JPS5817189B2 - 3- Cyanopyridine - Google Patents

3- Cyanopyridine

Info

Publication number
JPS5817189B2
JPS5817189B2 JP49028597A JP2859774A JPS5817189B2 JP S5817189 B2 JPS5817189 B2 JP S5817189B2 JP 49028597 A JP49028597 A JP 49028597A JP 2859774 A JP2859774 A JP 2859774A JP S5817189 B2 JPS5817189 B2 JP S5817189B2
Authority
JP
Japan
Prior art keywords
vanadium
reaction
catalyst
mep
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49028597A
Other languages
Japanese (ja)
Other versions
JPS50123677A (en
Inventor
丸茂国臣
亀高徳夫
石岡領治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP49028597A priority Critical patent/JPS5817189B2/en
Priority to FR7504306A priority patent/FR2264023B1/fr
Priority to DE2505745A priority patent/DE2505745C3/en
Priority to US05/553,627 priority patent/US3959297A/en
Priority to CH300775A priority patent/CH595350A5/xx
Publication of JPS50123677A publication Critical patent/JPS50123677A/ja
Publication of JPS5817189B2 publication Critical patent/JPS5817189B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Pyridine Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は2−メチル−5−エチルピリジン(以下MEP
と略称する)のアンモ酸化反応による3−シアノピリジ
ン(以下CPと略称する)の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to 2-methyl-5-ethylpyridine (hereinafter MEP).
This invention relates to a method for producing 3-cyanopyridine (hereinafter abbreviated as CP) by an ammoxidation reaction of 3-cyanopyridine (hereinafter abbreviated as CP).

CPはビタミンB群の1員としてペラグラの予防、治療
等の医薬品或いは飼料添加剤、食品添加剤等の分野にお
いて有用な物質であるニコチン酸アミド、ニコチン酸の
合成原料その他の用途を有する工業上有用な物質であり
、従来よりβ−ピコリン、ルチジン又はMEPのアンモ
酸化反応により製造し得ることは公知である。
CP is a member of the vitamin B group and is a useful substance in the fields of medicines such as prevention and treatment of pellagra, feed additives, food additives, etc. Nicotinic acid amide, a raw material for the synthesis of nicotinic acid, and other industrial uses. It is a useful substance, and it has been known that it can be produced by the ammoxidation reaction of β-picoline, lutidine or MEP.

例えば、β−ピコリンを原料とする方法ではバナジウム
−モリブテン−リン、バナジウム−クロム、モリブデン
−ビスマス−リン、ニオーi−銀又は鉄、バナジウム−
銀又は鉄、バナジウム−スズーIJン、溶融バナジウム
−モリブデン等を活性成分とする各種触媒の使用が提案
され、就中バナジウム−スズ、バナジウム−チタンを活
性成分とする触媒が特に効果的であるとされている。
For example, in a method using β-picoline as a raw material, vanadium-molybten-phosphorus, vanadium-chromium, molybdenum-bismuth-phosphorus, nitrogen-silver or iron, vanadium-molybten-phosphorus,
The use of various catalysts containing silver or iron, vanadium-tin, molten vanadium-molybdenum, etc. as active ingredients has been proposed, and catalysts containing vanadium-tin and vanadium-titanium as active ingredients are particularly effective. has been done.

これらの方法はCPの収率としては可成り良い結果を得
られるものであるが、原料として用いるβ−ピコリンが
比較的高価であり、工業的な製法としてはMEPを原料
とした方が有利である。
Although these methods can obtain fairly good results in terms of yield of CP, β-picoline used as a raw material is relatively expensive, and it is more advantageous to use MEP as a raw material for industrial production methods. be.

この後者の方法ではCPの他多量の2,5−ジシアノピ
リジン(以下DCPと略称する)力嘔U生し、通常のア
ンモ酸化反応ではむしろDCPの方が主生成物となる。
In this latter method, a large amount of 2,5-dicyanopyridine (hereinafter abbreviated as DCP) is produced in addition to CP, and in a normal ammoxidation reaction, DCP is rather the main product.

これらの生成物からニコチン酸及びニコチン酸アミドを
製造する場合、DCPからはイソシンコメロン酸の脱炭
酸工程が必要となり、工程が複雑となるため工業的には
CPのみが選択的に生成することが望まれる。
When producing nicotinic acid and nicotinic acid amide from these products, a decarboxylation step of isocincomeronic acid from DCP is required, which complicates the process, so industrially only CP can be selectively produced. is desired.

従来MEPのアンモ酸化反応の触媒としてバナジウム或
いはバナジウムと各種金属酸化物を組合せたバナジウム
系触媒等多くの触媒が提案され、前記β−ピコリンの場
合と同様にバナジウム−スズ、バナジウム−チタンを活
性成分とする触媒が特(こ効果的であるとされているが
、本発明者等の知見によればMEPのアンモ酸化反応に
於けるCPの選択率は使用すべき触媒の種類及び反応条
件に大きく左右され、例えば従来効果的であるとされて
いる触媒でもバナジウムとアンチモン、鉄、スズ、チタ
ン或いはモリブデン等を組合せた触媒では従来知られて
いる手法、条件を使用する限り主としてDCP又は5−
エチル−2−シアノピリジンが生成するか、或は反応系
が不安定になり、又触媒成分の選択が適切であってもそ
の調製法及び反応条件の設定を誤まった場合にはいづれ
も所期の目的は達成し得ないことが認められた。
Conventionally, many catalysts have been proposed as catalysts for the ammoxidation reaction of MEP, such as vanadium or vanadium-based catalysts in which vanadium is combined with various metal oxides. It is said that the catalyst is particularly effective, but according to the knowledge of the present inventors, the selectivity of CP in the ammoxidation reaction of MEP greatly depends on the type of catalyst to be used and the reaction conditions. For example, even if the catalyst is conventionally considered to be effective, catalysts that combine vanadium and antimony, iron, tin, titanium, molybdenum, etc., are mainly DCP or 5-
If ethyl-2-cyanopyridine is produced or the reaction system becomes unstable, or if the preparation method and reaction conditions are incorrect even if the catalyst components are appropriately selected, problems may occur. It was recognized that the objectives of the period could not be achieved.

本発明はMEPのアンモ酸化反応に於いてCPの選択率
を向上せしめ、工業上有利に実施し得る方法に関し、種
々検討を重ねた結果達成されたもので、使用すべき触媒
活性成分の選択、調製法及び反応条件に特色を有する。
The present invention was achieved as a result of various studies regarding a method that can be industrially advantageously implemented by improving the selectivity of CP in the ammoxidation reaction of MEP. It is characterized by its preparation method and reaction conditions.

即ち本発明はバナジウム−ジルコンを活性成分として表
面積50 m”/ g以下の不活性担体に担持せしめ且
600°C以下の温度で焼成して得られる触媒の存在下
に、反応系に20〜80容量係の水分を導入しつつ、M
EPとアンモニア及び酸素を300〜500℃の温度で
反応させることを特徴とし、それによってDCP及び5
−エチル−2−シアノピリジン等の生成を抑制し、CP
を高選択率で製造することのできる工業上有利な方法を
提供せんとするものである。
That is, in the present invention, in the presence of a catalyst obtained by supporting vanadium-zircon as an active ingredient on an inert carrier with a surface area of 50 m''/g or less and calcining it at a temperature of 600°C or less, 20 to 80% of vanadium is added to the reaction system. While introducing water in the capacity section, M
It is characterized by reacting EP with ammonia and oxygen at a temperature of 300 to 500°C, thereby forming DCP and 5
- Suppresses the formation of ethyl-2-cyanopyridine, etc., and CP
The object of the present invention is to provide an industrially advantageous method capable of producing with high selectivity.

本発明について更に詳細に説明すれば、使用すべき触媒
はバナジウム−ジルコンを活性成分とし、担体は例えば
、活性炭、シリカ、アルミノシリケート等表面積の大き
い活性の高い担体を用い、或いは触媒活性成分を担体を
用いることなく酸化物の形でそのまま用いた場合にはM
EPのアンモ酸化反応の△Hが大きいため反応の制御が
困難となり、暴走の危険性があるため、本発明において
はその表面積が52m2/g以下、好ましくは10m2
/g以下の不活性なもの、例えばα−アルミナ、シリコ
ン−カーバイト等が用いられる。
To explain the present invention in more detail, the catalyst to be used has vanadium-zircon as an active component, and the carrier is a highly active carrier with a large surface area such as activated carbon, silica, or aluminosilicate, or the catalyst is a carrier with a catalytic active component. When used as is in the form of oxide without using M
Because ΔH of the ammoxidation reaction of EP is large, it becomes difficult to control the reaction and there is a risk of runaway. Therefore, in the present invention, the surface area is 52 m2/g or less, preferably 10 m
/g or less, such as α-alumina, silicon carbide, etc., is used.

活性成分の担持量は5酸化バナジウム(V2O5)とし
て1〜15重量係、素条ジルコンとバナジウムの原子比
は1:1を中心とし通常0.1〜10の範囲が好ましい
The amount of the active ingredient supported is 1 to 15% by weight as vanadium pentoxide (V2O5), and the atomic ratio of bare zircon to vanadium is preferably 1:1, usually in the range of 0.1 to 10.

触媒は上記活性成分が通常酸化物の形(v205. V
2O5−Zrn0m又はVp−Zrq−Or)で担体上
に均一に分散担持されたものであるが、調整法としては
例えば5酸化バナジウム又は蓚酸バナジル等のバナジウ
ム化合物及びジルコンの塩又はオキシ酸塩等を水、鉱酸
又は有機酸の水溶液当適当な溶媒に溶かし、これに担体
を加え充分混合した後蒸発乾固して得られるが、特にこ
の方法に限らず、均一に担持てきる方法であれば通常の
方法がいづれも適用し得る。
The catalyst is a catalyst in which the above-mentioned active components are usually in the form of oxides (v205.V
2O5-Zrn0m or Vp-Zrq-Or) is uniformly dispersed and supported on the carrier, but as a preparation method, for example, a vanadium compound such as vanadium pentoxide or vanadyl oxalate, a salt or oxyacid of zircon, etc. It can be obtained by dissolving an aqueous solution of water, a mineral acid or an organic acid in a suitable solvent, adding a carrier thereto, mixing thoroughly, and then evaporating to dryness. Any conventional method may be applied.

また本発明に於いて触媒の焼成は必須の要件であり、前
記活性成分を均一に担持したものを予め600℃以下の
温度、好ましくは350〜550℃で空気流通化に通常
3〜10時間程度加熱処理することを要する。
Calcination of the catalyst is an essential requirement in the present invention, and the active ingredient is uniformly supported and is heated in advance at a temperature of 600°C or lower, preferably 350 to 550°C, with air circulation for usually about 3 to 10 hours. Requires heat treatment.

尚、焼成温度が高過ぎる場合、所期の活性が具現せず主
としてDCPが生成することになるため注意しなければ
ならない。
Note that if the firing temperature is too high, the desired activity will not be realized and DCP will mainly be produced, so care must be taken.

かくの如き特定の触媒の使用に加え、本発明に於いては
反応条件もまた重要な要件であって反応系に導入する水
分は20〜80容量係を必要とする。
In addition to the use of a specific catalyst, the reaction conditions are also an important requirement in the present invention, and 20 to 80 volumes of water are required to be introduced into the reaction system.

水分の添加を行わない場合或いは少な過ぎる場合はDC
Pの生成が多く、反応ガス中の水分の割合を増加させる
に従ってDCPの生成量が減少し、CPの生成量が増加
する傾向が認められる。
DC if no or too little water is added.
It is observed that a large amount of P is produced, and as the proportion of water in the reaction gas increases, the amount of DCP produced decreases, and the amount of CP produced tends to increase.

しかし、余り多量に用いると他の反応成分、特にアンモ
ニアの濃度に影響を与えるためか、逆に効果は減少しC
Pの収率は低下する。
However, if too large a quantity is used, the effect decreases, perhaps because it affects the concentration of other reaction components, especially ammonia.
The yield of P decreases.

アンモニア濃度については高い程CPの収率が良いが通
常は1〜30容量係の範囲で行うのが適当と言える。
Regarding the ammonia concentration, the higher the ammonia concentration, the better the CP yield, but it is usually appropriate to carry out the ammonia concentration in the range of 1 to 30 volumes.

また、MEP濃度は通常可成り低い処で行われているが
、本発明に於いては0.1〜5容量%の範囲で行われる
Further, although the MEP concentration is usually quite low, in the present invention it is in the range of 0.1 to 5% by volume.

残部は空気又は窒素である。尚特ζこ酸素の濃度はCP
の収率に大きな効果を有し、MEPに対し20モル比以
下、好ましくは7〜15モル比の範囲で用いられること
が望ましい。
The remainder is air or nitrogen. The concentration of oxygen is CP
It has a great effect on the yield of MEP, and it is desirable to use it in a molar ratio of 20 or less, preferably in a range of 7 to 15 molar ratio to MEP.

反応温度は空間速度(SV)MEP濃度等と相互に関係
し、また使用すべき触媒の種類Qこより最高収率を示す
温度は若干異なるが、本発明に於ける最適温度としては
300〜500’Cの範囲、好ましくは320〜470
℃である。
The reaction temperature is interrelated with the space velocity (SV), MEP concentration, etc., and the temperature at which the highest yield is obtained varies slightly depending on the type of catalyst to be used, but the optimum temperature in the present invention is 300 to 500'. C range, preferably 320-470
It is ℃.

この場合S■は500〜10.000程度が適当である
In this case, S■ is suitably about 500 to 10,000.

以下実施例を掲げて本発明Qこついて更に具体的に説明
するが、これらは本発明についての理解を容易にするた
め、あえて条件を統一し典型的な例を示すものであって
、本発明は必ずしもこれらのみに限定され得ないことは
言う迄もない。
The present invention will be explained in more detail below with reference to Examples, but in order to facilitate understanding of the present invention, these are intended to unify conditions and show typical examples. Needless to say, it is not necessarily limited to these.

実施例 5酸化バナジウム1.8gを30係蓚酸水溶液に溶解し
、更に硝酸ジルコニルの水溶液をバナジウムとの原子比
が1:1になるようQこ添加した液に平均粒径0.5〜
1mmのα−アルミナ(表面積1m2/g以下)36g
を加え、時々攪拌しなから湯浴上で蒸発乾固した後、電
気炉中で450°Cに加熱し空気流通下に約4時間焼成
して触媒を調製した。
Example 5 1.8 g of vanadium oxide was dissolved in a 30% oxalic acid aqueous solution, and an aqueous solution of zirconyl nitrate was added to the solution so that the atomic ratio of zirconyl nitrate to vanadium was 1:1.
1mm α-alumina (surface area 1m2/g or less) 36g
The mixture was evaporated to dryness on a hot water bath with occasional stirring, heated to 450°C in an electric furnace, and calcined for about 4 hours under air circulation to prepare a catalyst.

上記触媒10m1を内径10韮のステンレス製反旧管に
充填し所定の温度に加熱して反応を行った結果を以下に
示す。
The reaction was carried out by filling 10 ml of the above catalyst into an old stainless steel tube with an inner diameter of 10 mm and heating it to a predetermined temperature. The results are shown below.

Claims (1)

【特許請求の範囲】[Claims] 1 バナジウム及びジルコンを活性成分として表面積5
0 m2/ 9以下の不活性担体に担持せしめ且600
°C以下の温度で焼成して得られる触媒の存在下に、反
応系に20〜80容量係の水分を導入しつつ、2−メチ
ル−5,−エチルピリジンとアンモニア及び酸素を30
0〜500°Cの温度で反応させることを特徴とする3
−シアノピリジンの製造法。
1 Surface area 5 with vanadium and zircon as active ingredients
Supported on an inert carrier of 0 m2/9 or less and 600
In the presence of a catalyst obtained by calcination at a temperature below °C, 2-methyl-5,-ethylpyridine, ammonia, and oxygen are mixed at 30% by volume while introducing 20 to 80% by volume of water into the reaction system.
3, characterized in that the reaction is carried out at a temperature of 0 to 500°C.
- Method for producing cyanopyridine.
JP49028597A 1974-03-14 1974-03-14 3- Cyanopyridine Expired JPS5817189B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP49028597A JPS5817189B2 (en) 1974-03-14 1974-03-14 3- Cyanopyridine
FR7504306A FR2264023B1 (en) 1974-03-14 1975-02-12
DE2505745A DE2505745C3 (en) 1974-03-14 1975-02-12 Process for the continuous production of 3-cyanopyridine
US05/553,627 US3959297A (en) 1974-03-14 1975-02-27 Process for the preparation of 3-cyanopyridine
CH300775A CH595350A5 (en) 1974-03-14 1975-03-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49028597A JPS5817189B2 (en) 1974-03-14 1974-03-14 3- Cyanopyridine

Publications (2)

Publication Number Publication Date
JPS50123677A JPS50123677A (en) 1975-09-29
JPS5817189B2 true JPS5817189B2 (en) 1983-04-05

Family

ID=12252985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49028597A Expired JPS5817189B2 (en) 1974-03-14 1974-03-14 3- Cyanopyridine

Country Status (1)

Country Link
JP (1) JPS5817189B2 (en)

Also Published As

Publication number Publication date
JPS50123677A (en) 1975-09-29

Similar Documents

Publication Publication Date Title
JPS63253080A (en) Production of phthalic anhydride
JP2002516320A (en) Preparation of phthalic anhydride by catalytic gas phase oxidation of o-xylene / naphthalene mixture
US4603207A (en) Conversion of a mixture of 3-methylpyridine and 3-methylpiperidine to 3-cyanopyridine
US20070213210A1 (en) Process for the production of hetreroaromatic nitriles, improved catalyst therefor and a process for the production of said improved catalyst
JP2003534303A (en) Method for selectively producing acetic acid by catalytic oxidation of ethane and / or ethylene
US4181628A (en) Catalyst for oxidation reactions and process for its production
JP2615819B2 (en) Method for producing cyanopyridine
US3959297A (en) Process for the preparation of 3-cyanopyridine
JPS5810134B2 (en) Catalyst compositions particularly useful in the production of unsaturated acids
US4092271A (en) Supported vanadia catalyst for nitrile production and process for preparing the catalyst
RU2123880C1 (en) Catalytic system for oxidative ammonolysis of alkylpyridins and method of preparing cyanopyridins
EP1617946B1 (en) Ti-pillared clay based vanadia catalyst and process for preparation
US2839535A (en) Process for the manufacture of nitriles
JPS5817189B2 (en) 3- Cyanopyridine
US4284781A (en) Supported vanadia catalyst and use thereof for nitrile production
JP3329404B2 (en) Method for producing pyridine
US5910465A (en) Process for the preparation of a highly active and selective ammoxidation catalyst and its use in preparing heteroaromatic nitriles
US3637715A (en) Ammoxidation of 2-picoline to picolinonitrile
JP4161119B2 (en) Oxidative ammonolysis of alkylpyridines.
JPS6021981B2 (en) Production method of cyanopyridines
JP2631866B2 (en) Method for producing pyrimidines
EP2305377A1 (en) Catalysts for the preparation of cyanopyridines and their use
JP3941121B2 (en) Catalyst composition for the oxidation ammonolysis of alkylpyridines
JP2604165B2 (en) Manufacturing method of nitriles
JP3078596B2 (en) Method for producing amino-substituted cyanopyridines