JPS5817424A - Liquid crystal optical device - Google Patents

Liquid crystal optical device

Info

Publication number
JPS5817424A
JPS5817424A JP11600381A JP11600381A JPS5817424A JP S5817424 A JPS5817424 A JP S5817424A JP 11600381 A JP11600381 A JP 11600381A JP 11600381 A JP11600381 A JP 11600381A JP S5817424 A JPS5817424 A JP S5817424A
Authority
JP
Japan
Prior art keywords
liquid crystal
signal
optical device
orientation
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11600381A
Other languages
Japanese (ja)
Inventor
Haruo Nakamura
治夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP11600381A priority Critical patent/JPS5817424A/en
Publication of JPS5817424A publication Critical patent/JPS5817424A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • G02F1/1397Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell the twist being substantially higher than 90°, e.g. STN-, SBE-, OMI-LC cells

Abstract

PURPOSE:To improve high-speed response characteristics, by setting a liquid crystal molecular array to 360 degree torsion, as to a liquid crystal panel using an optically activated nematic liquid crystal which generates dielectric transition by low frequency. CONSTITUTION:An optically activated nematic liquid crystal composition whose torsion pitch is about 4mum is used, and the surfaces of the upper and lower substrates are orientation-treated in parallel with each other. In this case, when thickness of a liquid crystal layer is set to 3-5mum, the liquid crystal takes a 360 degree torsion structure. A molecular array a-1 and a-2 in this case are those which have been seen from the side and the upper direction, respectively, and 30-34 are patterns of the liquid crystal molecules. On both the upper and lower sides, 2 polarization plates crossing at right angles to each other are placed at 45 degrees with respect to the orientation direction of the substrate, and as a result of measurement of a response by applying a driving signal, a delay of start of transmission has annihilated entirely as compared with a conventional case, and a quick response has been shown.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、液晶光学装置atK関し、詳しくは、低周波
で誘電緩和を生じる光学的に活性なネマチック液晶を用
いt高速応答特性を有す液晶光学装置に関する。 低周波で誘電緩和を生じる光学的に活性なネマチック液
晶を用いた液晶光学装置の液晶パネル、駆動方法あるい
けこの応用について*S昭55−1a 1085%特願
昭56−7045.4111昭56−7047筈で詳し
く述べた1本発明は、梃、晶分子配列f: 560°ね
じれにすることにより、上記発明−の−効果をより有効
にするものである。−表1に本発明で使用した低周波で
誘電緩和管生じるネマチック液晶組成物上水した。この
液晶組成物に、光学活性物質4−(4−ヘキシルオキシ
ペンシロキシ)−ベンゾイックアシド−d−2−オクチ
ルエステル管添加することにより、光学的に活性なネマ
チック液晶組成物を得ることができる。上記光学活性物
質t−2.2重量パーセント添加した液晶組成物を〔液
晶−1〕とする。液晶の誘電率は、一般に液晶分子軸方
向とこれに垂直な方向とでは異なり前者t an * 
41者をC上で表わす。 さらに町、とC上の差、すなわち、#、1−11を誘電
表1 異方性と定義し、Δ8で表わす。Δa>O及びΔ8〈O
l−それぞれ、誘電異方性が正及び負と呼ぶ。本発明で
使用する液晶組成物は、ΔCが同波数に依存して大きく
変化し、交差周波数(以下・fc と略す]より低い周
波数では6g)0.feより高い周波数ではΔ信〈0と
なる。〔液晶−1〕の誘電異方性の周波数特性を第1図
に示す。IffF130℃である。 交差同波数fcより低い同波数t−fe、高い同波数’
(1−fhとし、これに対応する誘電異方性管それぞれ
Δ#2及びΔξ菖とする。、fhの信号管対向する電極
間に印加すると、液晶分子が電界方向に平行に配列、f
hの信号を印加すると、垂直に配列する力が働らく。 第2図に本発明を構成する液晶パネルの断面の単時間を
示した。液晶層It!、電極4を備える基板2と電極5
を備える基板50関に封入されておりシール6で9で示
す厚さdの間隔を保ち密封されている。基板の表面を、
配向処理剤10及び11で処理して、脱脂綿で摩擦しで
ある。2枚の基板の両側に、偏光板8及び7を配電して
いる。 ここでdt液晶層厚と名付は以下これを用いる。 配向処理剤10及び11は、エポキシシラン系樹脂、ポ
リイシド系樹脂等であるが、これらの処理剤を用いず、
摩擦するだけでも本発明は満足できる。さらに配向処理
の方法として、基板表面に水平に液晶分子が配向するよ
うに、酸化珪素を基板に対して斜めから蒸着1行なって
もよい。 〔液晶−1〕は、光学的に活性なネマチック液晶組成物
であり、その液晶分子配列は、ねじれ構造をもっている
The present invention relates to a liquid crystal optical device atK, and more particularly to a liquid crystal optical device that uses an optically active nematic liquid crystal that undergoes dielectric relaxation at low frequencies and has a high-speed response characteristic. Regarding liquid crystal panels, driving methods, and applications of liquid crystal optical devices using optically active nematic liquid crystals that cause dielectric relaxation at low frequencies One of the present inventions described in detail in Section 7047 makes the effects of the above invention more effective by twisting the crystal molecular arrangement f: 560°. - Table 1 lists the nematic liquid crystal compositions used in the present invention that generate dielectric relaxation tubes at low frequencies. By adding an optically active substance 4-(4-hexyloxypensyloxy)-benzoic acid-d-2-octyl ester to this liquid crystal composition, an optically active nematic liquid crystal composition can be obtained. . A liquid crystal composition to which t-2.2 weight percent of the above optically active substance was added was referred to as [Liquid Crystal-1]. Generally, the dielectric constant of liquid crystal is different between the direction of the liquid crystal molecular axis and the direction perpendicular to this.
41 persons are represented on C. Further, the difference between C and C, ie, #, 1-11, is defined as dielectric anisotropy, and is expressed as Δ8. Δa>O and Δ8<O
l- are called positive and negative dielectric anisotropy, respectively. In the liquid crystal composition used in the present invention, ΔC changes greatly depending on the wave number, and at frequencies lower than the cross frequency (hereinafter abbreviated as fc), ΔC is 6 g)0. At frequencies higher than fe, Δresistance becomes <0. FIG. 1 shows the frequency characteristics of the dielectric anisotropy of [Liquid Crystal-1]. IffF is 130°C. The same wave number t-fe is lower than the crossing same wave number fc, the same wave number is higher than the same wave number '
(1-fh, and the corresponding dielectric anisotropic tubes are Δ#2 and Δξξ, respectively.) When an application is applied between the opposing electrodes of the signal tube of fh, the liquid crystal molecules are aligned parallel to the electric field direction, f
When a signal h is applied, a vertical alignment force is applied. FIG. 2 shows a cross-sectional view of a liquid crystal panel constituting the present invention. Liquid crystal layer It! , a substrate 2 comprising an electrode 4 and an electrode 5
The substrate 50 is sealed with a seal 6 at a distance of a thickness d shown by 9. the surface of the board,
It was treated with alignment treatment agents 10 and 11 and rubbed with absorbent cotton. Polarizing plates 8 and 7 are electrically distributed on both sides of the two substrates. Here, the dt liquid crystal layer thickness and naming will be used hereinafter. The alignment treatment agents 10 and 11 are epoxy silane resins, polyide resins, etc., but without using these treatment agents,
The present invention can be satisfied with just friction. Further, as a method of alignment treatment, silicon oxide may be vapor-deposited once obliquely to the substrate so that the liquid crystal molecules are aligned horizontally on the substrate surface. [Liquid Crystal-1] is an optically active nematic liquid crystal composition, and its liquid crystal molecular arrangement has a twisted structure.

【液晶−1〕のねじれピッチは常温でほぼ4gmであ
る。本明細書においてねじれピッチとは、1回転ねじれ
の周期で定義する。 さらに〔液晶−1〕のねじれ方向は、奥から手前方向に
対して時計回りである。これは、用いた光学活性物質4
−(4−へキシルオキシペンシロキシ)−ベンゾイック
アシド−11−2−オクチルエステルが左手系のねじれ
であることに対応し1おり、右手系のねじれ構造管*す
る光学活性物質を添加すれば、〔液晶−1〕と逆のねじ
れ構造t−堆る0本明細書においては、【液晶−1〕を
用いt記載を行なうが、本発明は、右手系、左手系にか
かわらず有効である。 第3図(、)及び(b) K本発明の配向処理方向を示
した。20,21,22.2!Sは、配向処理方向なう
摩擦方向である。第3図は、液晶パネルを上方から観察
した机態を示すものとする。第5図−)は摩擦方向が2
0と21で逆方向である。上基板、下基板の一方會20
の方向、他方を21の方向に摩擦する。ここでは、以下
における説明に対応させて、20管下基板21t−上基
板の摩擦方向とする。s3図(b)は、上下基板と42
2及び25で示した方向に摩擦したものである。24,
25゜26.27は、偏光板の偏光方向を示したもので
ある。偏光方向は、図に示したごとく配向方向に対して
±45@の位置く配置する。上記のととく配向処理を行
ない、【液晶−1】管用い、液晶層厚45〜4811程
度の液晶パネルを作)、応答測定を行なった。この時の
液晶分子の配列構造管模式的に示した図が94図である
。〔液晶−1]の固有のらせんピッチは上述したごとく
、はぼ4μmである。この液晶組成物を、第3図のとと
く配向処理を行なった場合、3〜511mの液晶層厚に
対して、340@ねじれ構造をとる。1〜3μmでは1
80@、5〜7pmでは540@ねじれである。 4.5〜4.8jmの液晶層厚においては、360″ね
じれ構造をとっている。この時の分子配列金集4yA(
a  1)−(a  2)*(b−1)*(b  2)
K:示した。第4図(a−1)及び(a−2)は、第5
図(a)の配向処理に対応した配列である。(a−1)
は横、(IL−2)は上方から観察したものである。2
0.21で示した方向に摩擦している。 30〜5aFi液晶分子の模型であり、30から34の
方向に時針回りである。#は、基板表面における傾斜角
である。30及び54Fi、同じ方向に傾斜している@
 fm ’図(b−1)及び(1)−2)は、第3図(
b)の配向処理に対応した配列である。 (b−1)は横、(b−23は上方から観察したもので
ある。22.26で示した方向に摩擦している。40〜
44は液晶分子であり、(a)と同様40から44の方
向に時計回りである。 (IL)と異なる点は、40と
44は、逆方向に傾斜しているこ。 とである、この2つの配列における応答特性の違いにつ
いては、後で述べる。 SS図に液晶駆動信号を示す、soで示したく抄返し周
期T1で図で示した信号がくり返えされる。51で示し
、たT2は、開口時間てあり、52で示しRTSは閉口
信号である。〒2の間53で示し7tfhの信号、T3
の間、54で示し7′2:feの信号を印加する。ss
F!電圧で+/−aVである。 この信号を対向するII電極間加える。fhの信号によ
って透光し、つまり開口し、feの信号によって透光、
つまり閉口する。 第7図70に上記第3図(、りの配向処理tmこした本
発明の液晶光学装置の光透過応答特性1示した。〔液晶
−1〕管用い、液晶層厚4:5〜48μm液晶パネル構
成は第2図に示したものである。第5図の信号(a−2
87)l対向する電極間(S及び6)に印加した温度は
、40℃、、fh寓1150KHz 、 !@−2KH
2である。横軸に時間In秒でたて軸に透過率tパーセ
ントで示した。2枚の偏光板のみを平行に配置した時の
透過率11oo1とした。@7図71は、第6図て示し
た配向処理を行なった場合である。60,451fl、
上下基板Kt$こした配向処理方向であり、たがいく直
交している。62.65Fi偏光板の偏光方向であり、
直交しており、さらに、配力処理方向に対し、平行ある
いは直角に配着しである。液晶パネルの構成、駆動条件
において、本発明と異なる点け、上記配向処理方向及び
偏光板の配置のみである0本発明の70の応答特性は、
従来の71の応答と比較して、72と73で示した透過
開始の遅れが完全に消失し、早い応答含水している。7
4友び75Fi、それぞれ70及び71の最大透過率で
ある。75tj1004jまで透過しているが本発明の
74は多少透過率が低下している。これは、液晶分子に
対してJ5@に偏光した光が入射したため、異常光と常
光に位相差を生じる為と思われる。 銅5図(b)の配向処理を行なった場合、液晶分子配列
は、第4図(b−1)及び(b −1)で示したごとく
なる。この場合基板表面における液晶分子の傾斜方向が
上下基板Kかいて逆向きであるため一駆動信号を印加し
て動作させた場合、安定している時は第7図70とは埋
同様の応答輯性を示すが、電圧の印加の方法、l1lI
!の変化等に対して不安定なふるまいを生じる。しかし
、安定状態においては、第3@k)の配向処理の場合と
比較して劣る点はない。 上述したごとく本発明は、光学的に活性でありかつ低同
波で誘電緩和管生じるネマチック液晶組成物を用いた液
晶光学装置において、液晶分子の配列fs60@ねじれ
にすることによって、より高速の応答特性を実現する画
期的なものである。 次に本発明を生かした応用例について述べる。 く応用例1〉 本発明を光書き送用のマイクロシャッターアレイとして
用いた応用例管示す、第8図、第9図に液晶パネルの構
成を示す、液晶パネルは、共通信号電極919及び92
0を備えるガラス基板917と信号電極9゛21及び9
22を備えるガラス基板。 918及びスペーサー926の間に液晶組成物125を
封入し、かつガラス基板の両側に偏光板923及び′1
24會備えて成る。共通信号電番は透明電極919と光
学的に不透明な金属電極920から成り、信号電極92
1及び922は透明11極である。光は共通II極の透
明部分919と信号電極とて形成されるマイクロシャッ
ターとの部分で変調を受ける。このマイクロシャッター
會100μmピッチで2000個、20a*の長さに直
線状に作った。 配向処理方向及び偏光板の偏光方向は、第5図(a)の
ごとく成した。液晶分子配列は360°ねじれ構造含有
している。 駆動方法は、時系列の画素データに対応して、マイクロ
シャッター管開閉できるような駆動用ICを試作し、パ
ネル上に実装した。駆動用IOは1個当り、50本の出
力ドライバーを持つので200011のマイクロシャッ
ターに対して、パネルの両側にそれぞれ20個づつ、計
40個會実装した。 駆動するために必要な各種信号波形のタイミングチャー
トと、それを実現するための回路ブロック図をt141
0図と第11図に示す。 1ooted動′作開始のリセット信号、1002Fi
1ラインのデータの開始を示すラインスタート信号、1
oo3Fiデータ管要求す志リクエストクロックで、ラ
イ・ンスタート信号に同期して1ライy分2000パル
ス送られ、このクロックに同期してデータ管受は取る。 1004Fi液晶駆動用ICのシフトレジスタのデータ
管転送する九めのシフトクロック、1005はデータ転
送が終った直後にデータ全ラッチするラッチパルスであ
る。 1006.1007.1ooaFi液晶に印加される駆
動波形で、100Bは共通電極信号てあり、1006の
ON信号の時に液晶マイクロシャッターが開き、100
7のOFF信号の時に閉じる。 ON信号、共通電極信号は高同波flと低鴫波f−の組
み合わせで構成され、互いに位相が反転している。oy
y信号はON信号のfLと同相の低周波である。またO
N信号の115期のうち高同波flの期間を開口時間と
呼ぶ0次にこれを実現する回路構成であるが、4.2M
Hzの基準クロック1010をデバイダ1011て分間
して各種波形を作る。1015で2 m5ec 1I1
1期のラインスタート信号を作り、すべてこの信号で同
期をかけている。 1012て2000パルス管カウントし1020でリク
エストクロックを作り、ラインスタート信号と共に、外
部機器である時系列画素信号発生部1024へ出力する
。Ilil弗素発生024からリクエストクロックに同
期して送られてきたデータは、インターディジタルに実
装通れた駆動用xO1022へ送るため、1019でデ
ータ管分配する。 開口時間會1016で決め、1017でON信号、01
F7信号、共通電極信号を作る。101!1でラッチパ
ルス1014でシフトグロック會作り、ONN信号FF
信号データと共に駆動用IC1も22へ出力する。また
共通電極信号は出力バッファ1018でS OVK変換
し、共通電極1025に印加する。IQ21は外部機器
1024から送られるリセット信号を受は取り、各部へ
スタート。 ストップをかけるコント四−ル部である。 次に駆動用集積回路の内部回路のブロック図を図12に
示す、上記の回路より人力されたデータ1054Fi5
0ビツトのシフトレジスタ1030によって、シフトク
ロック1035に同期して転送される。片側、20個の
ICシフトレジスタはカスケード接続されており、デー
タマウト1040から出たデータは隣りの駆動用ICの
シフトレジスタに転送される。このようにして片側10
00ピツト、パネル両側で2000ビツトのデータが転
送され終わると、ラッチパルス1057のタイミングで
50ビツトのラッチ1031・にラッチされる。105
2ではラッチされたデータに対応して、ON信号10!
i8とOFF信号10i9會切り替え、次のレベル変換
1053でロジックレベルtドライブ電圧5OVK変換
しJIO!i4の駆動用のバッファから信号電極へ出力
する。 以上の方法でマイクロシャッターアレイを駆動し、1ラ
イン当り2m秒の高速の光弁アレイt−奥現した。 〈応用例2〉 上記応用例10マイクロシヤツターアレイを40℃に保
ち、7112m秒、’1’21(15m秒とした。波長
540nmK発光ピークを持つ、輝度15万a6/dの
螢光ランプ全マイクロシャッターアレイの背後に置き、
透過光をセレン−テルル感光体に照らし、磁気ロール現
偉品を用い、トナー現at行なったところ、印字信号に
従がって儂が形成されt、ちなみに感光体の移動速度は
、5−7秒である。このように、高速の光書き込みプリ
ンターを得ることができた。 以上、応用例でも述べたように、本発明上用いれば、高
速の応答特性會有する液晶光学装置を実現出来るので、
非常に有用な応用が可能となった。 しかも、液晶装置本来の利点である、低価格、大面積、
低消費電力、等は、そのまま生きる為その効果は大変大
きい。
The twist pitch of [Liquid Crystal-1] is approximately 4 gm at room temperature. In this specification, the twist pitch is defined as the cycle of one rotation. Furthermore, the twist direction of [Liquid Crystal-1] is clockwise from the back to the front. This is the optically active substance 4 used.
-(4-hexyloxypensyloxy)-benzoic acid-11-2-octyl ester has a left-handed twist structure. , [Liquid Crystal-1] has a twisted structure opposite to that of [Liquid Crystal-1]. In this specification, [Liquid Crystal-1] is used to describe t, but the present invention is effective regardless of whether the system is right-handed or left-handed. . FIGS. 3(a) and 3(b) show the orientation treatment direction of the present invention. 20, 21, 22.2! S is the friction direction, which is the orientation treatment direction. FIG. 3 shows the liquid crystal panel viewed from above. In Figure 5-), the friction direction is 2.
0 and 21 are in opposite directions. One side of the upper board and the lower board 20
, and the other in the direction of 21. Here, in correspondence with the explanation below, the friction direction is defined as 20 tube lower substrate 21t-upper substrate. s3 diagram (b) shows the upper and lower boards and 42
2 and 25. 24,
25°26.27 indicates the polarization direction of the polarizing plate. The polarization direction is arranged at a position of ±45@ with respect to the orientation direction as shown in the figure. By carrying out the above-mentioned special alignment treatment, a liquid crystal panel using a [Liquid Crystal-1] tube and having a liquid crystal layer thickness of about 45 to 481 mm was prepared, and the response was measured. FIG. 94 is a diagram schematically showing the arrangement structure of liquid crystal molecules at this time. As mentioned above, the inherent helical pitch of [Liquid Crystal-1] is approximately 4 μm. When this liquid crystal composition is subjected to the special orientation treatment shown in FIG. 3, it takes on a 340@ twisted structure for a liquid crystal layer thickness of 3 to 511 m. 1 for 1 to 3 μm
80@, 540@ twist at 5-7 pm. At a liquid crystal layer thickness of 4.5 to 4.8jm, it has a 360" twisted structure. At this time, the molecular arrangement gold collection 4yA (
a1)-(a2)*(b-1)*(b2)
K: Shown. Figures 4 (a-1) and (a-2) show the fifth
This is an arrangement corresponding to the orientation treatment shown in FIG. (a-1)
(IL-2) is observed from the side, and (IL-2) is observed from above. 2
There is friction in the direction indicated by 0.21. It is a model of 30-5aFi liquid crystal molecules, and the hour hand is oriented in the direction from 30 to 34. # is the tilt angle at the substrate surface. 30 and 54Fi, tilted in the same direction @
fm' Figures (b-1) and (1)-2) are shown in Figure 3 (
This is an arrangement corresponding to the orientation treatment of b). (b-1) is observed from the side, (b-23 is observed from above. 22. Friction is observed in the direction shown in 26. 40 ~
44 is a liquid crystal molecule, which is oriented clockwise from 40 to 44 as in (a). The difference from (IL) is that 40 and 44 are tilted in opposite directions. The difference in response characteristics between these two arrangements will be described later. The liquid crystal drive signal is shown in the SS diagram, and the signal shown in the diagram is repeated at the sampling period T1 as indicated by so. T2 denoted by 51 is the opening time, and RTS denoted by 52 is the closing signal. 7tfh signal shown as 53 between 〒2, T3
During this period, a signal 7'2:fe indicated by 54 is applied. ss
F! The voltage is +/-aV. This signal is applied between the opposing II electrodes. The fh signal causes light to pass through, that is, the aperture, and the fe signal causes light to pass through.
In other words, it shuts down. 70 shows the light transmission response characteristic 1 of the liquid crystal optical device of the present invention which has been subjected to the alignment treatment tm shown in FIG. The panel configuration is shown in Figure 2.The signal (a-2
87) The temperature applied between the opposing electrodes (S and 6) is 40°C, 1150KHz, ! @-2KH
It is 2. The horizontal axis shows time in seconds, and the vertical axis shows transmittance t percent. The transmittance was set to 11oo1 when only two polarizing plates were arranged in parallel. @7 FIG. 71 shows the case where the alignment treatment shown in FIG. 6 was performed. 60,451fl,
The upper and lower substrates are aligned in the direction of Kt, and are orthogonal to each other. 62.65Fi is the polarization direction of the polarizing plate,
They are orthogonal to each other, and furthermore, they are distributed parallel to or perpendicular to the force distribution processing direction. The response characteristics of 70 of the present invention, which differ from the present invention in the structure and driving conditions of the liquid crystal panel only in the above-mentioned orientation processing direction and arrangement of the polarizing plate, are as follows.
Compared to the conventional response of 71, the delay in the start of permeation shown in 72 and 73 completely disappears, resulting in a faster response. 7
4 friends 75Fi, maximum transmittance of 70 and 71 respectively. Although it transmits up to 75tj1004j, the transmittance of 74 of the present invention is slightly lowered. This is thought to be because the J5@ polarized light was incident on the liquid crystal molecules, causing a phase difference between the extraordinary light and the ordinary light. When the alignment treatment shown in Figure 4(b) is performed, the liquid crystal molecules are arranged as shown in Figures 4(b-1) and 4(b-1). In this case, since the tilt direction of the liquid crystal molecules on the substrate surface is opposite to the upper and lower substrates K, when one drive signal is applied and the operation is performed, the response is similar to that shown in Fig. 70 when stable. However, the method of voltage application, l1lI
! This results in unstable behavior due to changes in . However, in a stable state, there is no inferiority compared to the case of the 3rd@k) orientation treatment. As described above, the present invention provides a liquid crystal optical device using a nematic liquid crystal composition that is optically active and generates a dielectric relaxation tube at low frequency, and achieves a faster response by arranging the liquid crystal molecules fs60@twisted. This is an epoch-making product that achieves these characteristics. Next, an application example that makes use of the present invention will be described. Application Example 1> An application example in which the present invention is used as a micro-shutter array for optical writing/transmission. FIGS. 8 and 9 show the configuration of a liquid crystal panel. The liquid crystal panel has common signal electrodes 919 and 92.
0 glass substrate 917 and signal electrodes 9゛21 and 9
A glass substrate comprising 22. 918 and spacer 926, and polarizing plates 923 and '1 are placed on both sides of the glass substrate.
It consists of 24 meetings. The common signal number consists of a transparent electrode 919 and an optically opaque metal electrode 920, and the signal electrode 92
1 and 922 are 11 transparent poles. The light is modulated by the transparent portion 919 of the common II pole and the microshutter formed as the signal electrode. 2000 micro shutters were made in a straight line with a length of 20a* at a pitch of 100μm. The orientation treatment direction and the polarization direction of the polarizing plate were as shown in FIG. 5(a). The liquid crystal molecular arrangement contains a 360° twisted structure. As for the driving method, we prototyped a driving IC that could open and close the micro-shutter tube in response to time-series pixel data, and mounted it on the panel. Each drive IO has 50 output drivers, so for the 200011 micro-shutter, we installed 20 on each side of the panel, for a total of 40. The timing chart of various signal waveforms necessary for driving and the circuit block diagram to realize it are shown at t141.
This is shown in Figure 0 and Figure 11. 1ooted operation start reset signal, 1002Fi
Line start signal indicating the start of one line of data, 1
The oo3Fi data tube request clock sends 2000 pulses for 1 line in synchronization with the line start signal, and the data tube is picked up in synchronization with this clock. 1004 is the ninth shift clock for transferring data to the shift register of the liquid crystal driving IC, and 1005 is a latch pulse for latching all data immediately after data transfer is completed. 1006.1007.1 is the drive waveform applied to the ooaFi liquid crystal, 100B is the common electrode signal, the liquid crystal micro shutter opens when the 1006 ON signal is applied, and 100B is the common electrode signal.
Closes when the OFF signal of 7 is received. The ON signal and the common electrode signal are composed of a combination of a high frequency fl and a low frequency f-, and their phases are inverted from each other. oy
The y signal is a low frequency that is in phase with fL of the ON signal. Also O
The period of the high frequency fl among the 115 periods of the N signal is called the opening time, and the circuit configuration that realizes this is 4.2M.
A Hz reference clock 1010 is divided by a divider 1011 to create various waveforms. 1015 in 2 m5ec 1I1
A line start signal for the first period is created, and everything is synchronized using this signal. At step 1012, 2000 pulse tubes are counted, and at step 1020, a request clock is generated and outputted together with a line start signal to a time-series pixel signal generator 1024, which is an external device. The data sent from the Ilil fluorine generator 024 in synchronization with the request clock is distributed to the data pipe 1019 in order to be sent to the driving xO 1022 implemented in an interdigital manner. Determined by opening time meeting 1016, ON signal at 1017, 01
Create F7 signal and common electrode signal. 101!1 and latch pulse 1014 to create shift Glock, ONN signal FF
The driving IC 1 is also output to 22 along with the signal data. Further, the common electrode signal is SOVK converted by the output buffer 1018 and applied to the common electrode 1025. IQ21 receives the reset signal sent from external device 1024 and starts each part. This is the control section that applies the stop. Next, the block diagram of the internal circuit of the driving integrated circuit is shown in FIG.
It is transferred by the 0-bit shift register 1030 in synchronization with the shift clock 1035. On one side, 20 IC shift registers are connected in cascade, and data output from the data mount 1040 is transferred to the shift register of the adjacent driving IC. 10 on each side like this
When 2,000 bits of data have been transferred to both sides of the panel, it is latched into a 50-bit latch 1031 at the timing of a latch pulse 1057. 105
2, the ON signal 10! corresponds to the latched data.
Switch between i8 and OFF signal 10i9, then convert logic level t drive voltage 5OVK with next level conversion 1053 and JIO! It is output from the drive buffer of i4 to the signal electrode. The micro-shutter array was driven in the manner described above, and a high-speed light valve array of 2 msec per line was realized. <Application example 2> The above application example 10 microshutter array was kept at 40°C, 7112 msec, '1'21 (15 msec). Placed behind the micro-shutter array,
When I applied transmitted light to the selenium-tellurium photoreceptor and used a magnetic roll to develop toner, the image was formed according to the print signal.The photoreceptor was moved at a speed of 5-7. Seconds. In this way, a high-speed optical writing printer could be obtained. As mentioned above in the application examples, if used in accordance with the present invention, a liquid crystal optical device with high-speed response characteristics can be realized.
Very useful applications have become possible. Moreover, the inherent advantages of liquid crystal devices include low cost, large area,
The effect of low power consumption, etc. is very large because it continues to live as it is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に用いた液晶組成物の誘電異方性の周
波数物性を示した図である。 第2図は、本発明に用いた液晶パネルの構成上水した図
である。 第3図は、本発明の配向処理方向會示した図である。 第4図は、本発明の配向処理を行なった時の液晶分子配
列を模しt図である。 第5図は、液晶駆動信号の図である。 第6図は、従来の配向処理方向を示した図である。 第7図は、液晶光学装置の光透過応答特性を示した図で
ある。 第8図及び第9図は、本発明の応用例の液晶パネル1示
した図である。 第10図、第11図、第12図は、本発明の応用例の液
晶光学装置駆動回路のブロック構成會示す図である。 1・・・液晶層、2.3−・・基板 4.5−・・電極
7.8・・・偏光板 20〜25・・・配向処理方向以
  上 出願人 株式会社諏訪精工舎 代理人 弁理士最上  務 第3図 第4図 第8図 第9図 心1−]−一一一一一 第10図
FIG. 1 is a diagram showing the frequency properties of dielectric anisotropy of the liquid crystal composition used in the present invention. FIG. 2 is a schematic diagram of the structure of the liquid crystal panel used in the present invention. FIG. 3 is a diagram showing the orientation process direction of the present invention. FIG. 4 is a t-diagram illustrating the alignment of liquid crystal molecules when the alignment treatment of the present invention is performed. FIG. 5 is a diagram of liquid crystal drive signals. FIG. 6 is a diagram showing the direction of conventional alignment processing. FIG. 7 is a diagram showing the light transmission response characteristics of the liquid crystal optical device. FIGS. 8 and 9 are diagrams showing a liquid crystal panel 1 according to an applied example of the present invention. FIG. 10, FIG. 11, and FIG. 12 are diagrams showing the block configuration of a liquid crystal optical device driving circuit according to an applied example of the present invention. 1...Liquid crystal layer, 2.3-...Substrate 4.5-...Electrode 7.8...Polarizing plate 20-25...Orientation processing direction or more Applicant Suwa Seikosha Co., Ltd. Agent Patent attorney Tsutomu Shi Mogami Figure 3 Figure 4 Figure 8 Figure 9 Centroid 1-]-1111 Figure 10

Claims (1)

【特許請求の範囲】[Claims] 少なくとも1本の電極管備える2枚の基板を対向させ、
その間に誘電異方性がゼロになる交差周波数が常温で1
00 KHz以下である光学的に活性なネマチック液晶
組成物からなる液晶層を封入し、かつ基板の両側に1組
の偏光板を備える液晶パネルにおいて、上記2枚の基板
の表面は、液晶分子が水平に、かつ2枚の表面における
液晶分子の長軸方向が平行に配列する水平配向処理が施
こされてシリ、かつ液晶分子の配列が、上下2枚の基板
の間て360@ねじれていること1−s書とした液晶光
学装置。
two substrates each having at least one electrode tube facing each other,
During this period, the crossing frequency at which the dielectric anisotropy becomes zero is 1 at room temperature.
In a liquid crystal panel that encapsulates a liquid crystal layer made of an optically active nematic liquid crystal composition with a frequency of 0.00 KHz or less and is provided with a pair of polarizing plates on both sides of the substrate, the surfaces of the two substrates are A horizontal alignment process is applied to horizontally align the long axes of the liquid crystal molecules on the two surfaces in parallel, and the alignment of the liquid crystal molecules is twisted by 360 degrees between the two upper and lower substrates. Liquid crystal optical device written in 1-s.
JP11600381A 1981-07-24 1981-07-24 Liquid crystal optical device Pending JPS5817424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11600381A JPS5817424A (en) 1981-07-24 1981-07-24 Liquid crystal optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11600381A JPS5817424A (en) 1981-07-24 1981-07-24 Liquid crystal optical device

Publications (1)

Publication Number Publication Date
JPS5817424A true JPS5817424A (en) 1983-02-01

Family

ID=14676423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11600381A Pending JPS5817424A (en) 1981-07-24 1981-07-24 Liquid crystal optical device

Country Status (1)

Country Link
JP (1) JPS5817424A (en)

Similar Documents

Publication Publication Date Title
TWI226949B (en) Liquid crystal display device capable of displaying high quality moving picture
JPS59187324A (en) Optical device
JPS6118929A (en) Liquid-crystal display device
US4609256A (en) Liquid crystal optical device
JPH05273554A (en) Ferroelectric liquid crystal element
JPS62280824A (en) Driving method for liquid crystal display device
JPH0545619A (en) Ferroelectric liquid crystal element
JPS5817424A (en) Liquid crystal optical device
US4577930A (en) Weak boundary storage liquid crystal display devices with bias voltage
JPS5817422A (en) Liquid crystal optical device
JPS5817423A (en) Liquid crystal optical device
JPS5817425A (en) Liquid crystal optical device
JPH0774873B2 (en) Liquid crystal display
JPS60235121A (en) Driving method of liquid crystal element
JP2791345B2 (en) Ferroelectric liquid crystal panel
JPS60254120A (en) Method for maintaining ferroelectric liquid crystal in transparent state
JPS5993426A (en) Liquid crystal light valve
JPS6042456B2 (en) lcd light bulb
JP2628156B2 (en) Ferroelectric liquid crystal electro-optical device
van Sprang et al. Liquid crystals: the race is on
JPH02154229A (en) Liquid crystal light valve and driving method for liquid crystal light valve
JPS5993425A (en) Liquid crystal light valve
JPS63280221A (en) Production of ferroelectric liquid crystal display element
JP2977891B2 (en) Liquid crystal electro-optical device
JPS61172122A (en) Liquid crystal optical device