JPS58173341A - Solar heat water heater - Google Patents

Solar heat water heater

Info

Publication number
JPS58173341A
JPS58173341A JP57055575A JP5557582A JPS58173341A JP S58173341 A JPS58173341 A JP S58173341A JP 57055575 A JP57055575 A JP 57055575A JP 5557582 A JP5557582 A JP 5557582A JP S58173341 A JPS58173341 A JP S58173341A
Authority
JP
Japan
Prior art keywords
heat
collecting
pipe
radiating part
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57055575A
Other languages
Japanese (ja)
Other versions
JPH0255693B2 (en
Inventor
Hachiro Koma
小間 八郎
Masaharu Miyanari
宮成 正治
Akira Horie
堀江 旭
Yoshitsugu Masuguchi
増口 義次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Matsushita Electric Works Ltd filed Critical Matsushita Refrigeration Co
Priority to JP57055575A priority Critical patent/JPS58173341A/en
Publication of JPS58173341A publication Critical patent/JPS58173341A/en
Publication of JPH0255693B2 publication Critical patent/JPH0255693B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/90Solar heat collectors using working fluids using internal thermosiphonic circulation
    • F24S10/95Solar heat collectors using working fluids using internal thermosiphonic circulation having evaporator sections and condenser sections, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/30Arrangements for storing heat collected by solar heat collectors storing heat in liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To perfectly separate an outbound path of a coolant from an inbound path thereof and to improve a heat transfer efficiency and a collecting efficiency, by a method wherein, in a connection of a collecting part, formed by connecting in parallel a plurality of collecting pipes, to a radiating part, the outbound pipe is coupled to the lower side of the radiating part and the collecting part, and the upper part side of the collecting pipes is open at least above a flow down liquid surface of a liquefied coolant in the connection. CONSTITUTION:Gas is produced at a collecting part 10 and disappears at a radiating part 9, and thereby a gas coolant normally moves to the radiating part 9 through an inner tube 16 from an upper header 13 of the collecting part 10. Thus, the upper header 13 and the inner tube 16 form an outbound path. Meanwhile, a liquid coolant moves such that liquid is produced at the radiating part 9 and disappears at the collecting part 10, but it flows down under gravity along a gradient for a time ranging from the production to the disappearance, it flows down to a lower header 14 from an inbound pipe 17 after passing through an outer tube from the radiating part 9, and it flows in collecting pipes 12a-12g from the lower header 14. Thus, the outer tube.inbound pipe 17 and the lower header 14 form an inbound path. Besides, since the inner tube 16 of a double structure is open above a liquid surface of a connection part 15, a liquid coolant is prevented from flowing in the inner tube 16, and this enables the complete separation of the outbound path from the inbound path.

Description

【発明の詳細な説明】 この発明は、太陽熱温水器に関するものである。[Detailed description of the invention] This invention relates to a solar water heater.

この発明の基礎となる太陽熱温水器は94図のようなも
のである。すなわち、冷媒が水に冷却され潜熱を放出し
て凝縮(気体から液体へ態変換)する放熱部At−蓄熱
タンクB内に配設し、冷媒が太陽熱を受けて沸騰蒸発す
る受熱sCを、複数本の採熱パイプDで構成し、上ヘッ
ダーEおよび下ヘッダーFにより各採熱パイプDの上下
端部をそれぞれ遅過するとともに、上ヘッダーEの一端
部を放熱56Aに接続している。そして放熱部Aと受熱
sCとの間を冷媒が循環しやすいように通常傾斜をつけ
ている。
The solar water heater that forms the basis of this invention is shown in Figure 94. That is, a plurality of heat sinks At, where the refrigerant is cooled by water, releases latent heat and condenses (converts from gas to liquid), and a heat receiving section At, which is disposed in the heat storage tank B, and where the refrigerant receives solar heat and boils and evaporates. The heat collecting pipe D is composed of two heat collecting pipes D, and the upper and lower ends of each heat collecting pipe D are delayed by an upper header E and a lower header F, respectively, and one end of the upper header E is connected to a heat radiation 56A. It is usually sloped so that the refrigerant can easily circulate between the heat radiation part A and the heat reception part sC.

しかしながら、この太陽熱温水器は、受熱部Cで気化し
て放熱部Aに上昇流動する冷媒と、放熱部Aで液化して
傾斜に石って流下する冷媒とが接続部Gで混合し、それ
ぞれの冷媒の流れを妨げるという現象が生じ、そのため
冷媒の循環が悪くなり、と−ドパイブの熱輸送能力が低
下するという欠点があった。また放熱部Aで液化した冷
媒の帰 ・還路は、接続部Gから受熱部Cの上ヘッダー
Eおよび1jg1の採熱パイプDよに流下し、上ヘッダ
ーEを通じて#I2.第3の採熱ノぐイブD2.D3を
順次溝たしていく行程となる。ところがそのため、遠い
側の採熱パイプD6〜D8に十分に届かず、液体冷媒が
満たされない状態で蒸発・凝縮のサイクルが行われ不こ
とが往々にしである。なお便宜上図において、点々で液
体冷媒を9表わし、小丸で気体冷媒を表わしている。そ
の結果、採熱パイプD6〜D8では潜熱による採熱が十
分に行われず、気体冷媒が顕熱として受熱するだけであ
り、全体として受熱部Cの採熱効率が悪くなるという欠
点があう九。
However, in this solar water heater, the refrigerant that evaporates in the heat receiving part C and flows upward to the heat radiating part A, and the refrigerant that liquefies in the heat radiating part A and flows down the slope, mix at the connecting part G. A phenomenon occurs in which the flow of the refrigerant is obstructed, resulting in poor circulation of the refrigerant, resulting in a reduction in the heat transport ability of the pipe. In addition, the return path of the refrigerant liquefied in the heat radiating section A flows down from the connecting section G to the upper header E of the heat receiving section C and the heat collecting pipe D of 1jg1, and passes through the upper header E to #I2. Third fever collecting tube D2. The process is to groove D3 one after another. However, as a result, the heat collection pipes D6 to D8 on the far side are not sufficiently reached, and the evaporation/condensation cycle is often performed without being filled with liquid refrigerant. For convenience, in the figure, dots represent 9 liquid refrigerants, and small circles represent gas refrigerants. As a result, the heat collection pipes D6 to D8 do not sufficiently collect heat by latent heat, and the gaseous refrigerant only receives heat as sensible heat, resulting in a drawback that the heat collection efficiency of the heat receiving section C as a whole deteriorates.

、  したがって、この発明の目的は、熱輸送能力を向
上し採熱効率を向上することができる太陽熱温水器を提
供することである。
Therefore, an object of the present invention is to provide a solar water heater that can improve heat transport capacity and heat extraction efficiency.

この発明の#Ilの実施例の太陽熱温水器を#I1図お
よび第2図に示す。すなわち、この太陽熱温水器は、平
板状の外ケース1の上端部にタンクカバー2を設け、タ
ンクカバー2内に一対の蓄熱タンク3 m + 3 b
を内装し、タンク3a、3bの相互を遅−するとともに
一方のタップ31にジスターン4を設け、ボールタップ
5を介して給水管6t一連結し、他方のタンク3bに給
湯管(図示省略)を連結している。外ケース1には一対
のヒートノ(イブ7 a e 7 bが敷設され、ガラ
ス8で上面が被覆されている。これらの各ヒートパイプ
7a、’ybは放熱S(凝縮s)9と、受熱部(蒸発部
)10からなり、放熱s9は弐面に多数のフィン11を
張設して、゛各タンク3a、3b内のIEIsK所定の
勾配を付けて配設している。受熱部10は第2図のよう
に複数本の採熱パイプ12!〜12gを並列に並べ、そ
れらの上端および下端を上ヘッダー13および下へノダ
ー14で連通連結したものである。そして放熱m9の接
続1115と受熱部10とをつぎのように接続する。す
なわち、放熱s9の接続部15に内管I6を設けて二重
管構造となし、その内管16と受熱[10,/)上ヘッ
ダー13の一端部とを連通連結し、二重管部の外管(接
続515)に復路パイプ17の上端を接続し、その下端
を受熱部10の下ヘンダー14の一端部に接続する。前
記内管16の外管内の位置は外ケースlが所定の勾配で
配置されてサイクル動作が行われているときに、接vc
@15を流下する液体冷媒の液面の上位に位置するもの
とする。なおヒートパイプ内の点々は液体冷媒を示し、
小丸は気体P!#媒を示す。
A solar water heater according to the #I1 embodiment of the present invention is shown in Figures #I1 and 2. That is, this solar water heater has a tank cover 2 provided at the upper end of a flat outer case 1, and a pair of heat storage tanks 3m+3b inside the tank cover 2.
internally, the tanks 3a and 3b are slowed down, and one tap 31 is provided with a distern 4, a water supply pipe 6t is connected via a ball tap 5, and a hot water supply pipe (not shown) is connected to the other tank 3b. are doing. A pair of heat pipes 7 a e 7 b are installed in the outer case 1, and the upper surface is covered with glass 8. Each of these heat pipes 7a and 7'yb has a heat radiation S (condensation S) 9 and a heat receiving part. (Evaporation section) 10, and the heat dissipation section s9 has a large number of fins 11 stretched on the two sides, and the IEIsK in each tank 3a, 3b are arranged with a predetermined slope. As shown in the figure, a plurality of heat collecting pipes 12! to 12g are arranged in parallel, and their upper and lower ends are connected to each other by an upper header 13 and a lower nodder 14.The heat radiation m9 connection 1115 and the heat receiving part 10 is connected as follows. That is, an inner pipe I6 is provided at the connection part 15 of the heat radiation s9 to form a double pipe structure, and the inner pipe 16 and one end of the heat receiving [10,/) upper header 13 are connected. The upper end of the return pipe 17 is connected to the outer pipe (connection 515) of the double pipe section, and the lower end thereof is connected to one end of the lower hender 14 of the heat receiving section 10. The position of the inner tube 16 in the outer tube is such that when the outer case l is disposed at a predetermined slope and a cycle operation is performed, the inner tube 16 is in contact with vc.
It is assumed that @15 is located above the liquid level of the flowing liquid refrigerant. Note that the dots inside the heat pipe indicate liquid refrigerant.
Komaru is gas P! # Indicates medium.

この太陽熱温水器は、タンクカバー2側を上位にして所
定の勾配で建物の屋根勢に施工され、ヒートバイブ7 
a * 7 b内には冷媒、たとえはフロン(R−11
3)などが受熱部10に一充満させるli度に封入され
、またタンク3bの給湯管を閉弁し給水管6を水道に接
続しておくとジスターン4により自動的にタンク3a、
3b咋に所定水位まで水が満たされる。昼間の太陽熱に
より、ガラス8を通して採熱パイプ12ss〜12gが
加熱されると、内部の液体冷媒が加熱されて沸騰蒸発し
、この気体冷媒は勾配において上位側である上ヘッダー
13を通り、内管16を通って放熱部9に充満し、その
パイプおよびフィン】1を加熱し、もってこれらに接触
する水を加熱する。放M#9r!タンク3m、3bの底
部に配置されているので、加熱された水は対流によって
水面へ上昇し、冷たい水が常にフィン11等に接触して
加熱される。こうして潜熱を放熱した気体冷媒は凝縮液
化し、その液体冷媒は放熱@9の勾配に沿って接続s1
5へ流下し、さらに内管16に流れ込むことなくその下
位を流下して外管に接続された復路バイブ17に流れ込
み、下ヘッダー14に流下する。さらに下ヘッダー14
から各採熱パイプ12a〜12dに均等に流れ込み、重
力によって採熱パイプ12a〜12dの液面が常に等し
くなるように分配が行われる。こうして再び太陽熱を吸
収して気化し、前記したルートで放熱部9に移行する。
This solar water heater is installed on the roof of a building at a predetermined slope with the tank cover 2 side on top.
a * 7 b contains a refrigerant, for example Freon (R-11
3) etc. are sealed in the heat receiving part 10 to the extent that it is filled once, and if the hot water supply pipe of the tank 3b is closed and the water supply pipe 6 is connected to the water supply, the tank 3a,
3b is filled with water to a predetermined water level. When the heat collecting pipes 12ss to 12g are heated through the glass 8 by daytime solar heat, the liquid refrigerant inside is heated and boils and evaporates, and this gaseous refrigerant passes through the upper header 13, which is on the upper side of the slope, and flows into the inner pipe. 16 and fills the heat dissipating section 9, heating its pipes and fins 1, thereby heating the water that comes into contact with them. Broadcast M#9r! Since it is arranged at the bottom of the tanks 3m and 3b, the heated water rises to the water surface by convection, and the cold water is constantly in contact with the fins 11 and the like and is heated. The gaseous refrigerant that has radiated latent heat in this way is condensed and liquefied, and the liquid refrigerant is connected s1 along the gradient of heat radiation @9.
5, and further flows below the inner pipe 16 without flowing into the inner pipe 16, flows into the return path vibe 17 connected to the outer pipe, and flows down to the lower header 14. Further lower header 14
The liquid flows evenly into each of the heat collecting pipes 12a to 12d, and is distributed by gravity so that the liquid levels in the heat collecting pipes 12a to 12d are always equal. In this way, it absorbs solar heat again, evaporates, and transfers to the heat dissipation section 9 through the above-mentioned route.

冷媒のサイクルはこのようにして繰り返兄されるわけで
あるが、さらに気体冷媒および液体冷媒の各動作を詳述
すると、気体冷媒は要するに受熱部】0で気体が発生し
て放熱部9で消滅しそこに圧力差が生じるため、常に受
熱部lOの上ヘッダー13から内管16を通って放熱部
9へ移動する。
The cycle of the refrigerant is repeated in this way, but to further explain the operations of the gas refrigerant and the liquid refrigerant in detail, in the gas refrigerant, gas is generated at the heat receiving part 9, and gas is generated at the heat radiating part 9. Since the heat disappears and a pressure difference is generated there, it always moves from the upper header 13 of the heat receiving part 10 through the inner pipe 16 to the heat radiating part 9.

したがって、上ヘッダー13および内管16が冷媒の往
路となる。一方液体冷媒は放熱部9で液体が発生して受
熱部10で消滅するが、その間は勾配にしたがって重力
により流下し、放熱部9から外管を通って復路バイブ1
7より下ヘッダー14に流下し、下ヘッダー14から各
採熱パイプ12a〜12gに流入する。したがって外管
、復路パイプ17および下ヘッダー14が復路となる。
Therefore, the upper header 13 and the inner pipe 16 serve as the outward path for the refrigerant. On the other hand, the liquid refrigerant is generated in the heat radiating part 9 and disappears in the heat receiving part 10, but during that time, it flows down by gravity according to the gradient, and passes from the heat radiating part 9 through the outer tube to the return vibrator 1.
7 to the lower header 14, and from the lower header 14 to each of the heat collecting pipes 12a to 12g. Therefore, the outer pipe, the return pipe 17 and the lower header 14 form the return path.

しかも二重管部の内管16は接続部15の液面の上位に
開口しているため、液体冷媒が内管16内に流れ込むこ
とがなく、したがって冷媒の往程と復程とが完全に分離
されることとなる。
Moreover, since the inner pipe 16 of the double pipe section opens above the liquid level of the connecting part 15, the liquid refrigerant does not flow into the inner pipe 16, and therefore the forward and return strokes of the refrigerant are completely controlled. They will be separated.

このように構成したため、この太陽熱温水器は従来のよ
うに放熱部の接続部で気体冷媒と液体冷媒とが混合して
相互の流れが妨げられることがなくなる。そのためヒー
トパイプの熱輸送能力が従来よりも向上したものとなる
。同時に復程する液体冷媒は下ヘッダーから各採熱パイ
プに流入し、従来のように上ヘッダーから流入すること
が一切ないので全採熱パイプの液面は常にIWlじンこ
なり、一部の採熱パイプが気体冷媒として顕熱交換する
ことなく、全ての採熱パイプが潜熱交換作用をするので
全体としての熱交換率が従来よりも向上する。
With this configuration, in this solar water heater, the gas refrigerant and the liquid refrigerant do not mix at the connection part of the heat radiation part and their mutual flow is not obstructed, unlike in the conventional case. Therefore, the heat transport ability of the heat pipe is improved compared to the conventional one. At the same time, the recirculating liquid refrigerant flows from the lower header into each heat-collecting pipe, and unlike the conventional method, it does not flow into the upper header at all, so the liquid level of all the heat-collecting pipes is always IWl, and some Since all the heat collecting pipes perform latent heat exchange without the heat collecting pipes exchanging sensible heat as a gas refrigerant, the overall heat exchange efficiency is improved compared to the conventional method.

なお、変形例として、二重管でなく上ヘッダ〜13を接
続部15の流下液面の上位に開口させるだけでもよい。
In addition, as a modification, the upper header ~ 13 may be opened above the flowing liquid level of the connecting portion 15 instead of the double pipe.

この発明の第2の実施例の太陽熱温水器を#I3凶に示
す。すなわち、これは内管16′の先端を放熱部9の中
間位置まで延長させたものである。放熱部9は先端匈は
ど液化した液体冷媒の液面の深さが小さく゛、したがっ
て内管の配置制限を受けることが少ないので製造が容易
であり、しかも冷厳の循環路の完全分離化が容易である
A solar water heater according to a second embodiment of this invention is shown in #I3. That is, this has the tip of the inner tube 16' extended to the middle position of the heat radiating section 9. The heat dissipating part 9 has a small liquid surface depth at the tip of the liquefied liquid refrigerant, so it is easy to manufacture because there are few restrictions on the arrangement of inner tubes, and it is possible to completely separate the cold and cold circulation path. It's easy.

以上のように、この発明の太陽熱温水器は、複数本の採
熱バイ1を並列接続してなる受熱部と、放熱部との接続
において、復路パイプを放熱部と受熱部の下位側とに接
続し、採熱パイプの上位側を少なくとも接続部内におけ
る液化冷媒流下液面の上位に開口させるようにしたため
、冷媒の往路と復路とを完全に分離できるので熱輸送効
率を向上でき、液体冷媒を受熱部の下端連通部より各採
熱パイプに復帰できるので採熱効率を向上できるという
効果がある。
As described above, in the solar water heater of the present invention, in the connection between the heat receiving section formed by connecting a plurality of heat collecting bis 1 in parallel and the heat radiating section, the return pipe is connected to the lower side of the heat radiating section and the heat receiving section. Since the upper side of the heat collection pipe is opened at least above the flowing liquid level of the liquefied refrigerant in the connection part, the outgoing and returning paths of the refrigerant can be completely separated, improving heat transport efficiency and reducing the flow of liquid refrigerant. Since the heat can be returned to each heat collecting pipe from the lower end communication part of the heat receiving part, there is an effect that the heat collecting efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例の太陽熱温水器の一部
破断斜視図、JI2図はその概略XF−面図、第3図は
第2の実施例の概略平面図%J14図はこの発明の基礎
となる太陽熱温水器の概略平面図である。 7 m + 7 b・・ヒートパイプ、9・放熱部、1
0・・受熱部、12a〜12g・・・採熱パイプ、13
・・・上ヘッダ〜、14・・・下ヘッダー、15・・接
続部、16゜16′・・・内管 2
Fig. 1 is a partially cutaway perspective view of a solar water heater according to the first embodiment of the present invention, Fig. JI2 is a schematic XF-plane view thereof, and Fig. 3 is a schematic plan view of the second embodiment. FIG. 1 is a schematic plan view of a solar water heater that is the basis of this invention. 7 m + 7 b...Heat pipe, 9. Heat dissipation part, 1
0... Heat receiving part, 12a to 12g... Heat collecting pipe, 13
...Top header ~, 14...Bottom header, 15...Connection part, 16゜16'...Inner pipe 2

Claims (2)

【特許請求の範囲】[Claims] (1)  蓄熱タンク水に挿入される放熱部と、太陽に
さらされる受熱部と、glI記放熱部と受熱部の下位側
との関Km続されて前記放熱部で液化した冷媒を重力に
より帰還させる復路と、前記受熱部の上位側と前記放熱
部の内部の液化冷媒流下液面の上位との関−に接続され
て帥記受熱部で気化した冷媒をtii記放熱部へ伝達さ
せる往路とを備えたヒートパイプを有する太陽熱温水器
(1) The heat radiating part inserted into the heat storage tank water, the heat receiving part exposed to the sun, and the lower side of the heat radiating part and the heat receiving part are connected to each other, and the refrigerant liquefied in the heat radiating part is returned by gravity. and an outgoing path connected to the upper side of the heat receiving part and the upper part of the flowing liquid level of the liquefied refrigerant inside the heat radiating part to transmit the refrigerant vaporized in the heat receiving part to the heat radiating part. Solar water heater with heat pipes equipped with.
(2)前記放熱部は基端部から中間部にかけて二重管構
造になっており、前記復路はその外管に接続され、1記
往路はその内管に接続されている特許請求の範囲第(1
)項記載の太陽熱温水器。
(2) The heat dissipation part has a double pipe structure from the base end to the middle part, the return path is connected to the outer pipe, and the first outgoing path is connected to the inner pipe. (1
) Solar water heaters described in section 2.
JP57055575A 1982-04-02 1982-04-02 Solar heat water heater Granted JPS58173341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57055575A JPS58173341A (en) 1982-04-02 1982-04-02 Solar heat water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57055575A JPS58173341A (en) 1982-04-02 1982-04-02 Solar heat water heater

Publications (2)

Publication Number Publication Date
JPS58173341A true JPS58173341A (en) 1983-10-12
JPH0255693B2 JPH0255693B2 (en) 1990-11-28

Family

ID=13002524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57055575A Granted JPS58173341A (en) 1982-04-02 1982-04-02 Solar heat water heater

Country Status (1)

Country Link
JP (1) JPS58173341A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038508A1 (en) * 2004-10-06 2006-04-13 Tama-Tlo, Ltd. Solar cell system and combined heat/electricity solar cell system
WO2007004907A1 (en) * 2005-06-30 2007-01-11 MACHADO SIMÕES, Nuno Gonçalo Solar collector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038508A1 (en) * 2004-10-06 2006-04-13 Tama-Tlo, Ltd. Solar cell system and combined heat/electricity solar cell system
JPWO2006038508A1 (en) * 2004-10-06 2008-05-15 タマティーエルオー株式会社 Solar cell system and thermoelectric combined solar cell system
WO2007004907A1 (en) * 2005-06-30 2007-01-11 MACHADO SIMÕES, Nuno Gonçalo Solar collector

Also Published As

Publication number Publication date
JPH0255693B2 (en) 1990-11-28

Similar Documents

Publication Publication Date Title
US4329407A (en) Electrochemical storage battery
JPS5928839B2 (en) Thermosiphon type heat pipe with heat storage function
US4567736A (en) Absorption heat pump
JP2002031414A (en) Solar collector
CN110906428B (en) Phase-change heat storage type solar heat pipe heater
JPS58173341A (en) Solar heat water heater
JPS6012997Y2 (en) Heat storage type solar heat collector
US4346693A (en) Solar panel
JPH0658685A (en) Heat accumulating panel
CN211650792U (en) Portable small solar heat pipe heater
EP0015017B1 (en) Heat transport tube solar collector and system comprising at least such a collector
EP0028587B1 (en) Solar panel
JPS58210442A (en) Heat pipe type solar heat water heater
JPS6150212B2 (en)
JPS5929946A (en) Natural circulation type solar heat collector
JPS5847640B2 (en) Regenerative heat exchange device
JPH0343563Y2 (en)
CN100557369C (en) Heat-pipe radiator
JPS6028913Y2 (en) solar water heater
JPS6141377B2 (en)
JPS6337640Y2 (en)
JPH0434076B2 (en)
JPS6119408Y2 (en)
JPH0131112B2 (en)
JPS58133561A (en) Latent heat accumulating type solar heat collector