JPS58170543A - Preparation of catalyst composition - Google Patents

Preparation of catalyst composition

Info

Publication number
JPS58170543A
JPS58170543A JP57054502A JP5450282A JPS58170543A JP S58170543 A JPS58170543 A JP S58170543A JP 57054502 A JP57054502 A JP 57054502A JP 5450282 A JP5450282 A JP 5450282A JP S58170543 A JPS58170543 A JP S58170543A
Authority
JP
Japan
Prior art keywords
component
catalyst
vanadium
slurry
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57054502A
Other languages
Japanese (ja)
Other versions
JPH0312937B2 (en
Inventor
Masayuki Otake
大竹 正之
Masayoshi Murayama
村山 正義
Yuji Kawaragi
裕二 河原木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP57054502A priority Critical patent/JPS58170543A/en
Priority to US06/473,196 priority patent/US4472527A/en
Priority to GB08306615A priority patent/GB2118060B/en
Priority to DE3311681A priority patent/DE3311681C2/en
Priority to CA000424905A priority patent/CA1186674A/en
Priority to KR1019830001332A priority patent/KR900009016B1/en
Publication of JPS58170543A publication Critical patent/JPS58170543A/en
Priority to US06/591,997 priority patent/US4520127A/en
Publication of JPH0312937B2 publication Critical patent/JPH0312937B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Furan Compounds (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst enhanced in strength and flowability, by drying after spraying a mixed slurry consisting of a crystalline composite oxide containing V and P and showing specific X-ray diffraction peak, an aqueous solution containing V and P and silical sol. CONSTITUTION:A tetravalent V-ion containing solution is prepared and reacted with phosphoric acid to prepare a first component being a V-P composite showing X-ray diffraction peak shown by a table I . On the other hand, V2O5 is added to an aqueous solution containing phosphoric acid and oxalic acid to obtain a second component and 10-50wt% silica sol slurry is further prepared separately as a third component. In the next step, the first component and the second component are mixed to form a first slurry which is in turn mixed with the aforementioned third component to form a mixed slurry and the resulting mixed slurry is spray dried at 120-350 deg.C to obtain a catalyst composition. This catalyst composition is especially suitably used as a catalyst for preparing maleic anhydride due to oxidation of n-butane.

Description

【発明の詳細な説明】 本発明は触媒組成物の製造法に関するものである。さら
に詳しくはn−ブタンの酸化たより無水マレイン酸な製
造するに適した触媒組成物の製造法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for making a catalyst composition. More specifically, the present invention relates to a method for producing a catalyst composition suitable for producing maleic anhydride from the oxidation of n-butane.

炭素数参の炭化水素,4llFl(n−ブタン,n−プ
テン,ブタジエン等を気相酸化して無水マレイン酸を製
造する方法Kおいて、パナジウムとリンを必須成分とす
る複合酸化物が有効であることが知られている。(米国
特許第シ.2タ爲コ1i号) またこの触媒の中では,結晶性のリン酸バナジル((v
O)xPmOγ)が活性成分として有効であることが報
告されている。〔イー・ボーデス.ビー・カーテイン.
ジャーナル・オブ・キャタリシx(Ill.Borde
s,’P,Oourtine,.T.Oatal.)z
7,236(lタ7F)〕この化合一結晶相はその特徴
才ケ 的な下記表一lに示すようなx線回rパターンを示すこ
とで識別できる。
In method K for producing maleic anhydride by vapor phase oxidation of hydrocarbons with a carbon number of 411F (n-butane, n-butene, butadiene, etc.), a composite oxide containing panadium and phosphorus as essential components is effective. (U.S. Pat.
It has been reported that O)xPmOγ) is effective as an active ingredient. [E. Bordes. Be Curtain.
Journal of Catalysis
s,'P,Oourtine,. T. Oatal. )z
7,236 (lta 7F)] This compound monocrystalline phase can be identified by exhibiting an x-ray r pattern as shown in Table 1 below.

本発明者等の知見では,この化合物の結晶相は.n−ブ
タン.n−ブテン類の気相蒙化触媒として、従米の製法
に基く無定型複合酸化物系触媒に比してかなり高活性で
あり,特にn−ブタンの酸化に対してはioo℃程度低
温域でも反応が進行するという特徴を有している。従つ
竹 て上記表一/に示したX線回軟ピークを有する触媒活性
種を用いることはプロセス上好ましく.本発明で製造さ
れる触媒も,反応系では上記のピークを有する活性種の
形をとるものである。
According to the knowledge of the present inventors, the crystal phase of this compound is . n-butane. As a gas-phase oxidation catalyst for n-butenes, it has considerably higher activity than the amorphous composite oxide catalyst based on Jubei's manufacturing method, and in particular for the oxidation of n-butane, it can be used even in the low temperature range of about 100°F. It has the characteristic that the reaction progresses. Therefore, it is preferable for the process to use a catalytically active species having the X-ray softening peak shown in Table 1 above. The catalyst produced by the present invention also takes the form of an active species having the above-mentioned peak in the reaction system.

一方.炭票数ダの炭化水素類からの気相酸化による無水
マレイン酸生成反応は,副反応である完全酸化(すなわ
ち一酸化炭素及び二酸化炭素の生成)も含めて強い発熱
反応であり.エネルギー効率からも.また空気に対する
原料炭化水累類の爆発限界濃度が低いことからも.従来
より流動床接触酸化反応が好適であると考えられてきた
。その目的で開発された触媒は,例えばシュウ酸バナジ
ル溶液.リン酸.シリカゾル.更に適当な活性促進成分
を含む混合液を噴霧.乾燥することにより調製されてき
た。(英国特許第42t↓07j号等) このようにして得られる触媒は,n−プテ/.ブタジエ
ン等の酸化には有効であるが.n−ブタンの酸化には活
性が充分でなく.通常200℃以上の反応瀉度を必要と
する。n−ブタンの酸化用の流動床触媒に関してもい《
つかの報告がなされている。例えば特開昭グターl26
!17号には.五価のバナジウム化合物な三価のリン化
合物と接触させて,リンおよびバナジウムを含有する複
合酸化物を形成させ.次いでそれを粉砕して微粉とした
あと.流動反応に適用した例が記載されている。この方
法では結晶性の活性成分をとり出すことカ一でき,活性
面での改善は可能であるものの.触媒の強度および流動
性の点で十分とはいえない。
on the other hand. The reaction to produce maleic anhydride by gas-phase oxidation from a number of hydrocarbons is a strongly exothermic reaction, including the complete oxidation (i.e., the production of carbon monoxide and carbon dioxide) as a side reaction. Also from the point of view of energy efficiency. It is also because the explosive limit concentration of feedstock hydrocarbons relative to air is low. It has been thought that a fluidized bed catalytic oxidation reaction is suitable. Examples of catalysts developed for this purpose include vanadyl oxalate solutions. phosphoric acid. Silica sol. Furthermore, spray a mixture containing appropriate activity-promoting ingredients. It has been prepared by drying. (British Patent No. 42t↓07j, etc.) The catalyst obtained in this way is n-pute/. It is effective for oxidizing butadiene, etc. The activity is not sufficient for the oxidation of n-butane. Usually, reaction temperature of 200°C or higher is required. Regarding fluidized bed catalysts for the oxidation of n-butane
Some reports have been made. For example, JP-A-Sho Gutter l26
! In issue 17. A complex oxide containing phosphorus and vanadium is formed by contacting a pentavalent vanadium compound with a trivalent phosphorus compound. Then, it is ground into a fine powder. An example of application to a flow reaction is described. Although it is possible to extract crystalline active ingredients using this method, and it is possible to improve the activity. The strength and fluidity of the catalyst are not sufficient.

このような触媒活性成分の微粉を用いる破砕流動床反応
については,更に%開昭jθ−rite.特開昭j4−
33011号等にも可能性が指摘され.特開昭jG−4
j631号では,担体にリンおよびパナジウムな含有す
る複合酸化物を付着させて流動床触媒を製造する可能性
も提案されている。
Regarding the crushed fluidized bed reaction using such fine powder of catalytically active components, %Kaisho jθ-rite. Tokukai Shoj4-
The possibility was also pointed out in cases such as No. 33011. Tokukai ShojG-4
No. J631 also proposes the possibility of producing a fluidized bed catalyst by depositing a composite oxide containing phosphorus and panadium on a carrier.

本発明者等は.特にn−ブタンを流動床により気相酸化
するための触媒を開発する目的で鋭意検討した結果.第
一成分としてバナジウムおよびリンを含有する特殊な結
晶性酸化物.g二成分としてバナジウム2よびリンを含
有する水性溶液.第三成分としてシリカゾルを混合して
スラリーを調製し.噴霧乾燥することにより.強度およ
び流動性にすぐれた触媒を製造できることを見い出し.
本発明を完成したものである。
The present inventors. In particular, this is the result of intensive research aimed at developing a catalyst for gas-phase oxidation of n-butane using a fluidized bed. A special crystalline oxide containing vanadium and phosphorus as the first components. g An aqueous solution containing vanadium 2 and phosphorus as two components. A slurry is prepared by mixing silica sol as the third component. By spray drying. Discovered that it was possible to produce a catalyst with excellent strength and fluidity.
This completes the present invention.

以下.本発明を詳細に説明する。below. The present invention will be explained in detail.

本発明では.第一成分として,特足のX線回折 釘ピークを示す.四価のパナジウムおよび五価のリンを
含有する結晶性複合酸化物を使用する。
In the present invention. The first component shows a special X-ray diffraction nail peak. A crystalline composite oxide containing tetravalent panadium and pentavalent phosphorus is used.

祈 X線回折ピークと強度比は次の通りである。prayer The X-ray diffraction peaks and intensity ratios are as follows.

なお,上記ピークの他,/I.jt”,λ/j”,j.
2..2”に強度比IO−コO程度の弱いピークが見ら
れる。
In addition to the above peaks, /I. jt", λ/j", j.
2. .. A weak peak with an intensity ratio of about IO-CoO is seen at 2''.

上記第一成分の結晶性複合酸化物は公知であり,いくつ
かの製造方法が報告されている。例えば■塩酸溶液等の
非酸化性酸性溶液中で.五酸化バナジウムのような五価
のバナジウムを.シュウ酸等の還元剤の併用で還元して
.四価のバナジウムイオンを含有する溶液を調製し,五
価のリン化合物,例えばリン酸と反応させた後.生成し
た可溶性のパナジウムーリン複合体を.水を加えて沈で
んさせる方法(%開昭jf/−タjタタO号).■五酸
化パナジウムのような五価のバナジウム化合物とリン酸
を.ヒドラジン[f[またはヒドロキシルアミン塩酸塩
のような還元剤の存在下に,水性媒体中で反応させ.濃
縮あるいは蒸発乾固して結晶を得る方法(特開昭56−
≠jllj号).または■五酸化バナジウムをエタノー
ル,イングロパノール,グリセロールのような有機媒体
中で還元し.無水リン酸と反応させ,ベンゼン等の溶媒
で共沸脱水[7て結晶を沈でんさせる方法(米国特許第
IAコfJ,λrt号)等が知られ【いろ。
The crystalline composite oxide of the first component is well known, and several manufacturing methods have been reported. For example, ■ In a non-oxidizing acidic solution such as hydrochloric acid solution. Pentavalent vanadium such as vanadium pentoxide. Reduce by using a reducing agent such as oxalic acid. After preparing a solution containing tetravalent vanadium ions and reacting with a pentavalent phosphorus compound, e.g. phosphoric acid. The produced soluble panadium-phosphorus complex. Method of precipitation by adding water (%Kaishojf/-tajtatao). ■A pentavalent vanadium compound such as panadium pentoxide and phosphoric acid. React in an aqueous medium in the presence of a reducing agent such as hydrazine [f] or hydroxylamine hydrochloride. Method for obtaining crystals by concentration or evaporation to dryness (Japanese Patent Application Laid-open No. 1983-
≠jllj issue). or ■ reduction of vanadium pentoxide in an organic medium such as ethanol, ingropanol, or glycerol. A method of reacting with phosphoric anhydride and precipitating the crystals by azeotropic dehydration [7] with a solvent such as benzene (US Patent No. IA CofJ, λrt) is known.

上記のいずれの方法によっても.表一一に示折 すような主要Xk1回折ピークを示す結晶性複合酸化物
を得ることができる。結晶純度や,操作性.廃棄物の処
理等の面から考慮すると,■の方法が好ましいと考えら
れるが.%に限足的ではない。
By any of the above methods. A crystalline composite oxide having a main Xk1 diffraction peak as shown in Table 11 can be obtained. Crystal purity and operability. From the perspective of waste disposal, etc., method ① is considered preferable. It is not limited to %.

第一成分のバナジウムおよびリンを含有する複合酸化物
ハ大体(V204)(PzOs)(JH20)<7)組
成式で表わすことができる。従って.リンとバナジウム
の比は,P/V原子比で理論的には/.Qであるので,
バナジウム化合物と.リン化合物は.P/′v原子比で
o.t−i.szの範囲内で反応させるのが好ましい。
The composite oxide containing vanadium and phosphorus, which is the first component, can be roughly represented by the following compositional formula: (V204)(PzOs)(JH20)<7). Therefore. The ratio of phosphorus to vanadium is the P/V atomic ratio, which is theoretically /. Since Q,
With vanadium compounds. Phosphorus compounds. P/'v atomic ratio o. t-i. It is preferable to carry out the reaction within the range of sz.

また本発明で使用する第一成分は,バナジウムイオンと
のイオン半径の差の小さい各種の金属イオンで一部置換
されていてもよい。このような金属イオンとしては.鉄
,クロム.アルミニウム,チタン,コバルト.マグネシ
ウム等のイオンが挙げられる。このような金属イオンで
−St換された複合酸化物は,触媒とした際.活性の向
上及び活性の安定化K著しい改善をもたらすことができ
る。置換の割合はバナジウム元素lモルあたり金属とし
てo.ooz〜O.U,より好ましくは0.0/−0.
λモルの範囲で選択される。複合酸化物にこのような他
の金属イオンを導入する方法としては.複合酸化物を製
造する段階で.これらの金属イオンを塩酸塩.硫酸塩,
硝酸塩.炭酸塩等の無轡塩.シュウ酸塩等の有機塩の形
で添加する方法があげられる。
Further, the first component used in the present invention may be partially substituted with various metal ions having a small difference in ionic radius from vanadium ions. As such metal ions. Iron, chromium. Aluminum, titanium, cobalt. Examples include ions such as magnesium. When used as a catalyst, a composite oxide converted to -St with such a metal ion. Enhancement of activity and stabilization of activity can bring about significant improvements. The rate of substitution is o.c. as metal per mol of vanadium element. ooz~O. U, more preferably 0.0/-0.
selected in the range of λ moles. Here are some methods for introducing other metal ions into composite oxides. At the stage of manufacturing composite oxide. These metal ions are converted into hydrochloride. sulfate,
nitrate. Free salts such as carbonates. An example is a method of adding it in the form of an organic salt such as oxalate.

このようにして得られる置換固溶型の複合酸祈 化物のX線回折パターンは.表−コに示したピークから
若干シフトするが..2θ゜が±0.2”以内である。
The X-ray diffraction pattern of the substituted solid solution complex acid compound thus obtained is as follows. Although it is slightly shifted from the peak shown in Table-C. .. 2θ° is within ±0.2”.

第一成分はスラリーを調製する以前の段階で.あらかじ
め微粉化しておくのが良く.例えばIQμ以下,より好
適には!μ以下の粒径(コーAターカウンター法等によ
り測定できる。)になるように粉砕する。このような処
理には当業者によく知られた機械.例えばハンマーミル
,ジェットミル,コロイドミル.ザンドグラインダー等
が使用でき,また湿式,乾式いずれの方法を採用しても
支障ない。
The first component is added before preparing the slurry. It is best to pulverize it in advance. For example, IQμ or less, more preferably! Grind to a particle size of μ or less (measurable by coater counter method, etc.). Machines well known to those skilled in the art are used for such processing. For example, hammer mill, jet mill, colloid mill. A Zand grinder etc. can be used, and there is no problem whether a wet method or a dry method is used.

本発明における第二成分のバナジウム,リンを含有する
水性溶液は.通常実質的に四価のバナジウムと五価リン
を含有し.その少くとも一部がリン酸バナジルとして存
在することが好まし%No この第二成分は,第一成分の複合酸化物と第三成分の担
体としてのシリカゾルとのバインダーとしての効果を有
し,流動触媒の流動性.強度の向上に寄与する。このよ
うな水溶液の製法は%K@足的ではないが.以下にその
数例を示す。
The aqueous solution containing vanadium and phosphorus as the second component in the present invention is. Usually contains substantially tetravalent vanadium and pentavalent phosphorus. It is preferable that at least a part of it exists as vanadyl phosphate, Fluidity of fluidized catalyst. Contributes to improved strength. Although the method for producing such an aqueous solution is not very accurate. Some examples are shown below.

一般的には五価のリン化合一例えば.リン酸を含有する
水性溶液に.還元剤と五酸化バナジウムな添加溶解して
得られる。水性溶液中のバナジウム元素に対するリン元
素の原子比は0.3−/0の鮭囲が好ましい。一般にリ
ン酸バナジルを含有する水性溶液は不安足であり,長時
間安冗に保つことは困難な場合があるため.水性溶液の
女矩化のためにシュウ酸を存在させることができる。そ
の量はバナジウム元素K対するシュウ酸のモル比でl.
λ以下,好ましくはO.λ〜/の範囲である。シュウ酸
の量があまり多いと.触媒の機械的強度.嵩密度.活性
面に好ましくない影響を与える。換言すれば.バナジウ
ム元素に対するシュウ酸のモル比がl.λ以下トいう範
囲は,シュウ酸バナジルを形成しない範囲ということが
できる。
Generally, pentavalent phosphorus compounds are used, for example. In an aqueous solution containing phosphoric acid. Obtained by adding and dissolving a reducing agent and vanadium pentoxide. The atomic ratio of phosphorus element to vanadium element in the aqueous solution is preferably 0.3-/0. In general, aqueous solutions containing vanadyl phosphate are unreliable, and it may be difficult to maintain them safely for long periods of time. Oxalic acid may be present for effeminization of the aqueous solution. The amount is expressed as the molar ratio of oxalic acid to vanadium element K.
λ or less, preferably O. It is in the range of λ~/. If the amount of oxalic acid is too high. Mechanical strength of catalyst. The bulk density. Unfavorably affects the active surface. In other words. If the molar ratio of oxalic acid to elemental vanadium is l. The range below λ can be said to be the range in which vanadyl oxalate is not formed.

水性溶液の製法の具体例どしては次のよ5な万法がある
As specific examples of methods for producing aqueous solutions, there are the following five methods.

第/に,リン酸およびシュウ酸を含有する水性溶液に.
五酸化バナジウムを,バナジウム元累に対するシュウ酸
のモル比が/,7以下で.かつ好ましくは0.7以上添
加して.リン酸バナジル及びシュウ酸を含有する水性溶
液とする方法である。具体的には.リンrIIを含有す
る酸性水性媒体中にシュウ酸を溶解し.五醸化バナジウ
ムを若干の加温により還元が進行する温度に保ちつつ添
加することによって製造する。この方法Kよれば,還元
終了後は.パナジウム元素に対し,/,.2モル以下の
シュウ酸が存在することになる。
/Secondly, in an aqueous solution containing phosphoric acid and oxalic acid.
Vanadium pentoxide is used at a molar ratio of oxalic acid to vanadium element of /,7 or less. and preferably by adding 0.7 or more. This is a method of preparing an aqueous solution containing vanadyl phosphate and oxalic acid. in particular. Oxalic acid is dissolved in an acidic aqueous medium containing phosphorus rII. It is produced by adding vanadium pentate while maintaining the temperature at which reduction proceeds by slight heating. According to this method K, after the reduction is completed. For the element panadium, /,. There will be less than 2 moles of oxalic acid present.

第.2K.ljン酸を含有する酸性水性溶液にシュウ酸
以外の還元剤.好まし《は抱水ヒドラジン.ヒドラジン
またはヒドロキシルアミンの塩酸塩,リン酸塩等の無機
還元剤.乳酸のような有機還元剤から選ばれる一種また
は二種以上の混合物を添加し,次いで五酸化バナジウム
を添加して還元し,均一なリン醗バナジル含有水性溶液
を得る,この彼.好ましくはシュウ酸を添加する。
No. 2K. A reducing agent other than oxalic acid is added to an acidic aqueous solution containing ljic acid. Preferred is hydrazine hydrate. Inorganic reducing agents such as hydrazine or hydroxylamine hydrochloride or phosphate. This method involves adding one or a mixture of two or more selected organic reducing agents such as lactic acid, and then reducing by adding vanadium pentoxide to obtain a homogeneous phosphorus-vanadyl-containing aqueous solution. Preferably oxalic acid is added.

第3に.五酸化バナジウム,リン酸および亜リン酸を水
性媒体中に混合し.亜リン酸の還元作用により四価のバ
ナジウムイオンとする方法である。この方法で得られる
リン酸バナジルを含有する水溶液からは,放置すると下
記表−3に示すような特徴的なX線回警スペクトルを与
える結晶性固体が析出する。
Thirdly. Mix vanadium pentoxide, phosphoric acid, and phosphorous acid in an aqueous medium. This method produces tetravalent vanadium ions through the reducing action of phosphorous acid. From the aqueous solution containing vanadyl phosphate obtained by this method, when left to stand, a crystalline solid that exhibits a characteristic X-ray spectra as shown in Table 3 below precipitates.

このような結晶性固体の析出は,本発明の目的からは好
ましくなく,水溶液を長時間安定に保つ必蒙がある場合
にはシュウ酸を添加するのか好ましい。
Such precipitation of crystalline solids is undesirable from the purpose of the present invention, and if it is necessary to keep the aqueous solution stable for a long period of time, it is preferable to add oxalic acid.

以上述べたバナジウムおよびリンを含有する水性溶液に
は,必要に応じてアルコール.ケトン、エーテル等の有
機溶媒が併用されて〜・てもかまわない。
Alcohol may be added to the aqueous solution containing vanadium and phosphorus as described above, if necessary. Organic solvents such as ketones and ethers may be used in combination.

本発明においては上述してきた第一成分および第二成分
と.第三成分のシリカゾルを混合してスラリーを調製し
、噴霧乾燥することにより触媒組成物を製造する。シリ
カゾルはあらかじめ/0−jO重門チの@度としてv4
製しておき.第一成分および第二成分と混合して攪拌し
.均一なスラリーとする。第一成分.第二成分および第
三成分の割合は乾燥重量饅で第一成分:第二成分=20
710−40:20m二成分:第三成分=!0:10〜
タ0:/0第一成分:第三成分=so:jo〜タ0:/
0の範囲内で選択される。なお第二成分の乾燥重量は.
バナジウムおよびリンttVz04およびP,O,とし
て計算できる。
In the present invention, the above-mentioned first component and second component. A catalyst composition is produced by mixing the third component, silica sol, to prepare a slurry, and spray drying the slurry. Silica sol is v4 as /0-jO Shigemonchi's @ degree in advance.
Prepare it in advance. Mix and stir the first and second components. Make a uniform slurry. First ingredient. The ratio of the second and third components is dry weight: first component: second component = 20
710-40:20m Two components: Third component =! 0:10~
Ta0:/0 first component: third component = so:jo~ta0:/
Selected within the range of 0. The dry weight of the second component is.
It can be calculated as vanadium and phosphorus ttVz04 and P,O,.

第一成分および,第二成分の量が第三成分に対してあま
りに少ないと、触媒強度は向上1るが.活性の低−tが
みられる。また.第二成分の1が.第一成分に対して上
記範囲を下回ると,触tlM.強度が低下する傾向にあ
る。
If the amounts of the first and second components are too small relative to the third component, the catalyst strength will improve. Low activity is seen. Also. 1 of the second component is. If the first component falls below the above range, the tlM. Strength tends to decrease.

このようにして得られたスラリーは,噴霧乾燥により.
流動性および強度にすぐれた触媒組成物が得られる。
The slurry thus obtained was spray dried.
A catalyst composition with excellent fluidity and strength is obtained.

噴霧乾燥の条件は通常.風量,給液量を適当に調節して
.乾燥域でのガスS度を/20へ・3jO℃の範囲に設
足するのが良く.この時の乾燥ガスの入口温度は通常2
00〜3j0℃とする。また給液址とテイスク回転数を
調節して噴霧乾燥后の触媒粒子径の平均値がJO−/0
ζiクロン程度の範囲になる様にする。平均粒子径のよ
り好ましい範囲はUO〜70ミクロンである。
The spray drying conditions are normal. Adjust the air volume and liquid supply amount appropriately. It is best to set the gas S degree in the dry area to /20/3jO℃. The inlet temperature of the drying gas at this time is usually 2
00~3j0℃. In addition, the average value of the catalyst particle diameter after spray drying is adjusted to JO-/0 by adjusting the liquid supply site and the take rotation speed.
It should be within the range of ζi chron. A more preferable range of average particle diameter is UO to 70 microns.

以上のようにして得られた触媒組成物は.ダ00〜6o
o℃の範囲で焼成して用いると触媒粘性上さらに好まし
い。この際,焼成をブタンヤブテン類を言む空気の存在
下あるいはアルゴン,窒累等の不活性ガス雰囲気下に冥
施ずることが好ましいが.その結果,表一/に示すX耕
.φ 線回析ハーンを有する複合酸化物に変化する。
The catalyst composition obtained as above is. Da00~6o
It is more preferable to use the catalyst after firing at a temperature in the range of 0.degree. C. in view of the viscosity of the catalyst. At this time, it is preferable to perform the firing in the presence of air such as butane or in an inert gas atmosphere such as argon or nitrogen. As a result, the X plow shown in Table 1/. It changes into a composite oxide with φ line diffraction hahns.

以上のようにして得られる触媒組成物は.!51!動性
.強度,活性にすぐれ,炭素数μの炭化水素.とくにn
−ブタンの酸化による無水マレイン酸の製造触媒として
好適に用いられる。
The catalyst composition obtained as described above is. ! 51! Mobility. A hydrocarbon with excellent strength and activity, and a carbon number of μ. Especially n
- It is suitably used as a catalyst for producing maleic anhydride by oxidizing butane.

以下.本発明を実施例により説明する。below. The present invention will be explained by examples.

実施例l(第一成分A−/の合成) リン駿(1jチ,試薬特級)タ.j2kg,塩酸ヒドラ
ジンt.jokg,一塩酸ヒドラジンjjO9を脱塩水
μ01に溶解后.加温した。7j℃に昇温后.五酸化バ
ナジウム7.2Ikgを少量ずつ攪拌下に添加し.全鎗
添加后,更に1時間煮沸して還元を完結させた。この液
を減圧下にロータリーエバポレーターで約///2の液
量まで濃縮した後.蒸発皿に入れて170℃で蒸発乾固
した。恒量到達を確認後.粗粉砕し.固体を水で煮沸洗
浄して残留塩酸を完全に除去した。P過水洗后.再び乾
燥機中/70℃で乾燥し,ハンマーミルにて精粉砕して
φ=lの原子比を有する第l成分(A−/)を得た。粒
子径は平均値でz.jμであった。このもののX線回折
スペクトルは表一λに示されるものと一致した。
Example 1 (Synthesis of first component A-/) Lin Shun (1j Chi, reagent special grade) Ta. j2kg, hydrazine hydrochloride t. jokg, after dissolving hydrazine monohydrochloridejjO9 in demineralized water μ01. Warmed. After raising the temperature to 7j℃. 7.2 Ikg of vanadium pentoxide was added little by little with stirring. After adding all the ingredients, the mixture was further boiled for 1 hour to complete the reduction. After concentrating this liquid under reduced pressure using a rotary evaporator to a liquid volume of approximately 2. The mixture was placed in an evaporating dish and evaporated to dryness at 170°C. After confirming that the constant weight has been reached. Coarsely grind. The solid was boiled and washed with water to completely remove residual hydrochloric acid. After washing with P. It was dried again in a dryer at 70°C and finely ground in a hammer mill to obtain the 1st component (A-/) having an atomic ratio of φ=l. The average particle diameter is z. It was jμ. The X-ray diffraction spectrum of this product matched that shown in Table 1 λ.

実施例2(第一成分A−コの合成) リン酸tタ/,Ig,塩酸ヒドラジンIO≠.7g,一
塩酸ヒドラジン3o.ogを脱塩水l.デ!に溶解し,
加温した。7j℃に昇温后.五酸化バナジウムタir.
ugを少量ずつ攪拌下に添加し,全量添加后.更に1時
間煮沸して還元を完結させた。放冷し,次いで塩化第二
鉄(II’eO13・AH20)r/.011を水/0
0gに溶解した液を加えた。この液をそのまま約273
の液量まで濃縮し,次いで/70℃の温度で.蒸発血中
で蒸発乾固した。恒量到達を確認し.実施例lと同様の
処理を経てP/V/IF●=i7’o.タ/0./の原
子比を有する第一成分(A−1)を得た。このもののX
線回新スペクトルは,表一コに示杏れた各ピークの位置
と十〇U”の範囲内にあった。
Example 2 (Synthesis of first component A) Phosphate t/, Ig, hydrazine hydrochloride IO≠. 7 g, hydrazine monohydrochloride 3 o. og into demineralized water l. De! dissolved in
Warmed. After raising the temperature to 7j℃. Vanadium pentoxide ir.
Add ug little by little while stirring, and after adding the entire amount. Boiling was further performed for 1 hour to complete the reduction. Allow to cool, then add ferric chloride (II'eO13.AH20) r/. 011 water/0
A solution of 0 g was added. Approximately 273 ml of this liquid as it is
Concentrate to a liquid volume of /70°C. Evaporated to dryness in evaporated blood. Confirm that the constant weight has been reached. Through the same process as in Example 1, P/V/IF●=i7'o. Ta/0. A first component (A-1) having an atomic ratio of / was obtained. This thing's X
The line recovery spectrum was within a range of 10 U'' from the position of each peak shown in Table 1.

実施例3〜7(第一成分A−3〜7の合成)実施例2に
おける促進成分である塩化第J鉄の代わりに.塩化クロ
ム,塩化アルミニウム.シュウ酸チタン,塩化コバルト
,塩化マグネシウムを用いて,下記表−3に示す元素比
率を有する酸化mA−3〜A−7を実施例λの方法に従
い製造した。なお原子比率の変更に従い.実施例コの厘
料使用量も調整した。なお表−3にはA−/および▲一
一も併せ記した。
Examples 3 to 7 (Synthesis of first component A-3 to A-7) In place of ferric chloride, which is the promoting component in Example 2. Chromium chloride, aluminum chloride. Using titanium oxalate, cobalt chloride, and magnesium chloride, oxides mA-3 to A-7 having the element ratios shown in Table 3 below were produced according to the method of Example λ. In addition, according to the change in atomic ratio. The amount of chemicals used in Example 1 was also adjusted. Note that A-/ and ▲11 are also listed in Table-3.

実施例t(第二成分B−/の合成) 脱塩水zooyにリン酸(rt慢溶液)/63!g,お
よびシュウ酸/!00fiを溶解し,溶液をgo℃に加
温した。次いで五酸化パナジウム/Orコgを少量ずつ
添加して溶解させた。溶液のP/V原子比はl.コであ
り,生成液は粘稠味を帯び實色均一溶液であった。若干
の濃縮により(V*04+PzOs’llの換算酸化物
濃度としてur.o重11%とした。残留するシュウ酸
とパナジウム元累とのモル比は還元反応で五醗化バナジ
ウムlモルあたりlモルのシュウ酸が使用されたのでo
.rとなる。
Example t (Synthesis of second component B-/) Phosphoric acid (rt chronic solution) in demineralized water zooy/63! g, and oxalic acid/! 00fi was dissolved and the solution was warmed to goC. Then, panadium pentoxide/Orcog was added little by little and dissolved. The P/V atomic ratio of the solution is l. The resulting solution was viscous and a true color homogeneous solution. By slightly concentrating (V*04+PzOs'll converted oxide concentration was 11% by weight), the molar ratio of residual oxalic acid and panadium element was reduced to 1 mol per 1 mol of vanadium pentafluoride due to the reduction reaction. Since oxalic acid was used, o
.. It becomes r.

実施例タ(第二成分B−コの合成) シュウ酸の使用量を/lコ!gに変更した以外は実施例
rと全《同様にして.換算酸化物濃度i.tr.o重皺
チの青色均一溶液B−2を得た。
Example (Synthesis of second component B) The amount of oxalic acid used is /l! The procedure was the same as in Example r except that g was changed. Converted oxide concentration i. tr. A blue homogeneous solution B-2 of heavy wrinkles was obtained.

この溶液ではP/’v=/.コであり.残留シュウ酸の
バナジウム元素に対するモル比はO.コ!である。
In this solution, P/'v=/. It is Ko. The molar ratio of residual oxalic acid to elemental vanadium is O. Ko! It is.

実施例IO リン酸の使用曽を22jOgにした以外は実施例♂と同
様にして.換算酸化物濃度aZ.O重量チの溶液B−J
を得た。
Example IO The same procedure as Example ♂ was carried out except that the amount of phosphoric acid used was 22JOg. Converted oxide concentration aZ. Solution B-J of O weight
I got it.

実施例//(噴霧乾燥による流動触媒の製造)実施例l
〜7で得た結晶性活性成分微粉末(第一成分).実施例
1−/0で得た背色均一溶液(第二成分)およびシリカ
ゾル(第三成分)1gf:S々の割合で混合し.ホモジ
ナイザーにより充分均一混合した後,噴霧乾燥により流
動触媒(触媒A/−4)を製造した、結果を表一μに整
理して示した。同表中.触媒強度は100℃.一時間窒
素気流下に焼成したものについて.流動状態で8US製
金属板に触媒粒子を衝突させ.一時間以内での破砕損失
量を測定し機械的強度の指標として表示している。強度
の大きい触媒ではこの値が小さくなる。
Example // (Production of fluidized catalyst by spray drying) Example 1
Crystalline active ingredient fine powder (first ingredient) obtained in steps 7 to 7. The uniform background color solution obtained in Example 1-/0 (second component) and silica sol (third component) were mixed at a ratio of 1 gf:S. After sufficiently uniform mixing using a homogenizer, a fluidized catalyst (catalyst A/-4) was produced by spray drying. The results are summarized in Table 1μ. In the same table. Catalyst strength is 100℃. For those fired under a nitrogen stream for one hour. Catalyst particles were collided with an 8US metal plate in a fluid state. The amount of crushing loss within one hour is measured and displayed as an index of mechanical strength. This value becomes smaller for stronger catalysts.

実施例l2(反応例) 噴繕乾燥により得た流動床用触媒を100℃.コ時間窒
素気流下に焼成し,次いで21−rfμの粒子径部分を
篩別した。触媒量λodをとり.n−ブタン濃度μモル
チの空気混合ガスをG}{eVj00の流速で通過させ
.反応を行なった。生成物は水に吸収し.電位差滴定と
廃ガスの組成分析により収率t決定した。結果は表一j
に示す^ 実施例/J(反応例) 実施例//で得た触媒を用い.反応条件の影響を調べた
Example 12 (Reaction Example) A fluidized bed catalyst obtained by blow drying was heated at 100°C. It was calcined under a nitrogen stream for several hours, and then the particle size portion of 21-rfμ was sieved. Take the catalyst amount λod. An air mixture gas with a n-butane concentration of μm is passed through at a flow rate of G}{eVj00. The reaction was carried out. The product is absorbed into water. The yield t was determined by potentiometric titration and compositional analysis of the waste gas. The results are in Table 1j
Shown in ^ Example/J (Reaction example) Using the catalyst obtained in Example//. The influence of reaction conditions was investigated.

GHBV=300で一定とし.n−ブタン#度のみを変
えた以外は実施例lλと同様に反応を行い.反応成績を
調べた。結果を表−乙に示した。
Assume that GHBV is constant at 300. The reaction was carried out in the same manner as in Example 1λ except that only the degree of n-butane was changed. The reaction results were investigated. The results are shown in Table B.

実施レリ/μ(第二成分B−uの合成)V2り,/.3
3kg,gjqbリン酸o.ruグゆ,亜゛Jン酸(紳
度タ7,6%)o.l,Aokgおよび水4t.jlを
混合してスラリーとし.窒素を少量吹込み償拌しながら
IQ時間煮沸還流加熱した。
Implementation/μ (synthesis of second component Bu) V2,/. 3
3kg, gjqb phosphoric acid o. Rugyu, Nitric acid (7.6%) o. l, Aokg and water 4t. Mix jl to make a slurry. The mixture was boiled and heated under reflux for IQ hours while blowing in a small amount of nitrogen and stirring.

v205は全量溶解し青色均一の溶液を得たが,これを
/Qlに希釈して第二成分用溶液CB−4’)をvA製
した。このものの換算酸化物濃度は約./I.j重it
9&テfipル。コノ溶液(7)P/V=1.0!であ
り.冷暗所に保存した。使用に際してリン普を調節する
ため.所望量のリン酸を添加する。
The entire amount of v205 was dissolved to obtain a uniform blue solution, which was diluted to /Ql to prepare the second component solution CB-4') vA. The equivalent oxide concentration of this product is approximately. /I. heavy it
9&tefipl. Kono solution (7) P/V=1.0! Yes. Stored in a cool dark place. To adjust the phosphorescence during use. Add desired amount of phosphoric acid.

実施例lj(噴霧乾燥による流動触媒の裂造)央施例l
で得た第一成分な/,/一ゆ.実施例/qで得られた第
二成分の水溶液をJ.JIl,第三成分として.20%
シリカゾル溶液コ.ココゆ,およびrz%リン酸を77
g混合し,次いでホモジナイザーにより40分間混合攪
拌を続け℃均一なゲル状スラリーを得た。酸化物濃度は
30市t%であった。このスラリーを噴霧乾燥により流
動触媒(A?)を裂遺し.窒素気流下にjOO℃でλ時
間流動焼成したのち,uj〜tJrμの粒子を篩別して
反応に用いた。
Example 1j (Creation of fluidized catalyst by spray drying) Middle Example 1
The first component obtained from /,/Ichiyu. The aqueous solution of the second component obtained in Example/q was purified by J. JIl, as the third component. 20%
Silica sol solution. Cocoyu, and rz% phosphoric acid 77
Then, mixing and stirring were continued for 40 minutes using a homogenizer to obtain a homogeneous gel slurry at ℃. The oxide concentration was 30 t%. The fluidized catalyst (A?) was separated by spray drying this slurry. After fluidized firing for λ hours at jOO°C under a nitrogen stream, particles of uj to tJrμ were sieved and used for the reaction.

実施例/4(噴霧乾燥による流動触媒の製造)リン酸量
を/.30gとした以外は実施例i6と同様な方法で触
媒を製造した。(触媒屋io)実施例/7(反応例) 触媒量λOraltとり.n−ブタンlII1度参モル
一の空気混合ガスをGHBVj00の流速で通過させ.
流動反応を行なった。笑施例−lコと同様に主成物は水
に吸収し,電位差滴足と廃ガスの組成分析により収率を
決定した。結果を表一7に示す。
Example/4 (Production of fluidized catalyst by spray drying) The amount of phosphoric acid was /. A catalyst was produced in the same manner as in Example i6 except that the amount was 30 g. (Catalyst shop io) Example/7 (Reaction example) Catalyst amount λOralt taken. An air mixture gas containing 1 mole of n-butane lII was passed through at a flow rate of GHBVj00.
A flow reaction was performed. As in Example 1, the main product was absorbed in water, and the yield was determined by potentiometric droplet analysis and compositional analysis of the waste gas. The results are shown in Table 7.

Claims (1)

【特許請求の範囲】 (1)第一成分としてバナジウムおよびリンを含有する
下記の特徴的なX線回祈ビークを示す結晶性複合酸化物
.第二成分としてバナジウムおよびリンを含有する水性
溶液.および第三成分としてシリカゾルを混合してスラ
リーを調製し,噴霧乾燥することを特徴とする触媒組成
物の製造法 コe0(±O..2”)(対陰極Ou−Kα)l!.7 lタ.乙 2弘.2 λ7,/ λl.t 30.l (2)114二成分がリン酸バナジルを含有する水性溶
液であることを特徴とする特許請求の範囲第l項記載の
方法 (3)第一成分,第二成分および第三成分の混合割合が
.乾燥重量チで 第一成分:@二成分:=20:Iθ〜t0:コO第二成
分:第三成分=jO:10〜タ0:/0第一成分:第三
成分=zo:.to〜デO:/0の範囲であることft
%徴とする特許請求の範囲第7項記載の方法 (4)第一成分のバナジウムが実質的に四価であること
を特徴とする特許請求の範囲第l項記載の方法 (5)第二成分のバナジウムが実質的に四価であること
を特徴とする特許請求の範囲第l項または第λ項記載の
方法
[Scope of Claims] (1) A crystalline composite oxide containing vanadium and phosphorus as a first component and exhibiting the following characteristic X-ray rotation peak. Aqueous solution containing vanadium and phosphorus as second components. and silica sol as a third component to prepare a slurry and spray drying the catalyst composition coe0(±O..2”)(Anticathode Ou-Kα)l!.7 lta.Otsu2hiro.2 λ7, / λl.t 30.l (2) The method according to claim 1, characterized in that the 114 two components are an aqueous solution containing vanadyl phosphate ( 3) The mixing ratio of the first component, second component, and third component is .Dry weight: First component: @ Two components: = 20: Iθ ~ t0: KoO Second component: Third component = jO: 10 ~ta0:/0 first component: third component = zo:.to~deO:/0 ft
(4) The method according to claim 1, wherein the first component vanadium is substantially tetravalent.(5) The second method The method according to claim 1 or λ, characterized in that the component vanadium is substantially tetravalent.
JP57054502A 1982-03-31 1982-04-01 Preparation of catalyst composition Granted JPS58170543A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP57054502A JPS58170543A (en) 1982-04-01 1982-04-01 Preparation of catalyst composition
US06/473,196 US4472527A (en) 1982-03-31 1983-03-08 Process for preparing an oxidation catalyst composition
GB08306615A GB2118060B (en) 1982-03-31 1983-03-10 Process for preparing an oxidation catalyst composition
DE3311681A DE3311681C2 (en) 1982-03-31 1983-03-30 Oxidation catalyst and process for its preparation
CA000424905A CA1186674A (en) 1982-03-31 1983-03-30 Process for preparing an oxidation catalyst composition
KR1019830001332A KR900009016B1 (en) 1982-03-31 1983-03-31 Process for preparing an oxidation catalyst composition
US06/591,997 US4520127A (en) 1982-03-31 1984-03-21 Oxidation catalyst composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57054502A JPS58170543A (en) 1982-04-01 1982-04-01 Preparation of catalyst composition

Publications (2)

Publication Number Publication Date
JPS58170543A true JPS58170543A (en) 1983-10-07
JPH0312937B2 JPH0312937B2 (en) 1991-02-21

Family

ID=12972399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57054502A Granted JPS58170543A (en) 1982-03-31 1982-04-01 Preparation of catalyst composition

Country Status (1)

Country Link
JP (1) JPS58170543A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227835A (en) * 1983-08-17 1985-11-13 ラマス・クレスト・インコ−ポレイテツド Catalyst containing oxide mixture of vanadium and phosphorus
JPS61207382A (en) * 1985-03-12 1986-09-13 Mitsubishi Chem Ind Ltd Production of maleic anhydride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227835A (en) * 1983-08-17 1985-11-13 ラマス・クレスト・インコ−ポレイテツド Catalyst containing oxide mixture of vanadium and phosphorus
JPH0554386B2 (en) * 1983-08-17 1993-08-12 Ee Bii Bii Ruumasu Kuresuto In
JPS61207382A (en) * 1985-03-12 1986-09-13 Mitsubishi Chem Ind Ltd Production of maleic anhydride

Also Published As

Publication number Publication date
JPH0312937B2 (en) 1991-02-21

Similar Documents

Publication Publication Date Title
US4520127A (en) Oxidation catalyst composition
JP6162706B2 (en) Improved n-butane oxidation catalyst for maleic anhydride production
JPS6025189B2 (en) catalyst composition
US5021384A (en) Process for producing crystalline oxide of vanadium-phosphorus system and catalyst containing the crystalline oxide
JPS58170543A (en) Preparation of catalyst composition
JPH0424101B2 (en)
JPH044969B2 (en)
JPH0424102B2 (en)
JPH05261292A (en) Production of catalyst for producting maleic anhydride
JPS6116508B2 (en)
JP2000317309A (en) Production of catalyst for producing acrylic acid
JPS58194726A (en) Preparation of particulate material from vanadium-phosphorus type oxide
JPH02175605A (en) Production of vanadium-phosphorus based crystalline oxide or catalyst containing the same
JP2778055B2 (en) Method for producing vanadium-phosphorus crystalline oxide or catalyst containing same
JPH044970B2 (en)
JPH0424103B2 (en)
JPH0643242B2 (en) Method for producing vanadium-phosphorus crystalline oxide or catalyst containing the same
JPH01201016A (en) Production of vanadium-phosphorus-based crystalline oxide or catalyst containing same
JPS6316327B2 (en)
JPH01133912A (en) Production of vanadium/phosphorus-based crystalline oxide or catalyst incorporating it
JPS6316326B2 (en)
JPH0424104B2 (en)
JPH08141403A (en) Production of phosphorus-vanadium oxide catalyst
JPH021763B2 (en)
JPH024525B2 (en)