JPS5817323B2 - Gaster Binyoku - Google Patents

Gaster Binyoku

Info

Publication number
JPS5817323B2
JPS5817323B2 JP49101384A JP10138474A JPS5817323B2 JP S5817323 B2 JPS5817323 B2 JP S5817323B2 JP 49101384 A JP49101384 A JP 49101384A JP 10138474 A JP10138474 A JP 10138474A JP S5817323 B2 JPS5817323 B2 JP S5817323B2
Authority
JP
Japan
Prior art keywords
blade
core body
cooling
blades
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49101384A
Other languages
Japanese (ja)
Other versions
JPS5129612A (en
Inventor
伊藤武彦
高橋忠
佐藤光雄
小野寺巌
平田憲昭
鈴木一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP49101384A priority Critical patent/JPS5817323B2/en
Publication of JPS5129612A publication Critical patent/JPS5129612A/en
Publication of JPS5817323B2 publication Critical patent/JPS5817323B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明はガスタービン翼に係わり、特に多孔性材料、
たとえば粉末焼結金属で形成され、内部に良熱伝導性の
骨材が組込まれて形成された羽根を用いて冷却効率を改
善したガスタービン翼に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to gas turbine blades, and in particular to porous materials,
For example, the present invention relates to a gas turbine blade that improves cooling efficiency by using blades that are made of powdered sintered metal and have a highly thermally conductive aggregate incorporated therein.

一般にガスタービンでは主流ガスの温度を高めることが
タービンの熱効率の向上のために要求されている。
Generally, in gas turbines, it is required to increase the temperature of the mainstream gas in order to improve the thermal efficiency of the turbine.

一方高温の主流ガスに直接的に表面が接触する羽根は材
料の性質上、耐熱性に限度がある。
On the other hand, blades whose surfaces come into direct contact with high-temperature mainstream gas have a limited heat resistance due to the nature of the material.

このため羽根を冷却して羽根の強度と主流ガス温度との
均衡点を高めようとしている。
For this reason, efforts are being made to cool the blades to increase the balance between blade strength and mainstream gas temperature.

特に冷却に際し、羽根を均一に冷却しただけでは結果的
に羽根の表面上の温度分布に不均一が生じ最高温部と最
低温部が生ずるので余分な熱応力が発生しさらに最高温
部の温度で羽根の強度が抑えられてしまう欠点がある。
In particular, during cooling, if the blade is cooled uniformly, the temperature distribution on the surface of the blade will be uneven, resulting in the highest temperature and lowest temperature areas, which will generate extra thermal stress and further increase the temperature of the highest temperature area. The disadvantage is that the strength of the blades is reduced.

従来の羽根では、通常の超耐熱性合金材料を用いる場合
、この欠点の対策として冷却孔の大きさや配置などで行
なっていたが加工精度上問題が多かった。
In conventional blades, when using ordinary super heat-resistant alloy materials, countermeasures to this drawback were taken by changing the size and arrangement of the cooling holes, but this caused many problems in terms of processing accuracy.

また最近、多孔性材料を用いた羽根では中子体と仕切板
を用い仕切板で囲まれた冷媒流路の配置と断面積の大き
さを調節して良好な冷却効果を得ようとする試みがある
Recently, attempts have been made to obtain a good cooling effect for blades using porous materials by adjusting the arrangement and cross-sectional area of the refrigerant flow path surrounded by the partition plate using a core body and partition plate. There is.

しかしながら、この場合も製作方法が困難であり仕切板
の数にも制限があるため充分な効果が上らない欠点があ
った。
However, in this case as well, the manufacturing method is difficult and the number of partition plates is limited, so that sufficient effects cannot be achieved.

また理論上は、温度分布を羽根面上で均一にするたゆに
は羽根材料に熱伝導性の良好な材料を用いるべきことは
明らかである。
Theoretically, it is clear that in order to make the temperature distribution uniform on the blade surface, a material with good thermal conductivity should be used for the blade material.

しかしながら燃伝導性の良好な材料は強度特に高温での
強度が小さい欠点があった。
However, materials with good fuel conductivity have the disadvantage of low strength, especially at high temperatures.

この発明は上記の欠点を除去するためになされたもので
多孔性材料、たとえば粉末焼結金属及びワイヤ・クロス
などの材料を用い、内部に良熱伝導性の骨材が組込まれ
て形成され、強度も大きく羽根表面の温度分布もほぼ均
一化されたガスタービン翼を提供しようとするものであ
る。
This invention was made to eliminate the above-mentioned drawbacks, and is formed by using porous materials such as powdered sintered metal and wire cloth, and incorporating aggregates with good thermal conductivity inside. The objective is to provide a gas turbine blade with high strength and a substantially uniform temperature distribution on the blade surface.

次にこの発明の一実施例を図面を参照して説明する。Next, an embodiment of the present invention will be described with reference to the drawings.

第1図は後述する製造法によって得られた多孔性材料1
で形成され、内部に良熱伝導性の骨材2が組込まれて形
成された動翼の羽根3である。
Figure 1 shows porous material 1 obtained by the manufacturing method described below.
It is a blade 3 of a rotor blade formed by incorporating aggregate 2 with good thermal conductivity inside.

この羽根3の中空部4に挿着された中子体5は第2図に
示すように、その付根部は取付座6に固着されている。
As shown in FIG. 2, the core body 5 inserted into the hollow part 4 of the blade 3 is fixed at its base to the mounting seat 6.

この取付座6には内部に冷媒の供給孔8が穿設されてい
る。
This mounting seat 6 has a refrigerant supply hole 8 bored inside.

一方中子体5の内部には動翼の回転で生ずる遠心力方向
にそって冷却孔10が穿設され前記冷媒供給孔8と連通
している。
On the other hand, cooling holes 10 are bored inside the core body 5 along the direction of the centrifugal force generated by the rotation of the rotor blades, and communicate with the coolant supply holes 8 .

さらに冷却孔10の側面からは直角方向に冷媒吹出孔1
2が多数穿設され他端は中子体50表面に開口している
Furthermore, from the side of the cooling hole 10, there is a refrigerant blowout hole 1 in a right angle direction.
A large number of holes 2 are formed, and the other end is opened on the surface of the core body 50.

このため供給孔8から導入された冷媒は冷却孔10を通
り吹出孔12から中子体5の表面に吹き出され、第2図
中鎖線のように嵌装された羽根3の内側からしみこんで
いく。
Therefore, the refrigerant introduced from the supply hole 8 passes through the cooling hole 10, is blown out from the blow-off hole 12 onto the surface of the core body 5, and soaks into the inside of the fitted blade 3 as shown by the chain line in FIG. .

また中子体5の先端部には羽根3の先端上面に下面が接
合するように第3図に示すようなキャップ14が嵌着さ
れている。
Further, a cap 14 as shown in FIG. 3 is fitted to the tip of the core body 5 so that its lower surface is joined to the top surface of the tip of the blade 3.

なお蓋体16は冷却孔10の先端開口を閉塞するように
中子体5の先端上面内に嵌挿固着されている。
The lid body 16 is fitted and fixed into the top surface of the tip of the core body 5 so as to close the opening at the tip of the cooling hole 10 .

この状況は第2図〜第4図に鎖線とともに図示したとお
りである。
This situation is shown in FIGS. 2 to 4 together with dashed lines.

また第2図中、鎖線で示すように羽根3は前記中子体5
によって中空部4で支持され、両端面は取付座6の上面
とキャップ14の下面とで緊密に押圧されて保持される
ことになる。
In addition, as shown by the chain line in FIG. 2, the blade 3 is connected to the core body 5.
The cap 14 is supported by the hollow portion 4, and both end surfaces are tightly pressed and held by the top surface of the mounting seat 6 and the bottom surface of the cap 14.

このように構成された動翼においてタービンが運転状態
にはいると、冷媒、たとえば冷却水が供給孔8から冷却
孔10を通って吹出孔12へ送入される。
When the turbine in the rotor blade configured in this manner is put into operation, a refrigerant, for example, cooling water, is fed from the supply hole 8 to the blowout hole 12 through the cooling hole 10 .

冷却水はここから羽根3内にしみこんで羽根全体を内側
から全面にわたって冷却していく。
The cooling water penetrates into the blade 3 from here and cools the entire blade from the inside.

またこの冷却液の一部は中子体5及びキャップ14をも
同時に冷却することはいうまでもない。
It goes without saying that a portion of this cooling liquid also cools the core body 5 and the cap 14 at the same time.

また熱伝導性の良好な材料2の存在により羽根3内の温
度分布は均一化され羽根が局部的に高熱されたり、過大
な熱応力の発生する危険もほとんどない。
Further, due to the presence of the material 2 having good thermal conductivity, the temperature distribution within the blade 3 is made uniform, and there is almost no risk of the blade becoming locally heated or generating excessive thermal stress.

次に上記の羽根3の製造法の1例を詳述する。Next, one example of a method for manufacturing the above-mentioned blade 3 will be described in detail.

銅線(直径Jφ)よりなる金網を第1図に示すように幾
何学的格子状に配置1ルて骨材2を構成し成形した後、
高純度N2ガス中に900℃で3時間加熱し、骨材2の
相互接触部で固相接合をさせたのち、これを真空蒸着装
置中において、最大0.2μの薄膜を有するNi−50
%Cr合金をその表面上に均一に蒸着させる。
After forming and forming the aggregate 2 by arranging wire mesh made of copper wire (diameter Jφ) in a geometric grid pattern as shown in Fig. 1,
After heating at 900°C for 3 hours in high-purity N2 gas and solid-phase bonding at the mutual contact parts of the aggregates 2, the Ni-50 with a thin film of maximum 0.2μ was placed in a vacuum evaporator.
%Cr alloy is deposited uniformly on its surface.

次に羽根成型金型中にこの銅線金網の骨材2を装入し、
さらにこの骨材2の格子配列を極端に変形させぬ程度に
空隙部に一325メツシュのインコネル合金粉を充填さ
せ、60 t /antで圧粉成型して所要の羽根3の
形状の圧粉体を得る。
Next, the aggregate 2 of the copper wire mesh is charged into the blade forming mold,
Furthermore, the voids are filled with 1325 mesh Inconel alloy powder to the extent that the lattice arrangement of the aggregate 2 is not extremely deformed, and the powder is compacted at 60 t/ant to obtain a compact in the shape of the desired blades 3. get.

そしてこの圧粉体を高温真空焼結炉中1050℃で5時
間焼結してからこの焼結体をステンレス製パック中に真
空封入後、Arガス加圧方式による静水圧成形機に再び
装入し、1000℃の温度で1時間、1200気圧の条
件の下に高密度化処理を施して最終的な羽根3を得る。
After sintering this compact in a high-temperature vacuum sintering furnace at 1050°C for 5 hours, the sintered compact was vacuum sealed in a stainless steel pack, and then charged again into the isostatic press molding machine using Ar gas pressurization. Then, the final blade 3 is obtained by performing a densification treatment at a temperature of 1000° C. for 1 hour under conditions of 1200 atm.

上述した実施例は動翼にこの羽根を適用した場合を説明
したがこれはこの発明の範囲を限定するものではない。
Although the above-mentioned embodiment describes a case where this blade is applied to a rotor blade, this is not intended to limit the scope of the present invention.

すなわち、静翼の羽根として用いても温度分布の均一化
に対しては同等の効果を奏する。
That is, even if it is used as a vane of a stationary blade, the same effect can be achieved in making the temperature distribution uniform.

ただし冷媒の供給には、動翼の場合のように遠心力は用
いられないのでポンプなどの外部装置を使用すべきこと
、羽根は中実のものでもよいこと、中子体及びキャップ
は必ずしも必要としないことは勿論である。
However, to supply refrigerant, centrifugal force is not used as in the case of rotor blades, so an external device such as a pump should be used, the blades may be solid, and a core body and cap are not always required. Of course not.

また上述した実施例の羽根は粉末焼結金属の羽根につい
て述べたがこれをワイヤ・クロスで成形することもでき
る。
Further, although the blades in the above-described embodiments are made of powdered sintered metal, they can also be formed by wire cloth.

この場合のワイヤ・クロスの断面の構成を第5図に示し
である。
The cross-sectional structure of the wire cross in this case is shown in FIG.

図中、点線で斜線をほどこした線は良熱伝導性材料の線
18であり、この線18と耐熱性金属の線20とで撚り
合わせたワイヤ・クロスで羽根3を成形する。
In the figure, the dotted diagonal line is a wire 18 made of a good heat conductive material, and the blade 3 is formed from a wire cloth made by twisting this wire 18 and a wire 20 made of a heat-resistant metal.

これらの撚り合わせた素線は羽根の縦方向及び横方向に
交差して配列され縦横両方向にそって熱の伝熱性を良好
にするとともに耐熱性金属の線20によって十分な強度
が得られる。
These twisted wires are arranged so as to intersect with each other in the longitudinal and lateral directions of the blade, thereby improving heat conductivity in both the longitudinal and lateral directions, and providing sufficient strength due to the heat-resistant metal wires 20.

この実施例ではある程度の可撓性をもつ多孔性材料が得
られるので羽根の形成が簡単であること、及び耐熱性金
属と熱伝導性良好な材料とが別体で作られているので接
合部で剥離することがない利点がある。
In this example, a porous material with a certain degree of flexibility is obtained, so the blades can be easily formed, and since the heat-resistant metal and the material with good thermal conductivity are made separately, the joints can be easily formed. It has the advantage of not peeling off.

また第5図では縦、横の撚り合わせは同じ間隔で織った
例を示したが、温度の高くなる前縁、後縁近傍に重点的
に配置するとか、横糸を過密にし縦糸を疎にするとかす
ればさらに冷却効率が向上する。
In addition, Fig. 5 shows an example in which the vertical and horizontal twists are woven at the same spacing, but it is possible to place them mainly near the leading edge and trailing edge where the temperature is high, or to make the weft yarns denser and the warp yarns sparser. Cooling efficiency will further improve.

上述したことから明らかなようにこの発明によれば多孔
性材料たとえば粉末焼結金属及びワイヤ・クロスで羽根
を形成し、その材料内に良熱伝導性の骨材が組込まれて
成形された羽根を用いたガスタービン翼が得られるので
強度が強く、また羽根表面の温度分布が均一でしかも効
率的なしみ出し冷却を達成できるなど多大の実用的効果
を奏する。
As is clear from the above, according to the present invention, a blade is formed by forming a blade from a porous material such as powdered sintered metal and wire cloth, and incorporating an aggregate with good thermal conductivity into the material. Since gas turbine blades using this method can be obtained, they are strong, have a uniform temperature distribution on the blade surface, and can achieve efficient seepage cooling, which has many practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にかかる羽根の一実施例を示す斜視図
、第2図は第1図と同じ実施例の中子体を示す斜視図、
第3図は第1図と同じ実施例のキャップを示す斜視図、
第4図は第1図と同じ実施例の蓋体を示す斜視図、第5
図はこの発明にかかる他の実施例の羽根を示す部分断面
図である。 1・・・多孔性材料、2・・・良熱伝導性の骨材、3・
・・羽根、4・・・中空部、5・・・中子体、6・・・
取付座、8・・・冷媒供給孔、10・・・冷却孔、14
・・・キャップ、18・・・良熱伝導性の線、20・・
・耐熱性金属の線。
FIG. 1 is a perspective view showing an embodiment of a blade according to the present invention, FIG. 2 is a perspective view showing a core body of the same embodiment as FIG. 1,
FIG. 3 is a perspective view showing the same embodiment of the cap as in FIG. 1;
Fig. 4 is a perspective view showing the lid body of the same embodiment as Fig. 1;
The figure is a partial cross-sectional view showing another embodiment of the blade according to the present invention. 1... Porous material, 2... Aggregate with good thermal conductivity, 3.
...Blade, 4...Hollow part, 5... Core body, 6...
Mounting seat, 8... Refrigerant supply hole, 10... Cooling hole, 14
...Cap, 18...Good thermal conductive wire, 20...
・Heat-resistant metal wire.

Claims (1)

【特許請求の範囲】[Claims] 1 多孔性耐熱材料内に良熱伝導性の骨材が組込まれて
形成された中空羽根と、この羽根の中空部に挿着された
冷却孔を有する中子体と、前記羽根が固着される取付座
と、この取付座の内部に穿設された前記中子体の冷却孔
に連通ずる冷媒供給孔とを具備してなるガスタービン翼
1. A hollow blade formed by incorporating a highly thermally conductive aggregate into a porous heat-resistant material, a core body having cooling holes inserted into the hollow part of this blade, and the blade are fixed to each other. A gas turbine blade comprising a mounting seat and a refrigerant supply hole that communicates with a cooling hole of the core body bored inside the mounting seat.
JP49101384A 1974-09-05 1974-09-05 Gaster Binyoku Expired JPS5817323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49101384A JPS5817323B2 (en) 1974-09-05 1974-09-05 Gaster Binyoku

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49101384A JPS5817323B2 (en) 1974-09-05 1974-09-05 Gaster Binyoku

Publications (2)

Publication Number Publication Date
JPS5129612A JPS5129612A (en) 1976-03-13
JPS5817323B2 true JPS5817323B2 (en) 1983-04-06

Family

ID=14299260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49101384A Expired JPS5817323B2 (en) 1974-09-05 1974-09-05 Gaster Binyoku

Country Status (1)

Country Link
JP (1) JPS5817323B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102852562A (en) * 2011-06-29 2013-01-02 阿尔斯通技术有限公司 Gas turbine blade and method for producing a blade

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102852562A (en) * 2011-06-29 2013-01-02 阿尔斯通技术有限公司 Gas turbine blade and method for producing a blade
US9062555B2 (en) 2011-06-29 2015-06-23 Alstom Technology Ltd. Gas turbine blade and method for producing a blade

Also Published As

Publication number Publication date
JPS5129612A (en) 1976-03-13

Similar Documents

Publication Publication Date Title
US3773506A (en) Method of manufacturing a blade having a plurality of internal cooling channels
US6241469B1 (en) Turbine blade
JP4773457B2 (en) Components with embedded passages, especially hot gas components of turbomachines
US6769866B1 (en) Turbine blade and method for producing a turbine blade
BRPI0416514B1 (en) High Temperature Layering System for Heat Dissipation and Process for Manufacturing
US3619076A (en) Liquid-cooled turbine bucket
DK156126B (en) PROCEDURE FOR THE MANUFACTURE OF A THIN AND FLEXIBLE BAND OF SUPER CONDUCTIVE MATERIAL AND A BAND MANUFACTURED BY THIS PROCEDURE
CN110438386A (en) A kind of Preparation method and use of high-entropy alloy solder
US8382439B1 (en) Process of forming a high temperature turbine rotor blade
CN110763059B (en) Ultrathin uniform temperature plate and manufacturing method thereof
CN107138924A (en) A kind of bimetallic dual-property titanium alloy blisk manufacture method
JP2017115861A (en) Article and method of forming article
CN103703580A (en) Thermoelectric module, method for producing thermoelectric module and use of metallic glass or sintered material
US3314650A (en) Cooled blade
US2750147A (en) Blading for turbines and like machines
CN106987755A (en) A kind of MCrAlY alloy and preparation method thereof
CN110315076A (en) A kind of manufacturing process of the high-gravity tungsten based alloy based on pre-alloyed powder
JPS5817323B2 (en) Gaster Binyoku
KR20190027371A (en) Method for manufacturing a turbine blade
CN107630150B (en) A kind of preparation method of the enhanced CuNiSi alloy of timeliness
US2578167A (en) Grinding wheel and method of producing same
CN109807338A (en) A kind of segmented preparation method of rhenium niobium Composite Nozzle
CN105191083B (en) The manufacture of the rotor of asynchronous machine
US3011761A (en) Turbine blades
JP3946298B2 (en) Ceramic-metal functionally gradient material and method for producing the same