JPS58172096A - Recording and reproducing device of chroma signal - Google Patents
Recording and reproducing device of chroma signalInfo
- Publication number
- JPS58172096A JPS58172096A JP57053822A JP5382282A JPS58172096A JP S58172096 A JPS58172096 A JP S58172096A JP 57053822 A JP57053822 A JP 57053822A JP 5382282 A JP5382282 A JP 5382282A JP S58172096 A JPS58172096 A JP S58172096A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- chroma
- circuit
- chroma signal
- dynamic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/79—Processing of colour television signals in connection with recording
- H04N9/80—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
- H04N9/82—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
- H04N9/83—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the recorded chrominance signal occupying a frequency band under the frequency band of the recorded brightness signal
- H04N9/84—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the recorded chrominance signal occupying a frequency band under the frequency band of the recorded brightness signal the recorded signal showing a feature, which is different in adjacent track parts, e.g. different phase or frequency
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/79—Processing of colour television signals in connection with recording
- H04N9/7921—Processing of colour television signals in connection with recording for more than one processing mode
- H04N9/7925—Processing of colour television signals in connection with recording for more than one processing mode for more than one standard
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/79—Processing of colour television signals in connection with recording
- H04N9/793—Processing of colour television signals in connection with recording for controlling the level of the chrominance signal, e.g. by means of automatic chroma control circuits
- H04N9/7933—Processing of colour television signals in connection with recording for controlling the level of the chrominance signal, e.g. by means of automatic chroma control circuits the level control being frequency-dependent
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/79—Processing of colour television signals in connection with recording
- H04N9/793—Processing of colour television signals in connection with recording for controlling the level of the chrominance signal, e.g. by means of automatic chroma control circuits
- H04N9/7933—Processing of colour television signals in connection with recording for controlling the level of the chrominance signal, e.g. by means of automatic chroma control circuits the level control being frequency-dependent
- H04N9/7936—Processing of colour television signals in connection with recording for controlling the level of the chrominance signal, e.g. by means of automatic chroma control circuits the level control being frequency-dependent by using a preemphasis network at the recording side and a deemphasis network at the reproducing side
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/79—Processing of colour television signals in connection with recording
- H04N9/80—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
- H04N9/82—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
- H04N9/83—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the recorded chrominance signal occupying a frequency band under the frequency band of the recorded brightness signal
- H04N9/835—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the recorded chrominance signal occupying a frequency band under the frequency band of the recorded brightness signal involving processing of the sound signal
- H04N9/8355—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the recorded chrominance signal occupying a frequency band under the frequency band of the recorded brightness signal involving processing of the sound signal the sound carriers being frequency multiplexed between the luminance carrier and the chrominance carrier
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/79—Processing of colour television signals in connection with recording
- H04N9/80—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
- H04N9/86—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded sequentially and simultaneously, e.g. corresponding to SECAM-system
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はSECAM方式カラービデオ信号の記録再生装
置id係り、特にメタルテープや蒸着テープを使用する
シリンダ直径が約40關の回転シリンダを用いたヘリカ
ルスキャン形ビデオテープレコーダのカラー信号記録再
生回路に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ID recording and reproducing device for SECAM color video signals, and in particular to a helical scan type video tape recorder using a rotating cylinder with a cylinder diameter of about 40 mm and using metal tape or vapor-deposited tape. The present invention relates to a color signal recording/reproducing circuit.
SEC,4M方式カラービデオ信号の従来の記録方式と
しては特開昭54−57531.特開昭54−5765
’lに述べられているようにクロマ信号をFM信号のま
ま低域に変換して、FM化された輝度信号に多重してテ
ープ上に記録されるものであった。この記録方式を、シ
リンダ直径約4OrpglL。The conventional recording method for SEC and 4M color video signals is JP-A-54-57531. Japanese Patent Publication No. 54-5765
As described in ``1'', the chroma signal was converted into a low frequency signal as an FM signal, multiplexed with the FM luminance signal, and recorded on the tape. This recording method uses a cylinder with a diameter of approximately 4 OrpglL.
テープ幅約f3mmの2ヘツドヘリカルスキヤン形ビデ
オテープレコーダに採用すると以下の問題を生じる。When adopted in a two-head helical scan type video tape recorder having a tape width of about f3 mm, the following problems arise.
(1)録画時間と画質のバランスが悪い。(1) The balance between recording time and image quality is poor.
(21音声信号をビデオトラックに多重記録しにくい。(It is difficult to multiplex record 21 audio signals onto a video track.
(3) クロマ信号のS/Ny2向上しにくい。(3) It is difficult to improve the S/Ny2 of the chroma signal.
以下、図面を用いて従来の問題点を祥しく説明する。Hereinafter, conventional problems will be explained in detail using drawings.
第1図は特開昭54−37531 に述べらnている
VH5方式SECAMビデオテープレコーダにおけるテ
ープに記録される信号スペクトル図。FIG. 1 is a signal spectrum diagram recorded on a tape in the VH5 system SECAM video tape recorder described in Japanese Patent Application Laid-Open No. 54-37531.
1/2図はそのテープ記録パターンである。VH5方式
では441dHzのSECAMり07%号を1/4にカ
ウントダウンし、第1図2に示す中心周波数的11MH
2のFM信号に変換し、FM化さny:4度偏号1vC
,多重し、テープ上に記録されている。クロマ信号は約
±500 kHzの帯域を必要とするので、クロマの専
有帯域は16〜14MHzとなる。一方FM輝度信号1
はテープ、ヘッド系で得られる帯域幅からそのアロケー
ションが決まり、VH5方式では纂2図に示す値となっ
ている。第1図の信号配置における再生輝度信号の帯域
幅は(グレーキャリア周波数−クロマ4M号cD上限周
波ti’) トナW)、結局t55−14x175ME
xしか取れないことになる。輝度信号の帯域幅は5 M
Hz以上必要であり、2.75MHz では不足である
とともに、クロマ信号スペクトル2とFM輝度信号スペ
クトル1の間にFM化音声信号を多重できないという欠
点がある。Figure 1/2 shows the tape recording pattern. In the VH5 system, the SECAM frequency of 441 dHz is counted down to 1/4, and the center frequency is 11 MHz as shown in Figure 1.
2 FM signal and converted to FM ny:4 degree decoding 1vC
, multiplexed and recorded on tape. Since the chroma signal requires a band of approximately ±500 kHz, the exclusive band of chroma is 16 to 14 MHz. On the other hand, FM brightness signal 1
The allocation is determined by the bandwidth obtained from the tape and head systems, and in the VH5 system, the values are shown in Figure 2. The bandwidth of the reproduced luminance signal in the signal arrangement shown in Fig. 1 is (gray carrier frequency - chroma 4M cD upper limit frequency ti') Tona W), ultimately t55-14x175ME
You will only be able to get x. The bandwidth of the luminance signal is 5M
Hz or more is required, and 2.75 MHz is insufficient and has the disadvantage that an FM audio signal cannot be multiplexed between chroma signal spectrum 2 and FM luminance signal spectrum 1.
即ちクロマ信号をFM信号の形でテープ上に記録すると
、隣接トラックからのクロストーク信号を電気回路で除
去することは困離であり、VH5方式ではクロスアジマ
ス効果によりクロストーク抑圧を行なっている。このた
めクロマ信号の周波aを高めに設定しており、これが輝
度信号の帯域不足の原因となっている。又、FMクロマ
信号はAMクロマ信号より側波帯のエネルギーが強く、
クロマ信号と輝度信号の間に別の信号を多重することを
困Sにしている。That is, when a chroma signal is recorded on a tape in the form of an FM signal, it is difficult to remove crosstalk signals from adjacent tracks using an electric circuit, and in the VH5 system, crosstalk is suppressed by the cross-azimuth effect. For this reason, the frequency a of the chroma signal is set to be high, which causes a lack of bandwidth for the luminance signal. Also, the FM chroma signal has stronger sideband energy than the AM chroma signal,
This makes it difficult to multiplex another signal between the chroma signal and the luminance signal.
クロマ信号をFM信号の形で記録することは第2図に示
すテープパターンを大きく制限する6すなわち、隣接ト
ラックからのクロストーク信号の影響を目立ちにくくす
るため、クロマ並べをする必要がある。クロマ並べとは
再生トラック3と隣接トラック4,5が第2図に示すよ
うにH並びだけでなく:、R−Y 、 B−1’の関係
も揃えることである。クロマ並へか可能なαH9は第4
図に示すように限らnT:、値しかなく、画質と録画時
間のバランスを取ることができない。Recording a chroma signal in the form of an FM signal greatly limits the tape pattern shown in FIG. 26. In other words, it is necessary to arrange the chroma signals in order to make the effects of crosstalk signals from adjacent tracks less noticeable. Chroma arrangement means that the reproduced track 3 and the adjacent tracks 4 and 5 are arranged not only in H arrangement as shown in FIG. 2, but also in the relationship of :, RY, B-1'. αH9, which can reach the same level as Chroma, is the 4th
As shown in the figure, there are only nT values, and it is not possible to balance image quality and recording time.
本発明の目的は上記した従来技術の欠点をなくシ、画質
と録画時間の関係を任意に選択でき1、かつクロマ信号
とFM輝度信号の間にFM音声イぎ号も多重可能であり
、さらにクロマS/Nを向上できるSECAMビデオ信
号の記録再生装置を提供することにある。The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, to allow the relationship between image quality and recording time to be selected arbitrarily1, to be able to multiplex an FM audio signal between the chroma signal and the FM luminance signal, and to further An object of the present invention is to provide a recording and reproducing device for SECAM video signals that can improve chroma S/N.
本発明ではSEC,4Mクロマ信号を一担復調し、平衡
変調信号に変換した後、バーストエンファシス、ダイナ
ミックエンファシスを施し、トラッキング制御用パイロ
ット信号やFM化音声信号とともにFM輝度信号に多重
し、テープ上に記録する口
第4図はテープ幅約8關、ドラム直径約40mm。In the present invention, the SEC and 4M chroma signals are single-stage demodulated, converted into balanced modulation signals, and then subjected to burst emphasis and dynamic emphasis, and then multiplexed into an FM luminance signal together with a tracking control pilot signal and an FM audio signal, and then recorded on a tape. The width of the tape shown in Figure 4 is approximately 8 mm, and the drum diameter is approximately 40 mm.
メタルテープ、テープ要約10μll11.カセットサ
イズ95−X62r1″”x14−−h L タ時Oa
Kヲハラl −9とした諸特性を示す。αHはスロー、
スチル、サーチといったトリックプレイが容易に実現で
きるものだけを撰んである。Metal tape, tape summary 10μll11. Cassette size 95-X62r1""x14--h L Oa
The characteristics of Kwohara l -9 are shown below. αH is slow,
Only those that allow trick plays such as stills and searches are selected.
m4図から解るようにクロマ信号をFMのまま記録する
場合はクロマ並びが必要でありα恥xs、tsシか選ぶ
ことができず、録画時間とS/Nのバランスがよ(ない
。As can be seen from the m4 diagram, when recording chroma signals as FM, chroma alignment is required, and it is not possible to choose between αXS and TS, and there is a poor balance between recording time and S/N.
必要なSlN値というのは2通りあり、一つはダビング
マージンを必要とするものでS/N =48dB 程度
が望ましい。すなわち、−同記録再生したS/Nが48
dBであり、この再生信号をもう−i記録再生しなお
したS/Nが約45dBとなる。There are two types of necessary SIN values, one of which requires a dubbing margin and is preferably about S/N = 48 dB. That is, - the S/N of the same recording and reproduction is 48
dB, and when this reproduced signal is recorded and reproduced again, the S/N is approximately 45 dB.
このような使い方はテレビカメラと組み合わせた場合、
標準的使い方となる。This kind of usage is possible when combined with a TV camera.
This is standard usage.
もう一つの考え方kl S/N =45dB程度とし、
ダビングマージンを考えない場合である。このような使
い方はテレビ番組の記録などでは標準的使い方である。Another way of thinking is to assume kl S/N = about 45 dB,
This is a case where dubbing margin is not considered. This kind of usage is standard usage in recording TV programs, etc.
したがって、第4図から解るように、第一の考え方に従
えばαに=2.0 、録画時間90分9m2の考え方に
従えばα2=10 、録画時゛間180分となり使い方
と録画時間のバランスもよくなる。Therefore, as can be seen from Figure 4, if you follow the first idea, α = 2.0, if you follow the idea of recording time 90 minutes 9m2, α2 = 10, and the recording time will be 180 minutes. Balance will also improve.
第5図はαN=2.0あるいはαx=toとし、第3図
に示す2個のビデオヘッド1t12の取り付けをちょう
ど1800 とした場合のテープパターン図を示す図、
第6図は本発明の一実施例であり、第5図のテープパタ
ーンに適した5zcAxビデオ信号の記録再生回路のブ
ロック図である。FIG. 5 is a diagram showing a tape pattern diagram when αN=2.0 or αx=to and the two video heads 1t12 shown in FIG. 3 are installed at exactly 1800,
FIG. 6 is a block diagram of a 5zcAx video signal recording and reproducing circuit suitable for the tape pattern of FIG. 5, which is an embodiment of the present invention.
FMクロマ傷信号復調し、平衡変調クロマ信号に変換す
る具体案として、2案考えられる。There are two possible concrete plans for demodulating the FM chroma flaw signal and converting it into a balanced modulated chroma signal.
W41の案は線順次信号のまま変調し直すもの、絡2の
案はPAL方式クロマ信号に変換するものである。ia
1案は、線順次信号を同時信号に直す必要がなく、回路
が簡単になるというメリットを持つ。第2の案は回路が
複雑になるが、P A L(′i!号トS E CAM
信号f 一台v)V T Rテ記録しやすいというメリ
ットを持つ。Plan W41 modulates the line-sequential signal as it is, and Plan 2 converts it into a PAL chroma signal. ia
The first option has the advantage that it is not necessary to convert line sequential signals to simultaneous signals, and the circuit becomes simpler. Although the second option requires a more complicated circuit, it is possible to
It has the advantage of being easy to record signals on one VTR.
いずnの場合も、変換されたクロマ信号の繰り返し周期
は2H(Hi−水平走査周期でP/IL。In any case, the repetition period of the converted chroma signal is 2H (Hi-horizontal scanning period, P/IL).
SECAMとも64μJF # C)となる。Both SECAMs are 64μJF #C).
したがってガードパンドレスクロスアジマス方式におい
ては低域変換後のテープ上に記録されるクロマ信号周波
数fte’の満足すべき必要条件は下記のようになる。Therefore, in the guard panless cross azimuth system, the necessary conditions to be satisfied for the chroma signal frequency fte' recorded on the tape after low frequency conversion are as follows.
fLc=(−±百)fHル;整数
fH;水平同期周波数(15、625KEz )主トラ
ツクのクロマ信号周波数jtcと隣接トラックのクロマ
信号周波数ftc’ とするとΔ= l fr、c
−ftc’l =→f’s肩;零を含む整数
上記条件を満足する一例として、下記のものが考えられ
る。fLc = (-±100) fH; integer fH; horizontal synchronization frequency (15, 625KEz) If the chroma signal frequency of the main track is jtc and the chroma signal frequency of the adjacent track is ftc', then Δ= l fr, c
-ftc'l =→f's shoulder; integer including zero As an example that satisfies the above conditions, the following can be considered.
Δを士−7fx とする方法は種々あり、その−例と
して、第1のアジマス角を持つヘッドで書くクロマ信号
は(478) fメ周波数とし、位相シフトを行なわず
、第2のアジマス角を持つヘッドで曹くクロマ信号は1
H毎に位相を9o。There are various ways to set Δ to −7fx. For example, the chroma signal written by a head with the first azimuth angle is set to the (478) f frequency, without phase shift, and when the second azimuth angle is The chroma signal detected by the head held is 1
The phase is 9o for each H.
遅らせるかあるいは進ませるかする。このような位相シ
フトラ行なうきテープ上に書かわるクロマ信号周波数は
位相シフトが遅れの場合、fLC=((47−百’)−
−z)fH,Δ=7fH位相シフトが進みの場合、
fcr、=((47−壷+−)fH,Δ=−zfHとす
ることができ、クロマ信号周波数の必要条件をfiたす
ことになる。To delay or advance. When the phase shift is delayed, the chroma signal frequency written on the tape when performing such a phase shifter is fLC = ((47 - 100') -
-z) fH, Δ = 7fH If the phase shift is advanced, then fcr, = ((47 - urn + -) fH, Δ = -zfH, and the required condition for the chroma signal frequency to be equal to fi. Become.
以上述べたクロマ信号のスペクトルは第7図の2に示す
ようにo、′22〜122 mixの帯域を有する。The spectrum of the chroma signal described above has a band of o, '22 to 122 mix, as shown in 2 in FIG.
したがって、クロマイH号の下側周波数帯にパイロット
信号39(りとえば、101JJz 、 117KHz
、 147KHz 、 165KHz“の4波)を記
録することができ、クロマ信号2とFM輝度信号1の間
にFM音声信号40を記録することもできる。FM音声
信号40は占有帯域幅を±50〜±100kHzとnば
十分な音質を確保できるので、中心周波数t4MHz
。Therefore, the pilot signal 39 (for example, 101JJz, 117KHz) is placed in the lower frequency band of Kuromi H.
, 147KHz, 165KHz), and an FM audio signal 40 can also be recorded between the chroma signal 2 and the FM luminance signal 1.The FM audio signal 40 has an occupied bandwidth of ±50 to Since sufficient sound quality can be ensured at ±100kHz, the center frequency is t4MHz.
.
占有帯域幅±100 KHzとすると、輝度信号の再生
帯域を制限するFM音声信号の上限周波数はt5AfH
zとなり、第1図の16KEzより小さくできる。If the occupied bandwidth is ±100 KHz, the upper limit frequency of the FM audio signal that limits the reproduction band of the luminance signal is t5AfH.
z, which can be smaller than 16KEz in FIG.
第5図に示すテープパターンの特徴はH並び、クロマ並
びともにないことである。クロマ並びがないことによる
問題点はFMクロマ信号を平衡変調クロマ信号に変換す
ることで解決されるが、H並びがないことによる問題点
は隣接トラック4.5からもれ込むバースト信号妨害が
主であり、これに対して特別の工夫を要する。A feature of the tape pattern shown in FIG. 5 is that there is no H alignment or chroma alignment. The problem caused by the lack of chroma alignment can be solved by converting the FM chroma signal into a balanced modulation chroma signal, but the problem caused by the lack of H alignment is mainly caused by burst signal interference leaking from the adjacent track 4.5. Therefore, special measures are required for this purpose.
第5図において*印は、たとえばFMクロマ偏号を平衡
変調クロマ信号に変換した場合はR−Y1!号が舊かれ
る期間を示し、無印はB −4信号が41Fかれる期間
を示す。又、FMクロマ傷信号PALクロマ消号に変換
される場合は、*印は(R−4’)信号が書かnる期間
を示し、無印は−(R−1’)信号が書かnる期間を示
す。In FIG. 5, the mark * indicates, for example, when FM chroma polarization is converted to a balanced modulation chroma signal, R-Y1! The blank indicates the period during which the B-4 signal is omitted. Also, when the FM chroma scratch signal is converted to PAL chroma erasure, the * mark indicates the n period in which the (R-4') signal is written, and the unmarked indicates the n period in which the -(R-1') signal is written. shows.
以下に第6図を用いてバースト信号妨害の抑圧について
説明する。Suppression of burst signal interference will be explained below using FIG.
複合ビデオ信号は入力端子15に印加され、LPF 1
6. BPF 18 により夫々輝度信号、クロマ信
号に分離される。分離されたクロマ信号は、4CC回路
19でレベルを一定化された後FMクロマ信号を平衡変
調クロマ信号に変換する回路20に、よりたと□えばP
、4Lクロマ信号に変換される。PALクロマ信号はダ
イナミックエンファシス回路21により小振幅信号がエ
ンファシスさnた後、記録クロマ信号処理回路22でバ
ーストエンファシスや周波数変換などの処理が行なゎn
る。The composite video signal is applied to input terminal 15 and LPF 1
6. The BPF 18 separates the signal into a luminance signal and a chroma signal. The separated chroma signal is stabilized in level by a 4CC circuit 19, and then sent to a circuit 20 for converting the FM chroma signal into a balanced modulation chroma signal, for example, P
, is converted into a 4L chroma signal. After a small amplitude signal is emphasized by a dynamic emphasis circuit 21, the PAL chroma signal is processed by a recording chroma signal processing circuit 22 such as burst emphasis and frequency conversion.
Ru.
第8図の41はダイナミックエンファシス回路21の一
実施例の入出力特性を示す内であり、−20〜−50d
B程度の小振m信号をF3dB程度エンファシスする。Reference numeral 41 in FIG. 8 shows the input/output characteristics of an embodiment of the dynamic emphasis circuit 21, which is -20 to -50d.
A small m signal of about B is emphasized by about F3 dB.
ダイナミックエンファシス回路21の周波数%1性(%
に入力レベル依存性)として考えられる特性は第9図、
第10図、第11図の3通りである。Frequency %1 characteristic of dynamic emphasis circuit 21 (%
The characteristics that can be considered as input level dependence are shown in Figure 9.
There are three ways shown in FIG. 10 and FIG. 11.
lI/49図は変調クロマ信号のサイドバンドエネルギ
ーのみエンファシスする方法であり、クロマ信号2に多
重されるパイロット信号s9やFM音声信号40がクロ
マ信号に洩nることで生じるビートを抑圧することに効
果的である。入力信号レベルに依存しないエンファシス
であればFMクロマ信号でも実現可能であるが、入力レ
ベルが小さいほどエンファシス量が増すダイナミックエ
ンファシスはFMクロマ信号ではかけることができない
。Figure 1/49 is a method of emphasizing only the sideband energy of the modulated chroma signal, and is used to suppress beats caused by the pilot signal s9 multiplexed on the chroma signal 2 and the FM audio signal 40 leaking into the chroma signal. Effective. Emphasis that does not depend on the input signal level can be achieved with an FM chroma signal, but dynamic emphasis, in which the amount of emphasis increases as the input level decreases, cannot be applied with an FM chroma signal.
このため、クロマ信号2に周波数的11に接する位置に
パイロット信号59やFM音声信号4Qを周波数多重記
録する場合、十分なりロマ画質を確保しようとすれば、
FMクロマ信号を平衡変調クロマ信号に変換し、さらに
ダイナミックエンファシスをかけることが必須条件とな
る。Therefore, when recording the pilot signal 59 and the FM audio signal 4Q in frequency multiplexing at a position adjacent to the chroma signal 2 at the frequency 11, if you want to ensure sufficient ROMA image quality,
It is essential to convert the FM chroma signal into a balanced modulation chroma signal and to apply dynamic emphasis.
第10図のエンファシス特性はl1II接トラツクから
もれ込んで(るバースト信号を再生画面上でめだちニ<
くすることと、前述のパイロット信号などの妨害を抑圧
する両者を考えた特性である。The emphasis characteristic shown in Fig. 10 shows that the burst signal leaking from the l1II contact is displayed on the playback screen.
This characteristic is designed to both reduce noise and suppress interference such as the aforementioned pilot signal.
′/J411図は隣接トラックからもn込んで来るバー
スト信号の抑圧を主として考えたエンファシス特性であ
り周波数特性を全く持たせてないことが特徴である。#
!11図の特性はバースト信号の抑圧に対して最も効果
的である反面、パイロット信号などによる妨害の抑圧が
十分でない。'/J411 is an emphasis characteristic mainly designed to suppress burst signals coming in from adjacent tracks, and is characterized by having no frequency characteristics at all. #
! Although the characteristics shown in FIG. 11 are most effective in suppressing burst signals, they do not sufficiently suppress interference caused by pilot signals and the like.
隣接トラックからのバースト信号のもむ込みによる妨害
度は第5図のようにH並びしていない場合顕著であり、
m9図、第10図、第11図に示すダイナミックエンフ
ァシスが必須となり、特に第10図、第11図が望まし
い。しかし、パイロット信号などの多重記録対策とH並
びを行なわない対策の両方を考える場合はwJ9図でも
よい◎
記録クロマ信号処理回路22の出力信号はLPF16.
記録輝度信号処理回路17で発生さnたFM輝度偏号1
と記録アンプ25で加算、増幅されロータリトランス2
6ヲ介してビデオヘッド1112により、ビデオテープ
8に記録される。The degree of interference caused by the intrusion of burst signals from adjacent tracks is noticeable when the tracks are not lined up in H as shown in Figure 5.
The dynamic emphasis shown in Fig. m9, Fig. 10, and Fig. 11 is essential, and Fig. 10 and Fig. 11 are particularly desirable. However, when considering both multiple recording countermeasures such as pilot signals and countermeasures for not performing H alignment, the wJ9 diagram may be used.
FM luminance polarization 1 generated in the recording luminance signal processing circuit 17
is added and amplified by the recording amplifier 25 and then transferred to the rotary transformer 2.
The video is recorded on the video tape 8 by the video head 1112 via the video tape 6 .
記録アンプ25では音声入力端子s6に印加された音声
信号が記録音声処理回路25でFM音−信号に変換され
た信号やパイロット信号発生回路24からの信号も加算
、増幅している。In the recording amplifier 25, a signal obtained by converting the audio signal applied to the audio input terminal s6 into an FM sound signal by the recording audio processing circuit 25 and a signal from the pilot signal generation circuit 24 are also added and amplified.
次に第6図の再生時の動作を説明する。ビデオヘッド1
t12で再生された信号はロータリトランス26.プリ
アンプ27を介して夫々、再生音声処理回路50.再生
輝度信号処理回路51、再生パイロット信号処理回路5
2に供給される。音声。Next, the operation during reproduction shown in FIG. 6 will be explained. video head 1
The signal reproduced at t12 is sent to the rotary transformer 26. Reproduction audio processing circuits 50 . Reproduction luminance signal processing circuit 51, reproduction pilot signal processing circuit 5
2. audio.
輝度、パイロット信号の処理は従来通りなので説明を省
(。Luminance and pilot signal processing are the same as before, so we will not explain them here.
再生クロマ信号処理回路s1では低域に変換されたクロ
マ信号を4.4疋り帝のクロマ信号に戻す周波数変換回
路やバーストディエンファシス1路などから成っている
。回路51の出力信号には1111接トラツクからのク
ロストーク信号が含まれており、このクロストーク信号
を抑圧するためにくし形フィルタ53を用いる。クロス
トーク信号の内、特に妨害となりやすいものはエンファ
シスさnたバースト信号である。実公昭56−5142
′6や特公昭54−28244 に述べられている通
り、平衡変調の形でクロマ信号を記録再生ずる場合、バ
ースト信号をタイムベースの基準に使う。このためバー
スト信号をテープのダイナミックレンジの許す範囲でで
きるだけ強く記録する必要がある。クロス信号の記録レ
ベルを1テープ、ヘッド系の非直−から生じる混変調特
性から制限されるので記録時にバースト信号だけ約6d
B強調して記録する。The reproduced chroma signal processing circuit s1 includes a frequency conversion circuit for returning the chroma signal converted to a low frequency band to a 4.4 chroma signal, a burst de-emphasis circuit, and the like. The output signal of circuit 51 contains a crosstalk signal from the 1111 contact track, and a comb filter 53 is used to suppress this crosstalk signal. Among crosstalk signals, those that are particularly likely to cause interference are emphasized burst signals. Jitsukō 56-5142
As stated in '6 and Japanese Patent Publication No. 54-28244, when recording and reproducing chroma signals in the form of balanced modulation, a burst signal is used as a time base reference. Therefore, it is necessary to record the burst signal as strongly as possible within the dynamic range of the tape. The recording level of the cross signal is limited by the cross-modulation characteristics caused by the non-direction of the head system, so only the burst signal is recorded at about 6 d.
B. Emphasize and record.
このため、W2B図のようなH並べしないテープパター
ンにすると隣接トラックからのバースト信号クロストー
クが再生画面のほぼ中央に帯状に現われ見苦しいものと
なる。バースト信号のクロストークは再生クロマ信号の
最大レベルに対して約−6dBe41KVC4すること
もあり、このクロストーク信号がくし形フィルタ55で
20〜26 dB抑圧され、くシ形フィルタ53の出力
ではルぞ=26〜52dBとなる。For this reason, if a tape pattern such as that shown in the W2B diagram is used, in which H is not aligned, burst signal crosstalk from adjacent tracks will appear in a band shape approximately in the center of the playback screen, resulting in an unsightly appearance. The crosstalk of the burst signal may be approximately -6 dBe41KVC4 with respect to the maximum level of the reproduced chroma signal, and this crosstalk signal is suppressed by 20 to 26 dB by the comb filter 55, and the output of the comb filter 53 is suppressed by 20 to 26 dB. It becomes 26 to 52 dB.
ダイナミックディエンファシス回路54の入出力特性は
たとえば第8図の42のように選ぶことができ、レベル
の低い(入力レベル−20etB以下)信号を6〜8d
B程度抑圧することができる。すなわちくし形フィルタ
55を通ることでクロストーク信号レベルは−26〜−
52dB となり、したがってダイナミックディエン
ファシス回路34でさらに6〜8dE抑圧され、結局ダ
イナミックディエンファシス回路34の出力におけるル
τ=52〜aodBとなる。すなわち、クロストーク信
号をダイナミックディエンファシス回路34で効果的に
抑圧するには、これに先立ってくし形フィルタ33でク
ロストークを十分抑圧しておく必豊かある。このためダ
イナミックディエンファシス回路は低域変換周波数帯(
#!7図の例では(47a ) f綽72 o、KHz
)で行なうO”c’ itなく、44.Mffx帯で行
なうことが望ましい。したがって、ダイナミックディエ
ンファシス回路34の逆回路であるダイナミックエンフ
ァシス回路21も4.4MHz帝に配置されることが望
ましい。(し形フィルタ55は2H遅延線で構成される
ものであり特開昭に説明されているように4.4MHz
帯に配置されるものである。ダイナミックディエンファ
シス回路34の出力信号は一担復調さ77、、SECA
M規格に従ってFM@号に変換さn1混合器29により
輝度信号に加算され出力端子5BIfC5ECAM方式
の複合ビデオ信号を得る。第12図、第13図。The input/output characteristics of the dynamic de-emphasis circuit 54 can be selected, for example, as shown in 42 in FIG.
It can be suppressed by about B. That is, by passing through the comb filter 55, the crosstalk signal level is -26 to -
Therefore, it is further suppressed by 6 to 8 dE in the dynamic de-emphasis circuit 34, and finally the output of the dynamic de-emphasis circuit 34 becomes τ=52 to a odB. That is, in order to effectively suppress the crosstalk signal with the dynamic de-emphasis circuit 34, it is necessary to sufficiently suppress the crosstalk with the comb filter 33 prior to this. For this reason, the dynamic de-emphasis circuit is used in the low conversion frequency band (
#! In the example in Figure 7, (47a) f 72 o, KHz
) It is desirable to perform the operation in the 44.Mffx band instead of the O"c' it. Therefore, it is desirable that the dynamic emphasis circuit 21, which is the inverse circuit of the dynamic de-emphasis circuit 34, also be placed in the 4.4 MHz band. ( The rectangular filter 55 is composed of a 2H delay line and has a frequency of 4.4 MHz as explained in Japanese Patent Application Laid-open No.
It is placed on the obi. The output signal of the dynamic de-emphasis circuit 34 is single-stage demodulated 77, SECA
The signal is converted into an FM@ signal according to the M standard and added to the luminance signal by the n1 mixer 29 to obtain a composite video signal of the output terminal 5BIfC5ECAM system. Figures 12 and 13.
第14図はダイナミックディエンファシス回路54の特
性例を示す図であり、ダイナミックエンファシス回路2
1の特性例を示す、第9図、第10図1、m11図に対
応させている。第15図は第4図におけるαg=toに
おいて、第3図のビデオヘッド12と13のなす角θを
θ=(18o 625 )度
と選んだ場合のテープパターン図である。θを上式のよ
うに選ぶとテープパターンは第15図の55、!Mに示
すようにトラック3とトラック4の間ノαH55ハαH
1=1oH−0,5H=o、51Iトランク3トトラ’
;/ り5 (1) X (D C1H56it (t
#5=tOH+15H=tsH(!: すり、トラック
4とトラック3の間ではクロス並びが行なわれず、トラ
ック3とトラック5の間ではクロマ並びが行なわれる。FIG. 14 is a diagram showing an example of the characteristics of the dynamic de-emphasis circuit 54.
This corresponds to FIG. 9, FIG. 10, and FIG. FIG. 15 is a tape pattern diagram when αg=to in FIG. 4 and the angle θ formed by the video heads 12 and 13 in FIG. 3 is selected to be θ=(18o 625 ) degrees. If θ is chosen as shown in the above equation, the tape pattern will be 55 in Figure 15,! As shown in M, between track 3 and track 4 αH55αH
1=1oH-0, 5H=o, 51I trunk 3 totora'
;/ ri5 (1) X (D C1H56it (t
#5=tOH+15H=tsH(!: Cross alignment is not performed between tracks 4 and 3, and chroma alignment is performed between tracks 3 and 5.
又H並びは全てのトラック間で行なわnる。11415
図に示すテープパターンを用いる場合は隣接トラックか
らのバースト係号クロストークは再生画面上には現われ
ず、水平ブランキング期間に現わnるので前述のような
問題は生じない、このためダイナミックエンファシスは
パイロット信号やFM音声信号からの妨害を抑圧しやす
い特性に選ぶのが望ましい。Also, H alignment is performed between all tracks. 11415
When using the tape pattern shown in the figure, burst code crosstalk from adjacent tracks does not appear on the playback screen, but appears during the horizontal blanking period, so the above-mentioned problem does not occur. It is desirable to select a characteristic that makes it easy to suppress interference from pilot signals and FM audio signals.
テープパターンをgs図のとと(選ぶか、第15図のと
と(選ぶかはテープスピード切替をどう選ぶかと、NT
SC方式との両用機の製造しやすさ、回転シリンダ10
の量産のしやすさのどれを重視するかに6より決まる。Whether you choose the tape pattern as shown in the GS diagram or as shown in Figure 15 depends on how you choose the tape speed switch and the NT
Ease of manufacturing a dual-purpose machine with the SC method, rotating cylinder 10
The number 6 determines which of the following is important: ease of mass production.
第5図のテープパターンが有利な点は■回転シリンダ1
0の量産性がよい(ヘッド12と11を180°に収り
つける方が容易)、■NTSC方式の回転シリンダに2
いてはヘッド12と11が180.’に、jl&))ケ
らn;boで、NTSC、SEC,4M両用機において
ビデオヘッドを兼用にできる。The advantage of the tape pattern shown in Figure 5 is ■Rotating cylinder 1
0 is good for mass production (it is easier to fit heads 12 and 11 at 180°),
In this case, heads 12 and 11 are 180. In addition, the video head can be used for both NTSC, SEC, and 4M machines.
■画質より録画時間を優先すわば第4図のαトα5まで
実用可能であり、αg=2.0.toでH並べを行なわ
ず、ヘッド1t12を180°配置とすnばαH=α5
でH並びを行なうことができる。隣接トラックからのク
ロストークが一番問題となるのはαH= 0.5の時で
ありこのようにαH=2.r3 、1.0 、0.5の
3モードを考える場合テープパターンは第5図(αH=
2.0 、 t Oに対して)が望ましい。■If recording time is prioritized over image quality, it is practical to use αg to α5 in Figure 4, and αg=2.0. If the head 1t12 is arranged at 180° without H arrangement at to, then αH=α5
You can perform H arrangement with . Crosstalk from adjacent tracks becomes the most problematic when αH = 0.5, and thus when αH = 2. When considering the three modes of r3, 1.0, and 0.5, the tape pattern is shown in Figure 5 (αH=
2.0, for tO) is desirable.
一方、αN=2.0.t’0 の2モードしか考えな
い場合はテープパターンは第15図のように選ぶのが妥
当である。On the other hand, αN=2.0. If only two modes of t'0 are considered, it is appropriate to select the tape pattern as shown in FIG.
w416図は本発明をSECAM信号だけでなくPAL
信号も記録再生するビデオテープレコーダに用いた場合
の一実施例を示すブロック図である。The w416 diagram shows that the present invention can be used not only for SECAM signals but also for PAL signals.
FIG. 2 is a block diagram showing an embodiment when used in a video tape recorder that also records and reproduces signals.
第16図における遅延補償回路57.74 、スイッチ
58.59.75.76、 S E CAMクロマ偏信
号PALクロマ偏号信号換する回路20.SECAM/
PAL判別回路60.PALクロマ信号をSECAMク
ロマ信号に戻す回路35が夫々、ビデオテープレコーダ
をP、4L方式あるいはS E CAM方式として用い
る場合に切替る。それ以外の部分は第6図と基本的に変
らない。第16図では、4CC回路19ハダイナミック
エンファシス回路旧の入力レベルが一定となるようダイ
ナミックエンファシス回路21の入力部のバースト信号
を振幅検波するACC検波器62と可変利得アンプ61
から成る。記録クロマ信号処理回路22はキャリア発生
器63.周波数変換器64.LPF65.バーストエン
ファシス回路66(実公昭56−51426. %公開
54−28244 参照)から成る。再生クロマ備考
処理回路31はL P F67 、可変利得アンプ68
.バースト信号検波器69バーストデイエンフアシス(
%・公開54−28244 参照)709周波数変換器
72.キャリア発生器71BPF75から成る。第17
図はキャリア発生器63の一実施例のブロック図である
。Delay compensation circuit 57, 74, switch 58, 59, 75, 76, S E CAM chroma polarization signal PAL chroma polarization signal converting circuit 20 in FIG. SECAM/
PAL discrimination circuit 60. The circuit 35 for converting the PAL chroma signal back to the SECAM chroma signal is switched when the video tape recorder is used in the P, 4L or SE CAM format, respectively. Other parts are basically the same as in Figure 6. In FIG. 16, an ACC detector 62 and a variable gain amplifier 61 detect the amplitude of the burst signal at the input section of the dynamic emphasis circuit 21 so that the input level of the 4CC circuit 19 and the dynamic emphasis circuit remains constant.
Consists of. The recording chroma signal processing circuit 22 includes a carrier generator 63. Frequency converter 64. LPF65. It consists of a burst emphasis circuit 66 (see Utility Model Publication No. 56-51426. % Publication No. 54-28244). The reproduced chroma note processing circuit 31 includes an LPF67 and a variable gain amplifier 68.
.. Burst signal detector 69 Burst de-emphasis (
%・Refer to Publication No. 54-28244) 709 Frequency converter 72. It consists of a carrier generator 71BPF75. 17th
The figure is a block diagram of one embodiment of the carrier generator 63.
第17図はテープ上に記録するクロマ信号周波数を前述
の理由により(47−、)lxとするための回路である
077は発振周波数5759VCO、7961加される
水平同期信号の位相差を検出する位相比較器、78は一
分周器、24はパイロット信号発ト信号を得る。82は
一分周器でありその出力に周波数が−T−fgで位相0
’ 、 90’、1800.2700の4通りの信号
を得る。83は9o0シフト回路であり第1のフィルド
で位相シフトラ行なわず、第2のフィルドで1H毎に9
00位相進めあるいは遅れさせる。9)はフィルド周波
数のパルス印加4子(PAL 、SECAMとも25H
z) 。92は水平パルス印加端子(PAL 、SEC
,4Mとも15.625KHz )。84は波形整形回
路であり、位相シフト回路83の出力信号の立上がりタ
イミングを整え、H毎に正確に900位相差とする働き
を第2のフィルドでは(478) fxでかつH毎に位
相が90°シフトするキャリアが得らnる。Figure 17 shows a circuit for setting the chroma signal frequency recorded on the tape to (47-,)lx for the reason mentioned above. 077 is the oscillation frequency of 5759 VCO, and 7961 is the phase that detects the phase difference of the horizontal synchronizing signal added. A comparator, 78 is a one-frequency divider, and 24 obtains a pilot signal emission signal. 82 is a one-frequency divider whose output has a frequency of -T-fg and a phase of 0.
', 90', 1800.2700 signals are obtained. 83 is a 9o0 shift circuit, which does not perform phase shift in the first field, and shifts 9 to 0 every 1H in the second field.
00 Phase advance or lag. 9) is a field frequency pulse application quadruplet (both PAL and SECAM are 25H).
z). 92 is a horizontal pulse application terminal (PAL, SEC
, 4M are both 15.625KHz). 84 is a waveform shaping circuit, which adjusts the rise timing of the output signal of the phase shift circuit 83 and has the function of making a phase difference of exactly 900 for each H in the second field. A carrier that shifts is obtained.
4.45MHzVCO87、位相比較器88、パースト
ゲート回路89.バースト信号印加端子95がphas
e Lock”mdLoop を構成して2つL4綽
Wの連続キャリアを発生する。85は周波数変換器、8
6はBPFでありその出力には(4,45+ (47−
−i fH)の信号が生じる。第18図、第19図、第
24図は本発明に用いるダイナミックエンファシス回路
21の一実施例を示す図である。96は入力端子、97
は出力端子、94はリミタ、95は加算器、98はバン
ドエリミネートフィルタである。第18図の回路はW4
11図に示すエンファシス特性を実現し、819図、第
24図の回路は定数設計により第9図、第10図のエン
ファシス特性を実現する。第20図、第21図、第22
図、第23図、第25図(=本発明に用いるダイナミッ
クディエンファシス回路34の一実施例を示す図である
。図中100は入力端子、101は出力端子、99は減
算器である。tJ420図g21図は第14図の特性を
、第22図、第23図、425図は1s12図あるいは
第15図の特性を夫々実現する。4.45MHz VCO 87, phase comparator 88, burst gate circuit 89. Burst signal application terminal 95 is phas
85 is a frequency converter; 85 is a frequency converter; 85 is a frequency converter;
6 is a BPF and its output is (4,45+ (47-
-i fH) signal is generated. FIGS. 18, 19, and 24 are diagrams showing an embodiment of the dynamic emphasis circuit 21 used in the present invention. 96 is an input terminal, 97
is an output terminal, 94 is a limiter, 95 is an adder, and 98 is a band elimination filter. The circuit in Figure 18 is W4
The emphasis characteristics shown in FIG. 11 are realized, and the circuits shown in FIGS. 819 and 24 realize the emphasis characteristics shown in FIGS. 9 and 10 by constant design. Figure 20, Figure 21, Figure 22
23, 25 (=A diagram showing an embodiment of the dynamic de-emphasis circuit 34 used in the present invention. In the figures, 100 is an input terminal, 101 is an output terminal, and 99 is a subtracter.tJ420 Figure g21 realizes the characteristics of Figure 14, and Figures 22, 23, and 425 realize the characteristics of Figure 1s12 or Figure 15, respectively.
以下にもう一度本発明のポイントを整理して“述べる。The main points of the present invention will be summarized and described below once again.
本発明ではSECAMクロマ信号;2PAL/)Clマ
侶号に代表される平衡変WA1!号に変換する。In the present invention, the balanced variable WA1! represented by SECAM chroma signal; 2PAL/)Cl master number! Convert to number.
これにより、テープ上に記録される隣接トラック間のク
ロマ信号周波数をインターリーブ関係にし、(周波数差
をμ(2n−1) 、ル;整数とすること)、再生回路
にくし形フィルタを挿入することで隣接トラックからの
クロストーク信号を抑圧する。As a result, the chroma signal frequencies between adjacent tracks recorded on the tape are interleaved (the frequency difference is set to μ(2n-1), an integer), and a comb filter is inserted into the playback circuit. to suppress crosstalk signals from adjacent tracks.
このため隣接トラックからのクロストーク妨害を考入る
必要がなくなり、したがってαHの選択は必要S/Nと
必要録画時間から任意に選ぶことができる。シリンダ径
40mmφテープ+IIg8mlLのシステムにおいて
は、αH=2.0H,tuff を選ぶことができる。Therefore, there is no need to take crosstalk interference from adjacent tracks into account, and therefore αH can be selected arbitrarily from the required S/N and the required recording time. In a system with a cylinder diameter of 40 mmφ tape + IIg8mlL, αH=2.0H, tuff can be selected.
一方クロマ画質を向上させる技術としてダイナミックエ
ンファシスがあり、これを効果的に用いるにはSEC,
4Mクロマ信号では方策がな(、PAL信号などの平衡
変調クロマ信号にする会費がある。On the other hand, there is dynamic emphasis as a technology to improve chroma image quality, and to use it effectively, SEC,
There is no solution for 4M chroma signals (there is a fee to use a balanced modulation chroma signal such as a PAL signal).
又、クロマ信号にパイロット信号やFM音声傷備考周波
数多重してビデオトラックに記録する場合においてはパ
イロット信号やFM音声傷備考クロマ信号に妨害をもた
らす。これらの妨害を抑圧するのにダイナミックエンフ
ァシス、ディエンファシスが極めて効果的である。Furthermore, when a pilot signal or an FM audio signal is frequency-multiplexed onto a chroma signal and recorded on a video track, the pilot signal or the FM audio signal is interfered with. Dynamic emphasis and de-emphasis are extremely effective in suppressing these disturbances.
したがって、テープ上でクロマ並びやH並びをとらない
システムでかつ、クロマ信号とFM輝度信号にパイロッ
ト信号やFM音声信号を周波数多重記録するビデオテー
プレコーダにおいてはSECAMクロマ信号を先ずPA
Lクロマ偏号信号表される平衡変調クロマ信号に変換し
、さらにこの変換信号にダイナミックエンファシスを施
こす必要がある。Therefore, in a video tape recorder that uses a system that does not use chroma alignment or H alignment on the tape and frequency-multiplexes the pilot signal and FM audio signal onto the chroma signal and FM luminance signal, the SECAM chroma signal is first
It is necessary to convert the L chroma polarized signal into a balanced modulated chroma signal, and then apply dynamic emphasis to this converted signal.
一方、再生回路におけるダイナミックディエンファシス
を効果的にするには、隣接トラックからのクロストーク
成分ヲ<シ形フィルタで十分抑圧した後のクロマ信号を
ダイナミックディエンファシスに印加する必要がある。On the other hand, in order to make the dynamic de-emphasis in the reproducing circuit effective, it is necessary to apply the chroma signal to the dynamic de-emphasis after crosstalk components from adjacent tracks have been sufficiently suppressed using a square filter.
したがって、再生回路の構成はくし形フィルターダイナ
ミックディエンファシス−5ECAMクロマ信号への変
換が必須条件となる。Therefore, the configuration of the reproducing circuit requires conversion to a comb filter dynamic de-emphasis-5ECAM chroma signal.
本発明によnば、H並べやクロマ並べにこだわることな
(テープスピードを選択することができるので最適S/
Nと録画時間を設定することができる。又、クロマ画質
、輝度信号帯域を損うことなくパイロット信号、FM音
声信号を多重でき、トラッキング互換性の向上と、音質
の大幅向上かもたらさnる。According to the present invention, there is no need to worry about H alignment or chroma alignment (the tape speed can be selected, so the optimum S/
You can set N and recording time. In addition, pilot signals and FM audio signals can be multiplexed without impairing chroma image quality or luminance signal band, resulting in improved tracking compatibility and significant improvement in sound quality.
第1図はVH5方式SECAMビデオテープレコーダの
記録信号スペクトルを示す図、第2図はVH5方式SE
CAMビデオテープレコーダのテープバタン図、第6図
はビデオヘッドの取り付は位置を示す回転シリンダの概
略図、第4図は本発明のビデオテープレコーダのαHと
緒特性の関係を示す図、第5図、第15図は本発明に用
いるテープパタンの一実例を示すパターン図、第6図は
本発明の一実施例を示すブロック図、m7図は本発明の
一実施例における記録信号スペクトルを示す図、第8図
は本発明に用いるダイナミックエンファシス、ディエン
ファシス回路の入出力特性の一例を示す特性図、第9図
、910図、第11図は本発明に用いるダイナミックエ
ンファシス回路の特性の一例を示す図、第12図、 #
415図、第14図は本発明に用いるダイナミックディ
エンファシス回路の特性の一例を示す特性図、第16図
は本発明をPAL、SEC,4M両用のビデオテープレ
コーダに応用した場合の一実施例を示すブロック図、第
17図は本発明に用いるキャリア発生回路、パイロット
発生回路の一実施例のブロック図、第18図s19図m
24図は本発明に用いるダイナミックエンファシス回路
の一実施例を示すブロック図、第20図第21図、第2
2図第23図、纂25図は本発明に用いるダイナミック
ディエンファシス回路の一実施例を示す回路図である。
1シ・・SRCAMビデオ信号入力端子、2)・・5E
CANクロマ信号を平衡変調クロマ信号に変換する回路
、21・・・ダイナミックエンファシス回路、3シ・・
くし形フィルタ、64・・・ダイナミックディエンファ
シス回路。
納1図
〒2図
〒5図
2
5r!i4図
5.9’ 4.4’ 4♂CMIh)豹!
T図
418図
Uり
ff120図Figure 1 is a diagram showing the recording signal spectrum of a VH5 system SECAM video tape recorder, and Figure 2 is a diagram showing the recording signal spectrum of a VH5 system SECAM video tape recorder.
6 is a schematic diagram of a rotary cylinder showing the mounting position of the video head; FIG. 4 is a diagram showing the relationship between αH and line characteristics of the video tape recorder of the present invention; Figures 5 and 15 are pattern diagrams showing an example of a tape pattern used in the present invention, Figure 6 is a block diagram showing an embodiment of the present invention, and Figure m7 is a pattern diagram showing an example of the tape pattern used in the present invention. FIG. 8 is a characteristic diagram showing an example of the input/output characteristics of the dynamic emphasis/de-emphasis circuit used in the present invention, and FIGS. 9, 910, and 11 are examples of the characteristics of the dynamic emphasis circuit used in the present invention. Figure 12, #
Fig. 415 and Fig. 14 are characteristic diagrams showing an example of the characteristics of the dynamic de-emphasis circuit used in the present invention, and Fig. 16 shows an example in which the present invention is applied to a video tape recorder for both PAL, SEC, and 4M. Fig. 17 is a block diagram of an embodiment of the carrier generation circuit and pilot generation circuit used in the present invention, Fig. 18, s19, m.
Figure 24 is a block diagram showing an embodiment of the dynamic emphasis circuit used in the present invention, Figure 20, Figure 21, and Figure 2.
FIG. 2, FIG. 23, and FIG. 25 are circuit diagrams showing an embodiment of the dynamic de-emphasis circuit used in the present invention. 1)...SRCAM video signal input terminal, 2)...5E
A circuit that converts a CAN chroma signal into a balanced modulation chroma signal, 21...Dynamic emphasis circuit, 3...
Comb filter, 64...dynamic de-emphasis circuit. Figure 1 Figure 2 Figure 5 Figure 2 5r! i4Figure 5.9'4.4' 4♂CMIh) Leopard!
T figure 418 figure Uri ff120 figure
Claims (1)
手段と、該変換手段後に設けられたダイナミックエンフ
ァシス回路と、隣接トラックからのクロストーク備考を
抑圧するための(し形フィルタと、該くし形フィルタ後
に設けられたダイナミックディエンファシス回路を有す
ることを特徴とするクロマ信号記録再生装置。SEo, a means for converting a 4M system chroma signal into a balanced modulation signal, a dynamic emphasis circuit provided after the converting means, a comb-shaped filter for suppressing crosstalk from adjacent tracks, and a comb-shaped filter for suppressing crosstalk from adjacent tracks. A chroma signal recording and reproducing device characterized by having a dynamic de-emphasis circuit provided later.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57053822A JPS58172096A (en) | 1982-04-02 | 1982-04-02 | Recording and reproducing device of chroma signal |
EP19820304682 EP0076047B1 (en) | 1981-09-09 | 1982-09-07 | Color video signal recording and reproducing apparatus |
AT82304682T ATE21475T1 (en) | 1981-09-09 | 1982-09-07 | COLOR VIDEO SIGNAL RECORDING AND PLAYBACK EQUIPMENT. |
DE8282304682T DE3272586D1 (en) | 1981-09-09 | 1982-09-07 | Color video signal recording and reproducing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57053822A JPS58172096A (en) | 1982-04-02 | 1982-04-02 | Recording and reproducing device of chroma signal |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3279249A Division JPH07110068B2 (en) | 1991-10-25 | 1991-10-25 | Chroma signal recorder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58172096A true JPS58172096A (en) | 1983-10-08 |
JPH0422078B2 JPH0422078B2 (en) | 1992-04-15 |
Family
ID=12953478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57053822A Granted JPS58172096A (en) | 1981-09-09 | 1982-04-02 | Recording and reproducing device of chroma signal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58172096A (en) |
-
1982
- 1982-04-02 JP JP57053822A patent/JPS58172096A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0422078B2 (en) | 1992-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4647983A (en) | Method and apparatus for recording and/or reproducing color video signal | |
JPS6253094A (en) | Magnetic recording and reproducing device | |
JPS645516B2 (en) | ||
JPS59171285A (en) | Dropout compensating circuit of video signal | |
JPS5827716B2 (en) | Jikikiro Kuuchi | |
JPH084349B2 (en) | Color video signal recording method and reproducing method thereof | |
JPS60199283A (en) | Magnetic recording and reproducing device | |
US4115820A (en) | System for reproducing a video signal | |
JPS58172096A (en) | Recording and reproducing device of chroma signal | |
JPS5816310Y2 (en) | magnetic recording and reproducing device | |
JPH05137159A (en) | Recorder for chroma signal | |
JPS6355703A (en) | Magnetic video recording and reproducing device | |
JPH05266443A (en) | Magnetic recording and reproducing device | |
JPS60241390A (en) | Device for recording and reproducing video signal | |
JPS62272695A (en) | Magnetic picture recording and reproducing device | |
JPH04104593A (en) | Video tape recorder | |
JPH0422079B2 (en) | ||
JPS6236996A (en) | Recording device for frequency modulation wave | |
JPS585633B2 (en) | Kirokusaretakara Video Shingouno Saisei Souchi | |
JPH0551980B2 (en) | ||
JPS61206392A (en) | Color video signal recording and recording reproducer | |
JPS612489A (en) | Signal recording and reproducing circuit | |
JPS6029099A (en) | Record reproducing device | |
JPS61263391A (en) | Video signal recording device | |
JPH0792893B2 (en) | Magnetic recording method |