JPS58170668A - Power steering gear for automobile - Google Patents

Power steering gear for automobile

Info

Publication number
JPS58170668A
JPS58170668A JP57052302A JP5230282A JPS58170668A JP S58170668 A JPS58170668 A JP S58170668A JP 57052302 A JP57052302 A JP 57052302A JP 5230282 A JP5230282 A JP 5230282A JP S58170668 A JPS58170668 A JP S58170668A
Authority
JP
Japan
Prior art keywords
steering
valve
power
pressure
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57052302A
Other languages
Japanese (ja)
Other versions
JPH028940B2 (en
Inventor
Masayuki Motoyoshi
本吉 正之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kato Seisakusho Co Ltd
Original Assignee
Kato Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kato Seisakusho Co Ltd filed Critical Kato Seisakusho Co Ltd
Priority to JP57052302A priority Critical patent/JPS58170668A/en
Publication of JPS58170668A publication Critical patent/JPS58170668A/en
Publication of JPH028940B2 publication Critical patent/JPH028940B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1554Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a fluid interconnecting system between the steering control means of the different axles
    • B62D7/1572Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a fluid interconnecting system between the steering control means of the different axles provided with electro-hydraulic control means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Power Steering Mechanism (AREA)

Abstract

PURPOSE:To obtain operating pressure necessary for four-wheel steering and prevent the tie rod of a steering mechanism from being buckled and damaged in two-wheel steering, by changing the set pressure of a relief valve for the two- wheel steering or the four-wheel steering. CONSTITUTION:A hydraulic servomechanism 20 supplies pressurized oil from a hydraulic pump 12 to power cylinders 7, 9 to steer wheels. A changeover valve 14 is energized through a switch 46 to connect only the front wheel power cylinders 7a, 7b or the front and rear wheel power wheels 7a, 7b, 9a, 9b to the hydraulic servomechanism 20 to steer two or four wheels. At the same time, a solenoid valve 49 is energized through the switch 46 to open or close the drain passage 45 of a relief valve 44 to change its set pressure. In the two-wheel steering, the set pressure is lowered not to apply excessive pressure to the power cylinders 7a, 7b so that a tie rod is prevented from being buckled and damaged.

Description

【発明の詳細な説明】 本発明は2輪操向と4輪操向の何れをも行い得る自動車
のパワーステアリング装置、特に前後各々の両側車輪を
各別に操向する左右対称配置のノくワーシリンダと、各
両側車輪のナックルアーム間を連結するタイロッドと、
ノ1ンドル操作量に応じ該パワーシリンダを伸縮制御す
る油圧サーボを設けたパワーステアリング装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power steering system for an automobile capable of performing both two-wheel steering and four-wheel steering, and particularly to a power steering system that is symmetrically arranged to steer both front and rear wheels separately. A tie rod that connects the cylinder and the knuckle arms of each wheel on both sides,
The present invention relates to a power steering device equipped with a hydraulic servo that controls expansion and contraction of the power cylinder according to the amount of steering wheel operation.

この場合ハンドルと車輪の操向角度比を常に一定させ、
しかも4輪操向時の前後車輪を同期転向させるため、前
後の両側車輪操向用ノくワーシリンダの間に切換弁を、
その常時位置においては前部両側車輪操向用パワーシリ
ンダのみを伸縮制御し、又切換位置においては前後の両
側車輪操向用ノくワーシリンダの一方を直接伸縮制御し
て、該ノくワーシリンダの排出油圧で他方の両側車輪操
向用パワ−シリンダを伸縮制御するように接続すると、
4輪操向時には2輪操向の場合よシも高い作動油圧を必
要とする。しかしこの高い作動油圧で2輪操向を行うと
、両側のパワーシリンダの高圧側油室間にはピストンロ
ンドの断面積に岬しい受圧面積の差があるため、この差
圧に応じた圧縮力によってステアリング機構のタイロッ
ドが座屈破損する恐れを生じ、この欠点は荷を吊上げ走
行する自走式クレーンのように最大車軸負荷が大きくな
る自動車において特に著しい。
In this case, the steering angle ratio between the steering wheel and the wheels is always kept constant,
Moreover, in order to synchronously turn the front and rear wheels during four-wheel steering, a switching valve is installed between the front and rear wheel steering cylinders.
In the normal position, only the power cylinders for steering both front wheels are telescopically controlled, and in the switching position, one of the power cylinders for steering both front and rear wheels is directly telescopically controlled. When connected so that the power cylinder for steering both wheels on both sides is telescopically controlled by the discharge hydraulic pressure of
Four-wheel steering requires higher hydraulic pressure than two-wheel steering. However, when two-wheel steering is performed with this high hydraulic pressure, there is a difference in pressure receiving area between the high pressure side oil chambers of the power cylinders on both sides, which is similar to the cross-sectional area of the piston rod, so the compression force is applied according to this differential pressure. As a result, there is a risk that the tie rods of the steering mechanism may buckle and break, and this drawback is particularly noticeable in automobiles where the maximum axle load is large, such as a self-propelled crane that lifts a load and travels.

本発明は上述のように切換弁を前後の両側車輪操向用パ
ワーシリンダの間に接続すると共に、全パワーシリンダ
の作動回路をタンクに接続する低圧用と高圧用のリリー
フ弁を設け、且つ前記切換弁を切換位置に切換えた時に
信号を発する手段とその信号を受けて前記リリーフ弁の
低圧リリーフ機能を停止させる装置とを設けて、前車輪
だけの操向時にのみ低圧用リリーフ弁を作動させること
によシ、ハンドルと車輪の操向角度比を常に一定させる
と共に、4輪操向時の前後車輪を同期転向させて、しか
も最大車軸負荷の大きい自動車におけるステアリング機
構の座屈破損を防止したものである。
As described above, the present invention connects the switching valve between the front and rear wheel steering power cylinders, and also provides low pressure and high pressure relief valves that connect the operating circuits of all power cylinders to the tank. A means for emitting a signal when the switching valve is switched to the switching position and a device for receiving the signal and stopping the low pressure relief function of the relief valve are provided, so that the low pressure relief valve is operated only when only the front wheels are steered. In particular, the steering angle ratio between the steering wheel and the wheels is always constant, and the front and rear wheels are synchronously turned during four-wheel steering, thereby preventing buckling and damage to the steering mechanism in vehicles with high maximum axle loads. It is something.

以下総輪駆動方式の自走式クレーンに適用した本発明の
一実施例を図につき説明する。車体1前部の前車輪操向
機構は、第2図に示す上うに前車軸2の両端に夫々キン
グピン6を介して両側前車軸4m、4bの前輪軸を連結
し、該前輪軸を転向させる両側ナックルアーム5a、5
bの後端間をタイロッド6で連結すると共に、該各ナッ
クルアームの前端と前車軸2の間を夫々左右対称配置の
パワーシリンダ7g、7bで連結してなシ、又車体後部
の後車輪操向機構は、これと全く前後対称配置の同等構
成を備え、両側の後車輪8a、8bが夫々左右対称配置
のパワーシリンダ9a、9bで操向されると共に、該両
側後車軸の操向をタイロッド10によシ連動させている
An embodiment of the present invention applied to an all-wheel drive type self-propelled crane will be described below with reference to the drawings. The front wheel steering mechanism at the front of the vehicle body 1 connects the front wheel axles of both front axles 4m and 4b to both ends of the front axle 2 via king pins 6, respectively, as shown in FIG. 2, and turns the front wheel axles. Both side knuckle arms 5a, 5
The rear ends of b are connected by a tie rod 6, and the front ends of each knuckle arm and the front axle 2 are connected by power cylinders 7g and 7b arranged symmetrically. The steering mechanism has the same configuration as this, with a completely symmetrical arrangement, and the rear wheels 8a and 8b on both sides are steered by power cylinders 9a and 9b, respectively, arranged symmetrically, and the steering of the rear axles on both sides is controlled by tie rods. It is linked to 10.

第1図において11は車体1とその上に旋回自在に支持
されるクレーン旋回台(図示せず)の間に取付けた油路
や電路の回シ継手を示し、該回シ継手11より下方に図
示された油圧ポンプ12゜タンクT、ポンプ系全体のリ
リーフ弁13.切換弁14.シャトル弁15.バランス
ピストン形低圧リリーフ弁16.シャトル弁17等は車
体側に取付けられ、又該回り継手11より上方に図示さ
れたフロープライオリティ弁18.逆止弁19゜油圧サ
ーボ20.高圧リリーフ弁21等はタンクTを除いてク
レーン旋回台側に取付けられる。
In FIG. 1, reference numeral 11 indicates a rotary joint for an oil line or an electric circuit installed between the vehicle body 1 and a crane swivel platform (not shown) that is rotatably supported on the vehicle body 1. Illustrated hydraulic pump 12° tank T, relief valve 13 for the entire pump system. Switching valve 14. Shuttle valve 15. Balance piston type low pressure relief valve 16. Shuttle valves 17 and the like are mounted on the vehicle body side, and a flow priority valve 18 is shown above the rotary joint 11. Check valve 19° Hydraulic servo 20. The high pressure relief valve 21 and the like are installed on the crane slewing base side, except for the tank T.

油圧サーボ20は、運転席のハンドル22の左右回転に
連動して油路26或いは24への吐出流量を設定する弁
外筒と、該吐出流量に応じ駆動されるモータ25に連動
26してフィードバック制御されるスプールとよシなる
制御弁27を備え、モータ25を経由した油圧が油路2
8或いは29よりパワーシリンダ側に供給される。従っ
て常にハンドル220回転角度に応じた油量がパワーシ
リンダ側に供給されることになる。
The hydraulic servo 20 has a valve outer cylinder that sets the discharge flow rate to the oil passage 26 or 24 in conjunction with the left and right rotation of the handle 22 on the driver's seat, and a motor 25 that is driven according to the discharge flow rate to provide feedback 26. It is equipped with a control valve 27 that is similar to the spool to be controlled, and the hydraulic pressure via the motor 25 is connected to the oil path 2.
8 or 29 to the power cylinder side. Therefore, the amount of oil corresponding to the rotation angle of the handle 220 is always supplied to the power cylinder side.

図示の場合は油圧ポンプ12よシ制御弁27への油圧供
給油路60の途中に、該制御弁前後のパイロット油路3
1,32の圧力によシ制御されるフロープライオリティ
弁18を挿入して、制御弁27には規制流量を、又クレ
ーン旋回モータ等の油圧機器(図示せず)には油路66
を介し余剰流量を夫々供給するようにし、1個の油圧ポ
ンプでパワーステアリング系統と他の油圧系統の仕事を
同時に行わせている。
In the illustrated case, a pilot oil passage 3 is installed between the hydraulic pump 12 and the hydraulic pressure supply oil passage 60 to the control valve 27 before and after the control valve.
A flow priority valve 18 controlled by pressures 1 and 32 is inserted, and a regulated flow is supplied to the control valve 27, and an oil line 66 is supplied to hydraulic equipment (not shown) such as a crane swing motor.
Surplus flow is supplied through the hydraulic pumps, allowing one hydraulic pump to perform the work of the power steering system and other hydraulic systems at the same time.

前車輪操向用パワーシリンダ7a、7bの左側シリンダ
室は油路29に並列接続され、又該両パワーシリンダの
右側シリンダ室を並列に接続した油路64は、タンデム
センタ型電磁切換弁14の常時位置において油路28に
接続される。又切換弁14のA、 Bボードには夫々油
路35,36を介して後車輪操向用パワーシリンダ9a
、9bの左側シリンダ室と右側シリンダ室が夫々並列に
接続される。
The left cylinder chambers of the front wheel steering power cylinders 7a and 7b are connected in parallel to the oil passage 29, and the oil passage 64 connecting the right cylinder chambers of both power cylinders in parallel is connected to the tandem center type electromagnetic switching valve 14. It is connected to the oil passage 28 in the normal position. In addition, a rear wheel steering power cylinder 9a is connected to the A and B boards of the switching valve 14 via oil passages 35 and 36, respectively.
, 9b are connected in parallel to each other.

低圧リリーフ弁16を挿入した油路37は油路28.2
9にシャトル弁15を介して接続し、又油路35.36
にシャトル弁17を介し接続したパイロット油路68の
先端はバランスピストン形低圧リリーフ弁16のベント
室に接続する。このため後車輪操向用パワーシリにダ9
a、9bの作動油圧(圧力信号)がシャトル弁17を介
してパイロット油路68に作用すると、低圧リリーフ弁
16の機能が停止し、油路37の油圧が高圧リリーフ弁
21の設定圧以上に上昇しても該低圧リリーフ弁は開か
ない。図示の高圧リリーフ弁21は制御弁27の戻シ油
路69とパイロット油路62の間に接続した所を示し、
該高圧リリーフ弁の設定圧はポンプ系全体のリリーフ弁
16の設定圧よシも低い。
The oil passage 37 into which the low pressure relief valve 16 is inserted is the oil passage 28.2.
9 via the shuttle valve 15, and the oil passages 35 and 36.
The tip of the pilot oil passage 68 connected to the valve via the shuttle valve 17 is connected to the vent chamber of the balanced piston type low pressure relief valve 16. For this reason, the power series for rear wheel steering is
When the working oil pressure (pressure signal) of a and 9b acts on the pilot oil passage 68 via the shuttle valve 17, the function of the low pressure relief valve 16 is stopped and the oil pressure of the oil passage 37 exceeds the set pressure of the high pressure relief valve 21. Even if it rises, the low pressure relief valve will not open. The illustrated high pressure relief valve 21 is connected between the return oil passage 69 and the pilot oil passage 62 of the control valve 27,
The set pressure of the high pressure relief valve is also lower than the set pressure of the relief valve 16 of the entire pump system.

次に本発明の作用効果について説明する。切換弁14を
図示の常時位置にしておいて、ハンドル22を例えば左
に回転すると、制御弁27が図の下位置に切換わシ、咳
制御弁がモータ25と協同してへンドル回転角に応じた
ポンプ吐出油量を油路28に供給し、従ってその油圧が
切換弁14を介シパワーシリンダ7a、7bのピストン
右側の111 室に作用し、一方油路29がタンクTに接続されるから
、タイロッド6によシ連動して前車輪4 a。
Next, the effects of the present invention will be explained. With the switching valve 14 in the normal position shown in the figure, when the handle 22 is rotated, for example, to the left, the control valve 27 is switched to the lower position in the figure, and the cough control valve cooperates with the motor 25 to adjust the handle rotation angle. The corresponding amount of pump discharge oil is supplied to the oil passage 28, and the oil pressure acts on the chamber 111 on the right side of the piston of the power cylinders 7a and 7b via the switching valve 14, while the oil passage 29 is connected to the tank T. From there, the front wheel 4a is connected to the tie rod 6.

4bが左方に転向し、又ハンドル22を右に回転すると
、制御弁27が図の上位置に切換わって逆に油路29が
高圧側となシ、油路28が低圧側となるから、該パワー
シリンダのピストン左側の室が高圧側となって前車輪が
第2図鎖線示のように右方に転向する。
4b is turned to the left and the handle 22 is rotated to the right, the control valve 27 is switched to the upper position in the diagram, and conversely, the oil passage 29 becomes the high pressure side and the oil passage 28 becomes the low pressure side. , the chamber on the left side of the piston of the power cylinder becomes the high pressure side, and the front wheel turns to the right as shown by the chain line in FIG.

この場合油路28,29の何れが高圧側になっても、そ
の高圧側油路がシャトル弁15を介し低圧リリーフ弁1
6に接続されており、しかもパイロット油路68には油
圧が作用しないから、該パワーシリンダ7m、7bの作
動回路の最高圧力は低圧リリーフ弁16の設定圧に規制
される。このためパワーシリンダ7a、7bのピストン
両側の受圧面積の差、即ち該両パワーシリンダの伸長力
と収縮力の差に基づいて、ナックルアーム5a。
In this case, even if either of the oil passages 28 and 29 becomes the high pressure side, the high pressure side oil passage is connected to the low pressure relief valve 1 through the shuttle valve 15.
6, and since no oil pressure acts on the pilot oil passage 68, the maximum pressure of the operating circuit of the power cylinders 7m, 7b is regulated to the set pressure of the low pressure relief valve 16. Therefore, the knuckle arm 5a is adjusted based on the difference in the pressure receiving areas on both sides of the pistons of the power cylinders 7a and 7b, that is, the difference between the extension force and the contraction force of the two power cylinders.

5bを介しタイロッド6に圧縮力が作用しても、該タイ
ロッドが座屈破損する恐れはない。
Even if a compressive force is applied to the tie rod 6 through the tie rod 5b, there is no risk of the tie rod being buckled and damaged.

又切換弁14を図の右位置に切換えておいて、ハンドル
22を左に回転して上述のように油路28を高圧側にす
ると、切換弁14を介し油路65が高圧側となってパワ
ーシリンダ9a、9bのピストン左側の室に油圧が作用
し、後車輪8m、8bを左方に転向させると同時に、該
両パワーシリンダのピストン右側の室の油圧が順次油路
66、切換弁14.油路34を経てパワーシリンダ7a
Furthermore, when the switching valve 14 is switched to the right position in the figure and the handle 22 is turned to the left to set the oil passage 28 to the high pressure side as described above, the oil passage 65 becomes the high pressure side via the switching valve 14. Hydraulic pressure acts on the chambers on the left side of the pistons of the power cylinders 9a and 9b, turning the rear wheels 8m and 8b to the left, and at the same time, the oil pressure on the chambers on the right side of the pistons of both power cylinders sequentially flows through the oil passage 66 and the switching valve 14. .. Power cylinder 7a via oil passage 34
.

7bのピストン右側の室に供給され、前車輪4&。7b is supplied to the chamber on the right side of the piston, and the front wheel 4&.

4bを左方に転向させる。逆にハンドル22を右に回転
して油路29を高圧側にすると、パワーシリンダ7a、
7bのピストン左側の室に油圧が作用して前車輪を右方
に転向させると同時に、峡両パワーシリンダよシ油路6
4に排出される油圧が切換弁14.油路66を介してパ
ワーシリンダ91.9bのピストン右側の室に作用して
後車輪を右方に転向させる。
Turn 4b to the left. Conversely, if you turn the handle 22 to the right and set the oil passage 29 to the high pressure side, the power cylinder 7a,
Hydraulic pressure acts on the chamber on the left side of the piston 7b to turn the front wheel to the right, and at the same time, the hydraulic pressure is applied to the chamber on the left side of the piston 7b.
The hydraulic pressure discharged to the switching valve 14. It acts on the chamber on the right side of the piston of the power cylinder 91.9b through the oil passage 66 to turn the rear wheel to the right.

この場合左右1対のパワーシリンダを同方向に伸縮させ
る油量と該両パワーシリンダの排出油量は等しいのみな
らず、前後のパワーシリンダは同構成であり、且つ両側
車輪のナックルアーム関は夫々タイロッドで連結されて
いるから前後車輪は夫々平行配置となシ、自動車を斜行
させることができる。
In this case, the amount of oil that expands and contracts the pair of left and right power cylinders in the same direction and the amount of oil discharged from both power cylinders are not only equal, but the front and rear power cylinders have the same configuration, and the knuckle arms of both wheels are different. Because they are connected by tie rods, the front and rear wheels are arranged parallel to each other, allowing the vehicle to travel diagonally.

更に切換弁14を図の左位置に切換えておけば、ハンド
ル22を操作して前後の車輪を互いに逆方向に同角度転
向させて自動車の旋回半径を著しく小さくし得ることは
上述の説明よシ明らかである。
Furthermore, if the switching valve 14 is switched to the left position in the figure, the steering wheel 22 can be operated to turn the front and rear wheels in opposite directions at the same angle, thereby significantly reducing the turning radius of the vehicle. it is obvious.

この4輪操向の場合は、前後のパワーシリンダの何れか
一方を直接ポンプ吐出油圧で駆動し、その排出油圧で他
方のパワーシリンダを駆動するため、4輪操向に要する
油量は2輪操向の場合と等しく、何れの場合もノ・ンド
ル操向を同様に行い得る反面、ポンプ吐出油圧は前後車
輪の操向に必要表エネルギの和に対応して高くせねばな
らないが油路35. 66の何れか一方が高圧側となっ
て、その油圧がシャトル弁17を介しパイロット油路6
8に作用し、前述のように低圧リリーフ弁160機能を
停止させる。従ってパワーシリンダ作動回路は高圧リリ
ーフ弁21によって最高油圧を規制され、4輪操向に必
要な油圧の上昇を可能とする。
In the case of this four-wheel steering, one of the front and rear power cylinders is directly driven by the pump discharge hydraulic pressure, and the other power cylinder is driven by the discharged hydraulic pressure, so the amount of oil required for four-wheel steering is reduced to two wheels. Same as in the case of steering, no-turn steering can be performed in the same way in either case, but the pump discharge oil pressure must be increased in accordance with the sum of the surface energy required for steering the front and rear wheels. .. 66 becomes the high pressure side, and the oil pressure is sent to the pilot oil path 6 through the shuttle valve 17.
8 and deactivates the low pressure relief valve 160 as described above. Therefore, the maximum oil pressure of the power cylinder operating circuit is regulated by the high pressure relief valve 21, making it possible to increase the oil pressure necessary for four-wheel steering.

この場合前後の車軸荷重に差があっても、これに基づく
前後の車輪操向力の差は比較的小さいから、油圧上昇に
よる両側パワーシリンダ7m、7b間と9a、9b間の
伸縮力の差は小さく、前後タイロッド6.10に作用す
る圧縮力は2輪操向の場合に近似し、該タイロッドを座
屈破損する恐れはない。
In this case, even if there is a difference in the front and rear axle loads, the difference in the front and rear wheel steering forces based on this difference is relatively small, so the difference in the expansion and contraction force between the power cylinders 7m and 7b on both sides and between 9a and 9b due to the increase in oil pressure is small, the compressive force acting on the front and rear tie rods 6.10 is similar to that in two-wheel steering, and there is no risk of buckling and damaging the tie rods.

以上一実施例について説明したが、4輪操向時に低圧用
リリーフ弁の低圧IJ リーフ機能を停止させる装置は
第1図の構成に限定されるものではなく、第3図や第4
図のようにすることもできる。
Although one embodiment has been described above, the device for stopping the low-pressure IJ leaf function of the low-pressure relief valve during four-wheel steering is not limited to the configuration shown in Fig. 1;
It can also be done as shown in the figure.

尚第3図及び第4図中、第1図と同一の符号を附した部
材は相対応する部材を示す。
In FIGS. 3 and 4, members with the same reference numerals as in FIG. 1 indicate corresponding members.

第3図の実施例においては、低圧用リリーフ弁16とタ
ンクTの間の油路37中に、常時開放賦勢される電磁弁
40を挿入して、クレーン旋回台上に取付けたスイッチ
41で切換弁14を右或いは左の切換位置に切換える信
号42或いは46を発する際、骸信号によシミ磁弁40
を図の上位置に切換えて油路を遮断するようにしている
。このため4輪操向時に低圧用リリーフ弁16が開いて
も電磁弁40がそのリリーフ作用を停止させる。
In the embodiment shown in FIG. 3, a solenoid valve 40 which is normally energized to open is inserted into the oil passage 37 between the low pressure relief valve 16 and the tank T, and a switch 41 mounted on the crane swivel base is used. When issuing the signal 42 or 46 to switch the switching valve 14 to the right or left switching position, the magnetic valve 40
is switched to the upper position in the diagram to block the oil passage. Therefore, even if the low pressure relief valve 16 opens during four-wheel steering, the solenoid valve 40 stops its relief action.

又第4図の実施例においては、第1図の高圧用リリーフ
弁を低圧用と高圧用に切換え得る第5図のようなリリー
フ弁44に構成して、常時はそのドレーン油路45を図
示のようにタンクTに接続し、又クレーン旋回台上のス
イッチ46が切換弁14を右或いは左の切換位置に切換
える信号47或いは48を発した時は、その信号によシ
該ドレーン油路45を油圧ポンプからの油圧供給油路6
0に接続する図の上位置に切換える電磁弁49を設けて
いる。
In the embodiment shown in FIG. 4, the high pressure relief valve shown in FIG. 1 is configured as a relief valve 44 as shown in FIG. 5 which can be switched between low pressure and high pressure, and the drain oil passage 45 is normally When the switch 46 on the crane swivel table issues a signal 47 or 48 to switch the switching valve 14 to the right or left switching position, the drain oil passage 45 is connected to the tank T as shown in FIG. Hydraulic pressure supply oil line 6 from the hydraulic pump
A solenoid valve 49 is provided which is switched to the upper position in the figure where it connects to 0.

リリーフ弁44は弁筺50内に一定範囲の摺動自在に涙
金したつソみ形可動シリンダ51内に、調整ばね52に
より常時閉鎖賦勢されるピストン弁56を嵌装しておシ
、ドレーン油路45がタンクに連通した場合は、小孔5
1aを介して可動シリンダ51内に伝達されるブレラシ
ャボート54の油圧の反力等によって該可動シリンダが
図示の左端位置に保持され、低圧91J−7時に該可動
シリンダの内圧によシビスト/弁56の弁部分53aが
ばね52の弾力に抗して開くと、ブレラシャボート54
よシ通孔51bを経てタンクボート55に油圧がリリー
フするようにされている。又ドレーン油路45が油圧供
給油路60に連通した場合は、可動シリンダ51両側の
受圧面積や油圧の差によシ該可動シリンダが弁筺50の
段縁50mに係合するまで右方に摺動して調整ばね52
を圧縮し、高圧リリーフ弁として機能する。尚56は可
動シリンダ51のストッパボルト、57はばね52の圧
力調整ボルトである。
The relief valve 44 is constructed by fitting a piston valve 56, which is always biased to close by an adjustment spring 52, into a lever-shaped movable cylinder 51 which is slidably movable within a certain range within a valve housing 50. If the drain oil passage 45 communicates with the tank, the small hole 5
The movable cylinder is held at the left end position shown in the figure by the reaction force of the hydraulic pressure of the Brera Shabot 54 transmitted into the movable cylinder 51 through 1a, and when the pressure is low 91J-7, the internal pressure of the movable cylinder closes the cylinder. When the valve portion 53a of 56 opens against the elasticity of the spring 52, the Brera Chabot 54 opens.
Hydraulic pressure is relieved to the tank boat 55 through the side passage hole 51b. In addition, when the drain oil passage 45 communicates with the oil pressure supply oil passage 60, due to the difference in pressure receiving area and oil pressure on both sides of the movable cylinder 51, the movable cylinder 51 moves to the right until it engages with the stepped edge 50m of the valve housing 50. Sliding adjustment spring 52
compresses and functions as a high pressure relief valve. Note that 56 is a stopper bolt for the movable cylinder 51, and 57 is a pressure adjustment bolt for the spring 52.

本発明によれば、両側車輪操向用パワーシリンダとこれ
を連動させるタイロッドを車軸の前後に配設せねばなら
ぬ自動車の最大車軸負荷が大きくなっても、2輪操向と
4輪操向を同様に行って、しかも2輪操向時における両
側車輪操向用パワーシリンダの伸縮力の差に基づく圧縮
力によってタイロッドが座屈破損するのを防止できる効
果がある0
According to the present invention, even if the maximum axle load of an automobile becomes large, requiring power cylinders for both wheel steering and tie rods that interlock these power cylinders to be disposed before and behind the axle, two-wheel steering and four-wheel steering can be performed. In addition, it has the effect of preventing the tie rod from being buckled and damaged due to the compression force based on the difference in the expansion and contraction forces of the power cylinders for steering both wheels during two-wheel steering.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例の回路図、第2図はそのステア
リング機構の概略を示す平面図、第3図は他の実施例要
部の回路図、第4図は更に他の実施例の回路図、第5図
はそのリリーフ弁の縦断正面図である。 1・・・車体、2・・・前車軸、4a、4b・・・前車
輪、5m、5b・・・ナックルアーム、6,1o・・・
タイロッド、8a、8b川用車輪、7a、7b、9at
9 b−゛°パワーシリンダ、12川油圧ポンプ、14
・・・切換弁、15.17・・・シャトル弁、16・・
・低圧用リリーフ弁、2o・・・油圧サーボ、21・・
・高圧用リリーフ弁、22・・・ハンドル、25・・・
モータ、27・・・制御弁。 矛 1 回 + 2 図 士3図 手続補正書 昭和58年5月6日 特許庁長官 若杉和夫 殿 1 事件の表示 昭和57年 許 許 願第052302号2 発明の名
称 自動車のパワーステアリング装置3 補1丁をする
者 ・1咋トとの関係 特許出願人 カトクセイサクショ 氏 R(t、称)株式会社加−藤製作所4 代  理 
 人 6 補1■−にJ:り増加する発明の数(1)明細書を
別紙のとおり補正する。(補正の対象の欄に記載した事
項以外は内容に変更なし)(2)願書に最初に添付した
図面中の第1図と第3図を抹消する。 (3)同上図面中の第4図と第5図を別紙のとおり第1
図と第3図に補正する。 以上 追って本補正は、願書に最初に添付した図面中の第1図
と第3図に示される実施例を抹消して、本願発明の要旨
を第4図及び第5図に示される発明に限定するために行
うものであシます。 明細書 1、発明の名称 自動車のパワーステアリング装置 2、特許請求の範囲 左右対称構成の一対の前部両側車輪操向用パワーシリン
ダと、左右対称構成の一対の後部両側車輪操向用パワー
シリンダと、前彼各々の両側車輪のナックルアーム間を
夫々連結するタイロッドとハンドル操作量に応じて煎1
¥5ilIlii@車輪操向用パワーシリンダを操向制
御する油圧サーボとを設けたパワーステアリング装置に
おいて、前後の両側車輪操向用パワーシリンダの間に、
−Q%両側車II轡m用パワーシリンダのみを操向制御
する常時位置と、前後の両側車輪操向用パワーシリンダ
の一方を直接操向制御して、該パワーシリンダの排出油
圧で他方の両側車輪操向用パワーシリンダを操向制御す
る切換位置とを設けた切換弁を接続し、且つ常時は低圧
に維持されるリリーフ弁装置を前記切換弁の切換えに連
動して高圧に切換えるリリーフ弁装置を、油圧ポンプよ
り油圧サーボへの油圧供給路に接続したことを特徴とす
る自動車のノくワーステアリング装置0 3、発明の詳細な説明 本発明は2輪操向と4輪操向の何れをも行い得る自動車
のパワーステアリング装置、特に左右対称構成の一対の
前部両側車輪操向用パワーシリンダと、左右対称構成の
一対の後部両側車輪操向用パワーシリンダと、前後各々
の両側車輪のナックルアーム間を夫々連結するタイロッ
ドと、ノ・ンドル操作量に応じて前部両側車輪操向用ノ
くワーシリンダを操向制御する油圧サーボとを設けたノ
(ワーステアリング装置に関する。 この場合ハンドルと車輪の操向角度比を常に一定させ、
しかも4輪操向時の前後車輪を同期転向させるため、前
後の両側車輪操向用パワーシリンダの間に切換弁を、そ
の常時位置においては前部両側車輪操向用パワーシリン
ダのみを操向制御し、又切換位置においては前後の両側
車輪操向用)(ワーシリンダの一方を直接操向制御して
、該パワーシリンダの排出油圧で他方の両側車輪操向用
パワ−シリンダを操向制御するように接続すると、4輪
操向時には2輪操向の場合よりも高い作動油圧を必要と
する。しかしこの高い作動油圧で2輪操向を行うと、両
側のパワーシリンダの高圧側油室間にはピストンロンド
の断面積に等しい受圧面積の差があるため、この差圧に
応じた圧縮力によってステアリング機構のタイロッドが
座屈破損する恐れを生じ、この欠点は荷を吊上げ走行す
る自走式クレーンのように最大車軸負荷が大きくなる自
動車において特に著しい。 本発明はこの問題に対処するもので、前後の両側車輪操
向用パワーシリンダの間に、前部両側車輪操向用パワー
シリンダのみを操向制御する常時位置と、前後の両側車
輪操向用パワーシリンダの一方を直接操向制御して、該
パワーシリンダの排出油圧で他方の両側車輪操向用パワ
ーシリンダを操向制御する切換位置とを設けた切換弁を
接続し、且つ常時は低圧に維持されるすIJ−7設定圧
を前記切換弁の切換えに連動して高圧に切換えるIJ 
I7−フ弁装置を、油圧ポンプよシ油圧サーボへの油圧
供給路に接続したことを特徴とする。 以下総輪駆動方式の自走式クレーンに適用した本発明の
一実施例を図につき説明する。車体1前部の前車輪操向
機構は、第2図に示すように前車軸2の両端に夫々キン
グピン6を介して両側前車輪4m、4bの前輪軸を連結
し、該前輪軸を転向させる両側ナックルアーム5a、5
bの後端間をタイロッド6で連結すると共に、該各ナッ
クルアームの前端と前車軸2の間を夫々左右対称配置の
パワーシリンダ7a、7bで連結してなり、又車体後部
の後車輪操向機構は、これと全く前後対称配置の同等構
成を備え、両側の後車輪8a、8bが夫々左右対称配置
のパワーシリンダ9a、9bで操向されると共に、核両
側後車輪の操向をタイロッド10により連動させている
。 第1図において11は車体1とその上に旋回自在に支持
されるクレーン旋回台(図示せず)の間に取付けた油路
や電路の回シ継手を示し、該回り継手11より下方に図
示された油圧ポンプ12゜タンクT、ポンプ系全体のリ
リーフ弁16.切換弁14等は車体側に取付けられ、又
該回シ継手11より上方に図示されたフロープライオリ
ティ弁18、逆止弁19.油圧サーボ20.リリーフ弁
44等はタンクTを除いてクレーン旋回台側に取付けら
れる。 油圧サーボ20は、運転席のハンドル22の左右回転に
連動して油路26或いは24への吐出流量を設定する弁
外筒と、該吐出流量に応じ駆動されるモータ25に連動
26してフィードバック制御されるスプールとよりなる
制御弁27を備え、モータ25を経由した油圧が油路2
8或いは29よりパワーシリンダ側に供給される。従っ
て常にハンドル22の回転角度に応じた油量がパワーシ
リンダ側に供給されることになる。 図示の場合は油圧ポンプ12より制御弁27への油圧供
給路60の途中に、咳制御弁前後のパイロット油路31
.62の圧力により制御されるフロープライオリティ弁
18を挿入して、制御弁27には規制流量を、又クレー
ン旋回モータ等の油圧機器(図示せず)には油路66を
介し余剰流量を夫々供給するようにし、1個の油圧ポン
プでノくワーステアリング系統と他の油圧系統の仕事を
同時に行わせている0 前車輪操向用パワーシリンダ7a、7bの左側シリンダ
室は油路29に並列接続され、又該両ノ(ワーシリンダ
の右側シリンダ室を並列に接続した油路64は、タンデ
ムセンタ型電磁切換弁14の常時位置(中立位置)にお
いて油路28に接続される。又切換弁14のA、Bボー
トには夫々油路35.66を介して後車輪操向用パワー
シリンダ9m、9bの左側シリンダ室と右側シリンダ室
が夫々並列に接続される。 リリーフ弁装置は、油圧ポンプ12より油圧サーボ20
への油圧供給路60にフロープライオリティ弁18を介
し接続したIJ IJ−フ設定圧の高低切換え可能外リ
リーフ弁44と、そのドレーン油路45を該油圧サーボ
よりタンクTへの戻り油路69と油圧供給路60の何れ
かに切換え接続する電磁弁49を含む。 電磁弁49はIJ I7−フ弁44のドレーン油路45
を図示のようにタンクTに接続する常時位置を備え、ク
レーン旋回台上のスイッチ46が常時位置(中立位置)
の切換弁14を右或いは左の切換位置に切換える信号4
7或いは48を発した時は、その信号により該ドレーン
油路45を油圧ポンプからの油圧供給路60に接続する
図の上位置に切換えられる。 リリーフ弁44は第3図に示すように弁筺50内に一定
範囲の摺動自在に嵌合し九つソみ形の可動シリンダ51
内に、調整ばね52により常時閉鎖賦勢されるピストン
弁56を嵌装してなり、ドレーン油路45がタンクTに
連通した場合は、小孔51aを介して可動シリンダ51
内に伝達されるプレッシャポート54の油圧の反力等に
よって該可動シリンダが図示の左端位置に保持され、低
圧リリーフ時に該可動シリンダ51の内圧によシピスト
ン弁56の弁部分56mがばね52の弾力に抗して開く
と、プレッシャポート54より可動シリンダ側壁の通孔
51bを経てタンクポート55に油圧がリリーフするよ
うにされている。又ドレーン油路45が油圧供給路60
に連通した場合は、可動シリンダ51両側の受圧面積や
油圧の差により該可動シリンダが弁筺50の段縁50a
に係合するまで右方に摺動して調整ばね52を圧縮し、
高圧リリーフ弁として機能する。この高圧りIJ −7
弁の設定圧はポンプ系全体のIJリリーフ弁6の設定圧
よりも低い。尚56は可動シリンダ51のストッパボル
ト、57はばね52の圧力調整ボルトである。 次に本発明の作用について説明する。切換弁14を図示
の常時位置(中立位置)にしておいて、ハンドル22を
例えば左に回転すると、制御弁27が図の下位置に切換
わυ、該制御弁がモータ25と協同してハンドル回転角
に応じたポンプ吐出油量を油路28に供給し、従ってそ
の油圧が切換弁14を介しパワーシリンダ7a、7bの
ピストン右側の室に作用し、一方油路29はタンクTに
接続されるから、タイロッド6により連動して前車輪4
g、4bが左方に転向し、又ハンドル22を右に回転す
ると、制御弁27が図の上位置に切換わって逆に油路2
9が高圧側となシ、油路28が低圧側となるから、該パ
ワーシリンダ7m、7bのピストン左側の室が高圧側と
なって前車輪4 m。 4bが第2図鎖線示のように右方に転向する〇この場合
リリーフ弁44のドレーン油路45は電磁弁49を介し
て第1図のようにタンクTK*続され、従って該IJ 
IJ−フ弁44はそのリリーフ設定圧が低圧に維持され
ているから、骸パワーシリンダ7a、7bの作動回路の
最高圧力はこの低圧のリリーフ設定圧に規制される。こ
のためパワーシリンダ7a、7bのピストン両側の受圧
面積の差、即ち該両パワーシリンダの伸長力と収縮力の
差に基づいて、ナックルアーム5m、5bを介しタイロ
ッド6に圧縮力が作用して本、該タイロッドが座屈破損
する恐れはない。 又スイッチ46を操作して予め切換弁14を図の右位置
に切換えておいて、ハンドル22を左に回転して上述の
ように油路28を高圧側にすると、切換弁14を介し油
路65が高圧側となってパワーシリンダ9a、9bのピ
ストン左側の室に油圧が作用し、後車輪8a、8bを左
方に転向させると同時に、該両パワーシリンダ9a、9
bのピストン右側の室の油圧が順次油路66、切換弁1
4゜油路64を経てパワーシリンダ7a、7bのピスト
ン右側の室に供給され、前車輪4a、4bを左方に転向
させる。逆にハンドル22を右に回転して油路29を高
圧側にすると、パワーシリンダ7a、7bのピストン左
側の室に油圧が作用して前車輪を右方に転向させると同
時に、該両パワーシリンダより油路64に排出される油
圧が切換弁14゜油路66を介してパワーシリンダ9a
、9bのピストン右側の室に作用して後車輪を右方に転
向させる。 この場合左右1対のパワーシリンダを同方向に作動させ
る油量と該両パワーシリンダの排出油量は等しいのみな
らず、前後のパワーシリンダは同構成であり、且つ両側
車輪のナックルアーム間は夫々タイロッドで連結されて
いるから前後車輪は夫々平行配置となり、自動車を斜行
させることができる。 更にスイッチ46を操作して予め切換弁14を図の左位
置に切換えておけば、ハンドル22を操作して前後の車
輪を互いに逆方向に同角度転向させて自動車の旋回半径
を著しく小さくし得ることは上述の説明より明らかであ
る。 この4輪操向の場合は、前後のパワーシリンダの何れか
一方を直接ポンプ吐出油圧で駆動し、その排出油圧で他
方のパワーシリンダを駆動するため、4輪操向に要する
油量は2輪操向の場合と等しく、何れの場合もハンドル
操向を同様に行い得る反面、ポンプ吐出油圧は前後車輪
の操向に必要なエネルギの和に対応して高くせねばなら
ないが切換弁14を左右何れかの切換位置に切換える際
の信号によって電磁弁49が図の上位置に切換えられ、
リリーフ弁44のリリーフ設定圧が前述のように高圧に
切換えられているから、パワーシリンダ作動回路はこの
高圧リリーフ弁44によって最高油圧を規制され、4輪
操向に必要な油圧の上昇を可能とする。 この場合前後の車軸荷重に差があっても、これに基づく
前後の車輪操向力の差は比較的小さいから、油圧上昇に
よる両側パワーシリンダ7 a、7 b間と9a、9b
間の伸縮力の差は小さく、前後タイロッド6.10に作
用する圧縮力は2輪操向の場合に近似し、該タイロッド
を座屈破損する恐れはない。 本発明によれば、両側車輪操向用パワーシリンダとこれ
を連動させるタイロッドを車軸の前後に配設せねばなら
ぬ自動車の最大車軸負荷が大きくなっても、2輪操向と
4輪操向を同様に行って、しかも2輪操向時における両
側車輪操向用パワーシリンダの伸縮力の差に基づく圧縮
力によってタイロッドが座屈破損するのを防止できる効
果がある0 4、図面の簡単な説明 第1図は本発明一実施例の回路図、第2図はそのステア
リング機構の概略を示す平面図、第3図はリリーフ弁の
縦断正面図である0 1・・・車体、2・・・前車軸、4a、4b・・・前車
輪、5m、5b・・・ナックルアーム、6,10・・・
タイロッド、8a、8b・・・後車輪、7a、7b、9
a。 9b・・・パワーシリンダ、12−油圧ボン7’、14
・・・切換弁、20・・・油圧サーボ、22・・・ハン
ドル、25・・・モータ、27・・・制御弁、44・・
・IJ 17−7弁、45・・・ドレーン油路、49・
・・電磁弁。
Fig. 1 is a circuit diagram of one embodiment of the present invention, Fig. 2 is a plan view showing an outline of the steering mechanism, Fig. 3 is a circuit diagram of the main part of another embodiment, and Fig. 4 is a further embodiment. Fig. 5 is a longitudinal sectional front view of the relief valve. 1... Vehicle body, 2... Front axle, 4a, 4b... Front wheel, 5m, 5b... Knuckle arm, 6, 1o...
Tie rod, 8a, 8b river wheel, 7a, 7b, 9at
9 b-゛° power cylinder, 12 river hydraulic pump, 14
...Switching valve, 15.17...Shuttle valve, 16...
・Low pressure relief valve, 2o...hydraulic servo, 21...
・High pressure relief valve, 22...handle, 25...
Motor, 27... control valve. Spear 1 time + 2 Drawer 3 Illustration procedure amendment May 6, 1980 Commissioner of the Patent Office Kazuo Wakasugi 1 Indication of the case 1981 Permit Application No. 052302 2 Title of the invention Automobile power steering device 3 Supplement 1 Relationship with the person who performs the knife/1kuto Patent applicant Mr. Katokusei Sakusho R (t) Kato Seisakusho Co., Ltd. 4 Agent
Person 6 Supplement 1■-J: Increased number of inventions (1) The specification shall be amended as shown in the attached sheet. (There is no change in the content except for the matters stated in the column subject to amendment.) (2) Figures 1 and 3 from the drawings originally attached to the application are to be deleted. (3) Figures 4 and 5 in the above drawings are attached to Figure 1.
Corrected in Figure and Figure 3. Following the above, this amendment deletes the embodiment shown in FIGS. 1 and 3 from the drawings originally attached to the application, and limits the gist of the claimed invention to the invention shown in FIGS. 4 and 5. It's something you do for the sake of it. Description 1, Name of the invention Power steering device for an automobile 2, Claims A pair of power cylinders for steering both front wheels with a symmetrical configuration, and a pair of power cylinders for steering both rear wheels with a symmetrical configuration. , the tie rod that connects the knuckle arms of each wheel on both sides, and the amount of handle operation
¥5ilIlii@ In a power steering device equipped with a hydraulic servo that controls the steering of the power cylinder for wheel steering, between the front and rear power cylinders for wheel steering on both sides,
-Q% A constant position in which only the power cylinders for both wheels are controlled, and one in which one of the power cylinders for steering both front and rear wheels is directly controlled, and the discharge oil pressure of the power cylinder is used to control the steering of the other side. A relief valve device that connects a switching valve provided with a switching position for steering control of a power cylinder for wheel steering, and switches a relief valve device normally maintained at low pressure to high pressure in conjunction with switching of the switching valve. is connected to a hydraulic pressure supply path from a hydraulic pump to a hydraulic servo. A power steering device for an automobile, in particular, a pair of power cylinders for steering both front wheels in a symmetrical configuration, a pair of power cylinders for steering both rear wheels in a symmetrical configuration, and knuckles for both front and rear wheels. A tie rod that connects the arms, and a hydraulic servo that controls the steering of the front wheel cylinders for steering both front wheels according to the amount of steering wheel operation are provided. Always keep the steering angle ratio of the wheels constant,
Moreover, in order to synchronously turn the front and rear wheels during four-wheel steering, a switching valve is installed between the front and rear power cylinders for steering both wheels, and in its normal position, only the power cylinders for steering both front wheels are controlled. In addition, in the switching position, one of the power cylinders (for steering both front and rear wheels) is directly controlled, and the discharge hydraulic pressure of the power cylinder is used to control the steering of the other power cylinder for steering both wheels. When connected like this, higher hydraulic pressure is required for four-wheel steering than for two-wheel steering.However, when two-wheel steering is performed with this high hydraulic pressure, the pressure between the high-pressure side oil chambers of both power cylinders increases. Since there is a difference in the pressure-receiving area equal to the cross-sectional area of the piston rond, there is a risk that the tie rod of the steering mechanism may buckle and break due to the compressive force corresponding to this differential pressure. This is particularly noticeable in automobiles where the maximum axle load is large, such as a crane.The present invention addresses this problem by connecting only the front power cylinders for steering both wheels between the power cylinders for steering both front and rear wheels. A constant position for steering control, and a switching position for directly controlling one of the power cylinders for steering both front and rear wheels, and controlling the steering of the other power cylinder for steering both wheels using the discharge hydraulic pressure of the power cylinder. IJ-7 is connected to a switching valve provided with a switching valve, and the IJ-7 set pressure, which is normally maintained at a low pressure, is switched to a high pressure in conjunction with switching of the switching valve.
It is characterized in that the I7-f valve device is connected to a hydraulic pressure supply path to a hydraulic pump and a hydraulic servo. An embodiment of the present invention applied to an all-wheel drive type self-propelled crane will be described below with reference to the drawings. As shown in FIG. 2, the front wheel steering mechanism at the front of the vehicle body 1 connects the front wheel axles of both front wheels 4m and 4b to both ends of the front axle 2 via king pins 6, respectively, and turns the front wheel axles. Both side knuckle arms 5a, 5
The rear ends of b are connected by a tie rod 6, and the front ends of each knuckle arm and the front axle 2 are connected by power cylinders 7a and 7b arranged symmetrically, respectively, and the rear wheels at the rear of the vehicle are steered. The mechanism has the same structure with a completely symmetrical arrangement, and the rear wheels 8a and 8b on both sides are steered by power cylinders 9a and 9b, respectively, which are symmetrically arranged, and the steering of the rear wheels on both sides is controlled by tie rods 10. It is linked by In FIG. 1, reference numeral 11 indicates a rotary joint for an oil line or an electric circuit installed between the vehicle body 1 and a crane swivel platform (not shown) that is rotatably supported on the vehicle body 1, and is shown below the rotary joint 11. Hydraulic pump 12° tank T, relief valve for the entire pump system 16. The switching valve 14 and the like are attached to the vehicle body side, and the flow priority valve 18, check valve 19, etc. are shown above the rotary joint 11. Hydraulic servo20. The relief valve 44 and the like are attached to the crane slewing base side except for the tank T. The hydraulic servo 20 has a valve outer cylinder that sets the discharge flow rate to the oil passage 26 or 24 in conjunction with the left and right rotation of the handle 22 on the driver's seat, and a motor 25 that is driven according to the discharge flow rate to provide feedback 26. It is equipped with a control valve 27 consisting of a controlled spool, and the hydraulic pressure via the motor 25 is connected to the oil path 2.
8 or 29 to the power cylinder side. Therefore, an amount of oil corresponding to the rotation angle of the handle 22 is always supplied to the power cylinder side. In the illustrated case, a pilot oil path 31 is installed before and after the cough control valve in the middle of the hydraulic pressure supply path 60 from the hydraulic pump 12 to the control valve 27.
.. A flow priority valve 18 controlled by the pressure of 62 is inserted, and a regulated flow is supplied to the control valve 27, and a surplus flow is supplied to hydraulic equipment (not shown) such as a crane swing motor through an oil line 66. The left cylinder chambers of the power cylinders 7a and 7b for steering the front wheels are connected in parallel to the oil passage 29. In addition, the oil passage 64 connecting the right cylinder chambers of the war cylinder in parallel is connected to the oil passage 28 at the normal position (neutral position) of the tandem center type electromagnetic switching valve 14. The left cylinder chamber and the right cylinder chamber of rear wheel steering power cylinders 9m and 9b are connected in parallel to boats A and B through oil passages 35 and 66, respectively. More hydraulic servo 20
An external relief valve 44 is connected to the hydraulic pressure supply path 60 to the hydraulic servo via the flow priority valve 18, and the drain oil path 45 is connected to the oil pressure return path 69 from the hydraulic servo to the tank T. It includes a solenoid valve 49 that is selectively connected to any of the hydraulic pressure supply paths 60 . The solenoid valve 49 is the drain oil passage 45 of the IJ I7-F valve 44.
is connected to the tank T as shown in the figure, and the switch 46 on the crane swivel base is in the normal position (neutral position).
A signal 4 for switching the switching valve 14 to the right or left switching position.
7 or 48, the signal causes the drain oil passage 45 to be switched to the upper position in the figure where it is connected to the hydraulic pressure supply passage 60 from the hydraulic pump. As shown in FIG. 3, the relief valve 44 is fitted into a valve casing 50 so as to be slidable within a certain range, and a movable cylinder 51 in the shape of a hexagon.
A piston valve 56 that is always biased to close by an adjustment spring 52 is fitted therein, and when the drain oil passage 45 communicates with the tank T, the movable cylinder 51 is inserted through the small hole 51a.
The movable cylinder is held at the left end position as shown in the figure by the reaction force of the hydraulic pressure of the pressure port 54 transmitted inside the cylinder, and the internal pressure of the movable cylinder 51 causes the valve portion 56m of the piston valve 56 to respond to the elasticity of the spring 52 during low pressure relief. When opened against the pressure, hydraulic pressure is relieved from the pressure port 54 to the tank port 55 via the through hole 51b in the side wall of the movable cylinder. In addition, the drain oil passage 45 is a hydraulic pressure supply passage 60.
If the movable cylinder 51 is connected to the stepped edge 50a of the valve housing 50 due to the difference in pressure receiving area and oil pressure on both sides of the movable cylinder 51,
compress the adjustment spring 52 by sliding it to the right until it engages the
Functions as a high pressure relief valve. This high pressure IJ-7
The set pressure of the valve is lower than the set pressure of the IJ relief valve 6 of the entire pump system. Note that 56 is a stopper bolt for the movable cylinder 51, and 57 is a pressure adjustment bolt for the spring 52. Next, the operation of the present invention will be explained. With the switching valve 14 in the normal position (neutral position) shown in the figure, when the handle 22 is rotated, for example, to the left, the control valve 27 is switched to the lower position υ in the figure, and the control valve cooperates with the motor 25 to rotate the handle 22. The amount of pump discharged oil corresponding to the rotation angle is supplied to the oil passage 28, and therefore the oil pressure acts on the chambers on the right side of the pistons of the power cylinders 7a and 7b via the switching valve 14, while the oil passage 29 is connected to the tank T. Therefore, the tie rod 6 interlocks the front wheel 4.
g, 4b to the left and the handle 22 to the right, the control valve 27 is switched to the upper position in the diagram, and the oil passage 2 is turned to the left.
9 is on the high pressure side, and the oil passage 28 is on the low pressure side, so the chambers on the left side of the pistons of the power cylinders 7m and 7b are on the high pressure side, and the front wheel 4m is on the high pressure side. 4b is turned to the right as shown by the chain line in FIG. 2. In this case, the drain oil passage 45 of the relief valve 44 is connected to the tank TK* as shown in FIG.
Since the relief set pressure of the IJ-f valve 44 is maintained at a low pressure, the maximum pressure of the operating circuit of the skeleton power cylinders 7a, 7b is regulated to this low relief set pressure. Therefore, based on the difference in the pressure receiving areas on both sides of the pistons of the power cylinders 7a and 7b, that is, the difference between the extension force and the contraction force of the power cylinders, a compression force is applied to the tie rod 6 via the knuckle arms 5m and 5b, and the main force is applied to the tie rod 6. , there is no risk of the tie rod being buckled or damaged. In addition, if the switch 46 is operated to switch the switching valve 14 to the right position in the figure in advance, and the handle 22 is turned to the left to set the oil passage 28 to the high pressure side as described above, the oil passage 28 will be opened via the switching valve 14. 65 becomes the high pressure side, and hydraulic pressure acts on the chambers on the left side of the pistons of the power cylinders 9a, 9b, turning the rear wheels 8a, 8b to the left, and at the same time turning both the power cylinders 9a, 9
The oil pressure in the chamber on the right side of the piston b is sequentially applied to the oil passage 66 and the switching valve 1.
The oil is supplied to the chambers on the right side of the pistons of the power cylinders 7a, 7b through the 4° oil passage 64, turning the front wheels 4a, 4b to the left. Conversely, when the handle 22 is turned to the right to set the oil passage 29 to the high pressure side, hydraulic pressure acts on the chambers on the left side of the pistons of the power cylinders 7a and 7b, turning the front wheels to the right, and at the same time turning the front wheels to the right. The hydraulic pressure discharged into the oil passage 64 is transferred to the power cylinder 9a via the switching valve 14 and the oil passage 66.
, 9b acts on the chamber on the right side of the piston to turn the rear wheel to the right. In this case, not only is the amount of oil that operates the left and right pair of power cylinders in the same direction equal to the amount of oil discharged from both power cylinders, but the front and rear power cylinders have the same configuration, and the distance between the knuckle arms of both wheels is the same. Because they are connected by tie rods, the front and rear wheels are arranged parallel to each other, allowing the vehicle to travel diagonally. Furthermore, by operating the switch 46 and switching the switching valve 14 to the left position in the figure in advance, the steering wheel 22 can be operated to turn the front and rear wheels in opposite directions at the same angle, thereby significantly reducing the turning radius of the automobile. This is clear from the above explanation. In the case of this four-wheel steering, one of the front and rear power cylinders is directly driven by the pump discharge hydraulic pressure, and the other power cylinder is driven by the discharged hydraulic pressure, so the amount of oil required for four-wheel steering is reduced to two wheels. Same as in the case of steering, the steering wheel can be steered in the same way in either case, but the pump discharge oil pressure must be increased in accordance with the sum of the energy required for steering the front and rear wheels. The solenoid valve 49 is switched to the upper position in the figure by a signal when switching to any switching position,
Since the relief setting pressure of the relief valve 44 has been switched to high pressure as described above, the maximum oil pressure of the power cylinder operating circuit is regulated by this high pressure relief valve 44, making it possible to increase the oil pressure necessary for four-wheel steering. do. In this case, even if there is a difference in the front and rear axle loads, the difference in the front and rear wheel steering forces based on this difference is relatively small, so the difference between the power cylinders 7a and 7b on both sides and 9a and 9b due to the increase in oil pressure
The difference in expansion and contraction forces between the front and rear tie rods 6.10 is small, and the compressive force acting on the front and rear tie rods 6.10 is similar to that in the case of two-wheel steering, and there is no risk of buckling the tie rods. According to the present invention, even if the maximum axle load of an automobile becomes large, requiring power cylinders for both wheel steering and tie rods that interlock these power cylinders to be disposed before and behind the axle, two-wheel steering and four-wheel steering can be performed. In the same way, it is possible to prevent the tie rod from buckling and breaking due to the compression force based on the difference in the expansion and contraction forces of the power cylinders for steering both wheels during two-wheel steering. Explanation Fig. 1 is a circuit diagram of an embodiment of the present invention, Fig. 2 is a plan view schematically showing the steering mechanism, and Fig. 3 is a longitudinal sectional front view of the relief valve.・Front axle, 4a, 4b...front wheel, 5m, 5b...knuckle arm, 6,10...
Tie rod, 8a, 8b... Rear wheel, 7a, 7b, 9
a. 9b...Power cylinder, 12-hydraulic cylinder 7', 14
...Switching valve, 20...Hydraulic servo, 22...Handle, 25...Motor, 27...Control valve, 44...
・IJ 17-7 valve, 45...Drain oil path, 49・
··solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 前後各々の両側車輪を各別に操向する左右対称配置のパ
ワーシリンダと、各両側車輪のナックルアーム間を連結
するタイロッドと、71ンドル操作量に応じ該パワーシ
リンダを伸縮制御する油圧サーボを設ぜたパワーステア
リング装置において、前後の両側車輪操向用パワーシリ
ンダの間に切換弁を、その常時位置においては前部両側
車輪操向用パワーシリンダのみを伸縮制御し、又切換位
置においては前後の両側車輪操向用パワーシリンダの一
方を直接伸縮制御して、該パワーシリンダの排出油圧で
他方の両側車輪操向用パワーシリンダを伸縮制御するよ
うに接続すると共に、全パワーシリンダの作動回路をタ
ンクに接続する低圧用と高圧用のリリーフ弁を設け、且
つ前記切換弁を切換位置に切換えた時に信号を発する手
段と、その信号を受けて前記リリーフ弁の低圧リリーフ
機能を停止させる装置とを設けて、前車輪だけの操向時
にのみ低圧用リリーフ弁が作動するようにしたことを特
徴とする自動車のノくワーステアリング装置。
It is equipped with a symmetrically arranged power cylinder that steers both front and rear wheels separately, a tie rod that connects the knuckle arms of each wheel on both sides, and a hydraulic servo that controls expansion and contraction of the power cylinder according to the amount of steering wheel operation. In a power steering system, a switching valve is installed between the front and rear power cylinders for steering both front and rear wheels, and in its normal position, only the power cylinders for steering both front wheels are telescopically controlled, and in the switching position, both front and rear wheel steering power cylinders are One of the power cylinders for wheel steering is directly telescopically controlled, and the other power cylinder for wheel steering on both sides is connected so as to be telescopically controlled by the discharge hydraulic pressure of the power cylinder, and the operating circuits of all power cylinders are connected to the tank. A low pressure relief valve and a high pressure relief valve are provided to be connected, and a means for emitting a signal when the switching valve is switched to a switching position, and a device for receiving the signal and stopping the low pressure relief function of the relief valve are provided. A power steering device for an automobile, characterized in that a low-pressure relief valve operates only when only the front wheels are steered.
JP57052302A 1982-04-01 1982-04-01 Power steering gear for automobile Granted JPS58170668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57052302A JPS58170668A (en) 1982-04-01 1982-04-01 Power steering gear for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57052302A JPS58170668A (en) 1982-04-01 1982-04-01 Power steering gear for automobile

Publications (2)

Publication Number Publication Date
JPS58170668A true JPS58170668A (en) 1983-10-07
JPH028940B2 JPH028940B2 (en) 1990-02-27

Family

ID=12910993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57052302A Granted JPS58170668A (en) 1982-04-01 1982-04-01 Power steering gear for automobile

Country Status (1)

Country Link
JP (1) JPS58170668A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452871U (en) * 1987-09-29 1989-03-31
CN103192874A (en) * 2013-03-29 2013-07-10 常州科研试制中心有限公司 Steering control device for four-wheel transport vehicle
JP2015030303A (en) * 2013-07-31 2015-02-16 株式会社タダノ Steering device of working vehicle
JP2016210372A (en) * 2015-05-13 2016-12-15 株式会社タダノ Steering device of work vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101672467B1 (en) * 2016-05-11 2016-11-04 주식회사 이녹스 Improved impact resistant adhesive film for mobile device and manufacturing method there of

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452871U (en) * 1987-09-29 1989-03-31
CN103192874A (en) * 2013-03-29 2013-07-10 常州科研试制中心有限公司 Steering control device for four-wheel transport vehicle
JP2015030303A (en) * 2013-07-31 2015-02-16 株式会社タダノ Steering device of working vehicle
JP2016210372A (en) * 2015-05-13 2016-12-15 株式会社タダノ Steering device of work vehicle

Also Published As

Publication number Publication date
JPH028940B2 (en) 1990-02-27

Similar Documents

Publication Publication Date Title
US3856102A (en) Electro-hydraulic steering system for vehicle having steerable front and rear ground wheels
EP0041421A1 (en) Dual control steering system
US5234069A (en) Steering control system for vehicles having dual steering
US20100259023A1 (en) Steerable wheel safety system
US3439768A (en) Hydraulic dual source steering system for vehicles
US5893428A (en) Hydraulic power steering
JPS58170668A (en) Power steering gear for automobile
EP1317372A1 (en) Arrangement and method for operating self-steering wheels
US4638883A (en) Steering system for automotive vehicle
US4736965A (en) Vehicle suspension
JPS62131870A (en) Power steering used in large size vehicle
JP4516571B2 (en) Hydraulic system
EP0786394A1 (en) Improvement to a power-assisted steering system for the steerable wheels of one or more rear axles of a vehicle such as a truck or semitrailer
JPS59128055A (en) 4-wheel steering gear for vehicle
US4568095A (en) All terrain vehicle control system
US3437166A (en) Steering system for vehicles
CA1214730A (en) Hydraulic steering system for motor vehicles
EP0553203B1 (en) Fourwheel steering for motor vehicle
US4131177A (en) Dual steering system for vehicles
US3422919A (en) Articulated vehicle steering
JP2918981B2 (en) Steering gear
CN110344460B (en) Hydraulic control circuit for an articulation assembly
CA2058660C (en) Training vehicle skid simulating mechanism
JPH02370Y2 (en)
JP3119903B2 (en) Hydraulic cylinder hydraulic circuit