造する方法に関するものである。
[Detailed Description of the Invention] This invention effectively utilizes dust and sludge generated in steel works, etc. to recover Pζ 0, and also to recover useful metals contained therein in an economical and effective manner. The present invention relates to a method for producing a refining raw material by concentrating the

本来製鉄所等て発生するダストやスラジ類は種々のもの
があプ、その発生量も原材料のfl類、配合率、作業法
、回収法によシ変化するものであるが、その代狭的なも
のと発生原単位はおよそ第1表のようになっている。
There are various types of dust and sludge that are generated in steel works, etc., and the amount generated varies depending on the fl type of raw materials, blending ratio, work method, and recovery method. Table 1 shows the basic units of production and production.

第1表 種  類    発生原単位Kg/’1’高炉シックナ
ースラジ   2.0〜6.0転炉シツクナ〜スラジ 
 10.0〜15.0圧延シツクナース2ジ   1.
0〜5.0焼結集履ダスト      1.0〜4.0
混銑炉集塵ダスト     0.1〜1.5転炉集塵ダ
スト      0゜5〜1.5このデータはその一例
にすぎないが、製鉄所で発生するダスト、スラリ類を合
計すれば、その発生量は製鉄所が生産する粗鋼量のは′
i2〜4−に相当するものである。
Table 1 Type Generation unit Kg/'1' Blast furnace thickener sludge 2.0 to 6.0 Converter thickener to sludge
10.0-15.0 rolling thick nurse 2 1.
0~5.0 Sintered gravel dust 1.0~4.0
Mixed pig iron furnace dust 0.1~1.5 Converter furnace dust 0゜5~1.5 This data is just one example, but if you add up the dust and slurry generated at steel plants, The amount is the amount of crude steel produced by a steelworks.
This corresponds to i2-4-.

以下、明細書で述べる重量およびその比率については総
て乾燥状態のものを示すこと\する0以上に述べたダス
ト、スラリ類には、?・分として通常50〜70%含有
されている。それにも拘らずこれらは次に述べる理由に
よシ、現状では有効な再利用がなされていない。
Below, all weights and ratios mentioned in the specification refer to those in a dry state.・The content is usually 50 to 70%. Despite this, these materials are not currently being reused effectively for the reasons described below.

(1)圧延スラジのように、通常油分を含むものを再利
用すると、その蒸気が集塵機内sK附着して故障原因と
なる。
(1) If something that normally contains oil, such as rolling sludge, is reused, its vapor will adhere to the inside of the dust collector and cause failure.

(2) ダスト、スラリ類には亜鉛、カリウム、ナトリ
ウム等が多量に含まれるが、これを製銑原料として再使
用すれば、高炉シャフト部、特に中段部の炉壁に生成す
る所間壁付と呼ぶ炉壁附着物の主因となpl これが発
達すると炉内のプロフィールが著しく変化し、円滑な装
入物降下が阻害される結高炉の安定操業を阻害する。
(2) Dust and slurry contain large amounts of zinc, potassium, sodium, etc., and if they are reused as raw materials for ironmaking, it will be possible to prevent the formation of cracks in the wall of the blast furnace shaft, especially in the middle section. This is the main cause of furnace wall deposits called PL. When this develops, the profile inside the furnace changes significantly, inhibiting the stable operation of the blast furnace by inhibiting the smooth descent of the burden.

(5)  又、壁付の生成に伴って、炉内ガス分布が変
化し壁付崩壊を起すことがあシ、羽口損傷や炉床冷込み
等の問題を起すことがある。
(5) Also, as the wall formation occurs, the gas distribution in the furnace changes, which may cause wall collapse, which may cause problems such as damage to the tuyeres and cooling of the hearth.

(4)高炉スラジ、混銑炉ダストなど8分の高いものを
そのま\再利用すれば銑鉄、鋼中に8分が溶入し、銑鋼
の物理的性質の劣化を招くが、溶解時にそれを除去する
Kは莫大な手数と費用を要する。
(4) If blast furnace sludge, pig iron mixer dust, and other materials with a high content of 8% are reused as they are, the 8% will dissolve into the pig iron and steel, leading to deterioration of the physical properties of the pig steel. Removing K requires a huge amount of effort and expense.

(5)  ダスト、スラリ類は、普通その粒度が0.1
49mm以下のものが90〜99チを占める極1・粉で
あるため、取扱いが非常に難しいこと\、%に水処理さ
れたスラジ状の4のは乾燥が非常に瘤しく、その取扱い
処理には多大の手数と費用を要する。
(5) Dust and slurry usually have a particle size of 0.1
Items of 49 mm or less are extremely difficult to handle because they are powders that account for 90 to 99 inches, and sludge-like items that have been treated with water to 4% dry out very lumpy, so it is difficult to handle them. requires a great deal of effort and expense.

以上のような理由から、これらダスト、スラリ類は、y
・分含有率が鳥いにも拘らず今迄の所では殆んど再利用
されず、産業ノを棄物として、擲コ等に投棄されて来た
のが実状である。
For the above reasons, these dusts and slurries are
・Despite its low content, until now it has hardly been reused and has been dumped into dumpsters as industrial waste.

しかし、これらを投棄することは、その投棄場所の確保
、投棄物が起す諸問題、運搬と費用の問題等があり、こ
れら産業廃棄物の処理再利用の問題は製鉄業界共通の悩
みであシ、問題点であるO 本発明は以上説明した種々の問題を解決するためのもの
であって、従来やむをえず廃棄処分を行ない、又その廃
棄処分そのものが木酸であった前述の廃棄物を再利用し
て、Pe分はもとより、C2Mn  等の有効成分を充
分に回収活用すると同時に、従来は製鉄作業に有害とさ
れていた金属をスラジ中に濃縮させ、それを採算品位の
原料にまで高める方法を提供するものである。
However, dumping these wastes involves securing a dumping site, various problems caused by the dumped materials, transportation and cost issues, etc. The problem of processing and reusing these industrial wastes is a common problem in the steel industry. The present invention is intended to solve the various problems explained above, and it is possible to recycle the aforementioned waste, which conventionally had to be disposed of unavoidably, and whose disposal itself was wood acid. A method to fully recover and utilize not only Pe but also active ingredients such as C2Mn, while at the same time concentrating metals that were previously considered harmful to steelmaking operations in sludge, and raising it to a profitable grade raw material. It provides:

以下その方法について祥細に股間するO製鉄所等におい
て発生する王なダスト、スラ・′)類の種類と原単位の
代表例を第1表に、粗鋼1850万屯/年の製鉄所にお
いて発生したこれらの例1に@2表に、又、これらの組
成成分と含水率を第3表に示した08g 2 表   
     ゛ 発生原料単位−/T 月間発生量T 高炉スラジ   5.0       5562転炉ス
ラジ  12.2       8729圧娠スラジ 
   2.1      1461焼結ダスト    
2.2      2033混銑炉ダスト   0.5
       546転炉ダスト    1.0   
    716第3表 第2表に示すとおり、この規模の製鉄所で発生し九ダス
ト、スラリ類の月間発生量は16847屯/月であシ、
第5表に示すごとく剣へばF・分で57−平均4あるに
も拘らず、Zn1.7チ、K+Ma1.Q嘩もあシ高炉
原料に使用することは不可能であった。
Table 1 shows typical examples of types and basic units of dust, slag, etc. that are generated at O steelworks, etc., which are generated at steelworks that produce 18.5 million tons of crude steel per year. These examples 1 and 2 are shown in Table 2, and their compositions and moisture contents are shown in Table 3.
゛Generated raw material unit -/T Monthly generation amount T Blast furnace sludge 5.0 5562 Converter sludge 12.2 8729 Pressurized sludge
2.1 1461 sintered dust
2.2 2033 Mixed pig iron furnace dust 0.5
546 converter dust 1.0
As shown in Table 2 of Table 3 of 716, the monthly amount of dust and slurry generated in a steelworks of this scale is 16,847 tons/month.
As shown in Table 5, although the average value of F・min is 57-4, Zn1.7chi, K+Ma1. It was impossible to use Q-moor reeds as a raw material for blast furnaces.

又、水分も全平均的29%あシ、このt\では再利用に
適さない。
Also, the moisture content was 29% on average, making it unsuitable for reuse.

本発明はこれ、ら高水分含有率のダスト、スラジ混合物
を製鋼用副原料として便用しようとするものであるが、
その前処理として次の如き工程を経ることを特徴とする
The present invention aims to conveniently use a dust and sludge mixture with a high moisture content as an auxiliary raw material for steelmaking.
It is characterized by passing through the following steps as its pretreatment.

即ち、高炉シックナースラジにはその50〜5oチをコ
ぜス分が占め、そのまま製鋼用冷却剤に使えば、コーク
ス中の8の為に著しく脱硫能を阻害される恐れがあり、
又、折角のエネルギー源となシ得るコークスを分別有効
利用する為、前工楊として選鉱処置を行56遍鉱7俵は
既知の、鍔見d比重遥鉱演、浮遊選鉱法、磁力選鉱法等
い一5rL4A団τある0−二実施例を示す。
In other words, 50-50% of blast furnace thickener sludge is made up of cozes, and if it is used as a steelmaking coolant as it is, there is a risk that the desulfurization ability will be significantly inhibited by the 8 in coke.
In addition, in order to separate and effectively utilize coke, which can be used as a valuable energy source, ore beneficiation is carried out as a pre-processing process.The 7 bales of 56 ore are produced using the known Tsubami d-densification method, flotation method, and magnetic ore beneficiation method. A 0-2 example is shown in which one 5rL4A group τ is equal.

実施f11 浮遊選鉱法 量     ?、チ  zn−0% 給鉱  100  22  8  58浮鉱   40
   2  5  82沈鉱   6035119 夾施鉤2 磁力選鉱法 給鉱  100  26  3  46磁着鉱   2
8  54  2   6非磁着鉱   72、 15
  3  62選鉱条件は設備、コスト、収率等を考慮
して決定すればよい。これらから以下には強磁界型磁選
機で選鉱脱炭処理した例を第4表に示す。この場合、O
,Sの高い混銑炉集塵ダスト等も高炉シックナーに役人
混合し、脱炭処理を行ったが良い。
Implementation f11 Flotation legal amount? , Chizn-0% Feed ore 100 22 8 58 Floating ore 40
2 5 82 Ore deposit 6035119 Concentration 2 Magnetic ore beneficiation method 100 26 3 46 Magnetic ore 2
8 54 2 6 Non-magnetic ore 72, 15
362 The beneficiation conditions may be determined by considering equipment, cost, yield, etc. Table 4 below shows examples of ore separation and decarburization using a strong magnetic field type magnetic separator. In this case, O
It is recommended that the mixed pig iron furnace dust with high S content be mixed with the blast furnace thickener and decarburized.

第4表 す・    o     Zn     s    量
i高炉スラジ   32.7   閏、5  3.4 
 0.64 3562混銑炉ダスト  47.0   
1B、5  0.2 0.42  546混合スラジ 
  34.0  36.7  5.10.62 590
8磁着物 57.8 6.0 1.60.121954
非磁着物  10.2  67.4 4.6 1.12
 1954この処理により得られた非磁着物はO量高く
一般燃料用原料に充分適するものである。
4th representation: o Zn s amount i blast furnace sludge 32.7 Leap, 5 3.4
0.64 3562 Mixed pig iron furnace dust 47.0
1B, 5 0.2 0.42 546 mixed sludge
34.0 36.7 5.10.62 590
8 Magnetic object 57.8 6.0 1.60.121954
Non-magnetic object 10.2 67.4 4.6 1.12
1954 The non-magnetic material obtained by this treatment has a high O content and is fully suitable as a raw material for general fuels.

斯うして得られた磁着物と、その他のC,8の低いダス
ト、スラリ類、これに加えて5〜50チ重量の生石灰粉
を通常公知の方法で混合、−拝し、反応脱水させる。こ
の際、ダスト、スラジに含有された水分は生石灰粉と反
応し、その際発生する激しい発熱反応によシ水分を蒸発
気化させ、又、Ca(OH)2  として固化させるの
である。この際、成品の水分はその目的値に応じて、生
石灰粉添加量を適宜調節すればよい。
The magnetic material thus obtained, other low C, 8 dusts and slurries, and in addition 5 to 50 grams of quicklime powder are mixed, mixed, and reacted and dehydrated by a commonly known method. At this time, the moisture contained in the dust and sludge reacts with the quicklime powder, and the intense exothermic reaction that occurs at this time evaporates the moisture and solidifies it as Ca(OH)2. At this time, the amount of quicklime powder added may be adjusted as appropriate depending on the desired moisture content of the product.

このようにして脱水固化した混線固形物を既知の各種方
法により5〜70mm径に造粒した後、必要ならば数日
間養生を行って成品となる。
The thus dehydrated and solidified cross-wire solid is granulated to a diameter of 5 to 70 mm by various known methods, and then cured for several days if necessary to form a finished product.

この成品を製鋼作業時に、溶鋼温度の冷却剤、乃至は脱
炭造滓剤として製鋼炉中に投入使用するのであるが、投
入した冷却剤は分解反応を行ない、その崎の吸熱反応に
より溶鋼温度を引下げると共に、分解によって生ずるC
aOは鋼滓の塩基度を高めて脱燐、脱硫作用をし、Fe
分は11!鋼中に入p10は酸素源として働くほか、酸
化鉄の一部は力季シウ五〇フェライトを生成し、石灰分
の滓化作用を促進する。
During steelmaking, this product is used as a coolant to maintain the molten steel temperature or as a decarburization slag agent. In addition to lowering the C
aO increases the basicity of steel slag, dephosphorizes and desulfurizes it, and removes Fe.
The minutes are 11! In addition to serving as an oxygen source, p10 enters the steel, and part of the iron oxide produces ferrite, which promotes the slag formation of lime.

この成品に含有するZn  K  Na等は、高温の炉
内に投入することによシ直ちに全量気化し、排ガスと共
に炉外に排出され、冷却固化機集塵される。この場合:
K、M市種々の形の化合物となるが、水洗処理の場合は
イオンの形で水に溶解し排出される。
Zn K Na and the like contained in this product are immediately vaporized in their entirety by being put into a high-temperature furnace, and are discharged from the furnace together with the exhaust gas, where they are collected by a cooling solidification machine. in this case:
K and M are compounds in various forms, but in the case of water washing, they are dissolved in water in the form of ions and discharged.

油分については、全量燃焼又は気化して炉外に排出され
、排ガス中に入るか集塵水に溶は込む。
All oil is burned or vaporized and discharged from the furnace, and either enters the exhaust gas or dissolves in the dust collection water.

Zn殆んど系外に出すに転炉ダスト、スラリに入る。Most of the Zn goes out of the system and enters the converter dust and slurry.

従ってこの冷却剤の製造と使用のサイクルを繰返すこと
により、製鋼炉から発生するダストスラリ中の4含有量
を漸次蓄積させ濃化させる。
Therefore, by repeating the cycle of producing and using this coolant, the 4 content in the dust slurry generated from the steelmaking furnace gradually accumulates and becomes concentrated.

第2、第3表の例で説明すると、月間16847鴨生じ
たダスト、スラリに含まれたち含有量は1.7−128
7屯であった。この中、高炉スラリ、混銑炉ダストを磁
選した結果、その磁着物及びその他のダスト、製鋼炉、
実施例では転炉に投入され、分解集塵され、転炉スラリ
に回収されると、転炉フラジ中のzn含有量は3.7−
になった。
To explain using the example in Tables 2 and 3, the content of dust and slurry produced by 16,847 ducks per month is 1.7-128
It was 7 tons. Among these, as a result of magnetic separation of blast furnace slurry and mixed iron furnace dust, the magnetic substances and other dust, steelmaking furnace,
In the example, when the zn content in the converter flage is put into the converter, decomposed and dust-collected, and recovered as converter slurry, the Zn content in the converter flage is 3.7-
Became.

このように、ダスト、スツジ類を造粒し、冷却剤として
製鋼炉に投入し、集塵回収し、繰返し使用する様サイク
ル化する事で、冷却剤中6zn含有有事を累積向上させ
ることが出来るのである。
In this way, by granulating dust and sticks, feeding them into the steelmaking furnace as a coolant, collecting the dust, and cycling it for repeated use, it is possible to cumulatively improve the occurrence of 6zn in the coolant. It is.

以上述べた通シ、本発明の骨子とする所は、従来その処
理に困っていえ製鉄所等から発生するダスト、スラジ類
の!東廃棄物のうち、まず高炉スラリ、混銑炉集塵ダス
トのような01Bの高いものを選鉱処理して0、Hの大
半を分別してエネルギー源等に活用し、残りを他のダス
ト、スラリとそれに適量の生石灰粉を混入撹拌し、造粒
したものを製鋼炉冷却剤として投入使用する事により、
ダスト、スラジ類に含まれる有効成分を製鋼時に直接回
収すると共に、冷却剤から分解蒸発気化して再び集塵さ
れる成分については、集塵、固形化、造粒、投入のサイ
クルを繰返すことで濃縮し、鉄以外の成分、本例ではZ
n f) g線用原料として提供するものである。
In summary, the main point of the present invention is to treat dust and sludge generated from steel works, etc., which have been difficult to dispose of in the past. Of the East waste, those with high 01B values, such as blast furnace slurry and mixed iron furnace dust, are first treated with beneficiation, most of the 0 and H are separated and used as energy sources, and the rest is used as other dust and slurry. By mixing an appropriate amount of quicklime powder into it and stirring it, the granulated product is used as a steelmaking furnace coolant.
In addition to directly recovering the active ingredients contained in dust and sludge during steel manufacturing, the components that are decomposed and evaporated from the coolant and collected again are collected by repeating the cycle of dust collection, solidification, granulation, and injection. Concentrate and remove components other than iron, in this example Z
n f) It is provided as a raw material for G-line.

亜鉛の精練用原料としては、経済状勢によシ変動がある
が、通常zn含有率30%以上の品位が求められる本方
法によれば、初期に転炉フラジ中の28分は1.5−で
あったものが、この方法により儂項使用することによシ
、約1ケ年で4原料としての経済品位に高めることが可
能になった。
Although zinc as a raw material for refining varies depending on the economic situation, according to this method, which normally requires a quality with a Zn content of 30% or more, the initial 28 minutes in the converter flage is 1.5 - However, by using this method, it became possible to raise the economic quality to four raw materials in about one year.

本発明は以上の如く、その実施によ〕得られる効果は実
に多大である。すなわち本発明の実施により、産業廃棄
物は減少し、廃棄コストが低減するほか、廃棄物に含有
される有効成分は無駄なく回収利用出来るメリットが生
れる。
As described above, the present invention can bring about great effects by implementing it. That is, by carrying out the present invention, the amount of industrial waste is reduced, disposal costs are reduced, and the effective ingredients contained in the waste can be recovered and used without waste.

産業廃棄物の捨場と処理が大きな問題となっている製鉄
業にとっても、原料事情で種々の問題をか\える亜鉛精
錬業にとっても、この発明のもたらす利益は極めて大き
いものである。
The benefits of this invention are extremely large for both the steel industry, where industrial waste disposal and disposal are a major problem, and the zinc smelting industry, which faces various problems due to raw materials.

特許出願人  藤 1)敏 彦Patent applicant Fuji 1) Toshihiko

Claims (2)

【特許請求の範囲】[Claims] (1)製鉄所等において発生するダスト、スラジ類のう
ち、製銑工程において発生する高炉シックナースラジ、
及びその他の0、Sの高いダスト、スラジを選鉱処理す
ることにより、0分の殆んどを取シ出し、残った疲炭処
理后のスラジを(2)の工程に使用する方法0
(1) Among the dust and sludge generated in steel works, etc., blast furnace thickener sludge generated in the ironmaking process,
A method in which most of the 0 is extracted by beneficiation of dust and sludge with high 0 and S, and the remaining sludge after the fatigue coal treatment is used in the step (2).
(2)  (1)による−脱炭スラジ及び製鉄所内にて
発生するダスト、ス2ジ類に生石灰粉を5〜30%の範
囲で混合し、これを混練、造粒、養生し、製鋼用冷却剤
として使用することによって鉄分を回収すると共に同一
操作を系内にて繰返し行うことによって、他の非鉄金属
を累積濃縮し、採算品位の原料を得ることを特徴とした
産業廃棄物からの有用元素回収法◇
(2) Based on (1) - Quicklime powder is mixed in the range of 5 to 30% with decarburized sludge and dust and streaks generated in the steelworks, and this is kneaded, granulated, and cured to produce steel. Useful materials from industrial waste characterized by recovering iron by using it as a coolant and cumulatively concentrating other non-ferrous metals by repeating the same operation within the system to obtain raw materials of profitable grade. Element recovery method◇
JP57055093A 1982-04-01 1982-04-01 Method for recovering useful element from industrial waste Pending JPS58174279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57055093A JPS58174279A (en) 1982-04-01 1982-04-01 Method for recovering useful element from industrial waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57055093A JPS58174279A (en) 1982-04-01 1982-04-01 Method for recovering useful element from industrial waste

Publications (1)

Publication Number Publication Date
JPS58174279A true JPS58174279A (en) 1983-10-13

Family

ID=12989118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57055093A Pending JPS58174279A (en) 1982-04-01 1982-04-01 Method for recovering useful element from industrial waste

Country Status (1)

Country Link
JP (1) JPS58174279A (en)

Similar Documents

Publication Publication Date Title
US5198190A (en) Method of recycling hazardous waste
US5364447A (en) Method of recycling hazardous waste
CN105296694B (en) A kind of agglomerates such as carbon containing iron zinc are reduced into the processes such as molten iron, zinc for iron storing type main channel of blast furnace
CN109022644B (en) Method for recovering slag desulfurization and dephosphorization in cooperation with ferrite in full-three-removal process
CN105695735A (en) Self-reduction utilization process for steel rolling oily sludge and blast furnace gas dust
US3320052A (en) Flux used in the making of steel
US4917723A (en) Method for agglomeration of iron bearing materials
CN115679097A (en) Method for recycling iron-making gas ash by using converter slag and refined dedusting ash
CN115505745A (en) Method for treating fly ash in sintering process by using steel slag thermal coupling technology
US3920446A (en) Methods of treating silicious materials to form silicon carbide for use in refining ferrous material
JP2004500486A (en) How to treat dust or dust mixtures
CN101818264B (en) Method for treating zinc-containing and iron-containing dust and mud
Baricová et al. Recycling of the Steelmaking by-products into the Oxygen Converter Charge
WO2023193714A1 (en) Method and system for coupling copper slag recycling with co2 mineralization based on industrial solid waste
CN112029949B (en) Method for treating zinc-containing waste steel by adopting converter full-three-step smelting process
JPS58174279A (en) Method for recovering useful element from industrial waste
TW201812025A (en) Molten steel production method
US2790712A (en) Process for refining iron
Higley et al. Electric Furnace Steelmaking Dusts, a Zinc Raw Material
CN107557532A (en) Method for treating metallurgical dust removal ash
CN118406874B (en) Recycling method for cooperatively disposing lead-containing waste residues through steel dust and mud
JPH0375615B2 (en)
WO2008046452A1 (en) Calcium ferrite sinter, production thereof, and use of same
CN113913585B (en) Method for reducing proportion of large-size desulfurized slag in molten iron desulfurized slag
JP2015063744A (en) Method for recovering metal