JPS58170262A - Communication network management system - Google Patents

Communication network management system

Info

Publication number
JPS58170262A
JPS58170262A JP5137382A JP5137382A JPS58170262A JP S58170262 A JPS58170262 A JP S58170262A JP 5137382 A JP5137382 A JP 5137382A JP 5137382 A JP5137382 A JP 5137382A JP S58170262 A JPS58170262 A JP S58170262A
Authority
JP
Japan
Prior art keywords
line
lines
communication network
communication
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5137382A
Other languages
Japanese (ja)
Other versions
JPH0124463B2 (en
Inventor
Shigeru Kato
滋 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Research and Development Institute of Japan Defence Agency filed Critical Technical Research and Development Institute of Japan Defence Agency
Priority to JP5137382A priority Critical patent/JPS58170262A/en
Publication of JPS58170262A publication Critical patent/JPS58170262A/en
Publication of JPH0124463B2 publication Critical patent/JPH0124463B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • H04M3/36Statistical metering, e.g. recording occasions when traffic exceeds capacity of trunks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Exchanges (AREA)

Abstract

PURPOSE:To improve the communication of an important call and calls of the entire communication network, by comparing the traffic processing ability of the communication network with the amount of traffic generated in the communication network. CONSTITUTION:Exchange stations S1-S5 are connected with communication lines shown in Li,j to form distributed communication network. A managing device K managing the entire communication network is connected to each exchange station via signal lines shown in dotted lines. The device K receives the generated traffic estimated amount among opposing stations via the communication lines connected to the stations S1-S5 and the number of calls generated in the unit time from the stations, the rate of the number of callings is operated from them and the traffic processing ability of the entire network, decides the range of detour to be applied and informs the detour restriction to each exchange station. The restriction of the detour is applied to each group by grouping the lines into a line group reached with the minimum relay link at each opposing station, and a line group having one or two relay links more.

Description

【発明の詳細な説明】 本発明は、障害等に対して通信網維持能力の点で優れて
いるため、防衛通信等特殊な用途に用いられる分布通信
網において、これに加わるトラヒック量に応じて適切な
る迂回規制措置を講することにより、これを有効に利用
するための通信網管制方式に関するものである。
[Detailed Description of the Invention] The present invention is superior in its ability to maintain communication networks against failures, etc., so it can be used in distributed communication networks used for special purposes such as defense communications, depending on the amount of traffic added to the network. The present invention relates to a communication network control method for effectively utilizing this by taking appropriate detour control measures.

1        一般に、商用等の通信網は、第1図
のように交換局Sを階位構成にし、各交換局Sとの間に
基幹回1tLt〜L1、斜回線り、〜Lヨを設けている
。発振続される。この場合、斜回線からのあふれ呼に対
しては相手帯域内の低位局から高位間への斜回線、更に
基幹回線へという遠近回転法で順次、回線の選択を行い
、通信呼の疎通向上を図り【いる。一方、あふれ呼が著
しく増加した場合には、逆に、迂回規制により、高い局
への斜回線と基幹回線の選択を制限し、トラヒックの集
中にともなう異常トラヒックの波及を防止し、通信疎通
の向上と回線の有効利用を図っている。
1 Generally, commercial communication networks have a hierarchy of switching stations S as shown in Figure 1, and between each switching station S there are trunk lines 1tLt~L1, diagonal lines, and ~Lyo. . The oscillation continues. In this case, in response to an overflow call from a diagonal line, lines are selected sequentially using the near-far rotation method, from a low-level station in the other party's band to a high-level station, and then to the backbone line, thereby improving communication call communication. There is a plan. On the other hand, if the number of overflow calls increases significantly, detour regulations will be implemented to restrict the selection of diagonal lines and backbone lines to higher stations, prevent abnormal traffic from spreading due to traffic concentration, and reduce communication communication. We are working to improve this and make effective use of lines.

しかし、分布通信網においては通信網を構成する局およ
び回線はすべて対等であるため、局間に階位がないばか
りか回線にも基幹回線や斜回線といった固定的な区別が
ない。このため、従来、各局では、通信しようとする相
手端末が属する交換局(対局)へ最も少ない中継リンク
数で到達できる回線順に一連番号をつけ、(同一中継リ
ンク数      辷の回線には、回線に接続されてい
る隣接局の局番が小さ4いものを優先させて一連番号を
付与する)その対局への径路選択にあたって、各中継局
ではその中継回線を番号順に選択するという方法をとっ
ている。なお、順番10回線はその対局への主回線で他
はすべて迂回回線となるので、主回線と同じ中継リンク
数で対局へ到達できる回線でも迂回回線になるという問
題を生ずる。また、ある対局では主回線であったものが
他の対局では迂回回を判断することはできないというよ
うな問題を生ずる。
However, in a distributed communication network, the stations and lines that make up the communication network are all equal, so not only are there no hierarchies between stations, but there is also no fixed distinction between lines, such as backbone lines or diagonal lines. For this reason, conventionally, each station assigns serial numbers to the lines that can reach the switching center (opposite station) to which the other party's terminal belongs with the least number of relay links. Priority is given to the connected adjacent station with the lowest station number and a serial number is assigned.) When selecting a route to the game, each relay station selects the relay line in numerical order. Note that the 10th line in order is the main line to the game, and all the others are detour lines, which causes the problem that even lines that can reach the game with the same number of relay links as the main line become detour lines. Furthermore, a problem arises in that what is the main line in one game cannot be determined to be a detour in another game.

本発明は、分布通信網の上記間亀を解決し、通信網に加
わるトラヒックの増減に対応し【、迂回規制適用範囲を
通信呼の重要性を考慮し、弾力的に運用することKより
、重要通信呼の疎通向上ばかりでなく、通信網全体とし
ての通信呼の疎通向上を併せて図ることを目的とした通
信網管制方式を提供することにある。
The present invention solves the above-mentioned problems in distributed communication networks, and copes with increases and decreases in traffic added to the communication network. It is an object of the present invention to provide a communication network control system that aims not only to improve the communication of important communication calls, but also to improve the communication call communication of the communication network as a whole.

本発明によれば、通信網のトラヒック処理能力と通信網
内で発生するトラヒック量を比較し、規制段階を決定す
るので、迂回規制措置判断のためK、回線のあふれ呼に
ついて知る必要がない。また回線を対局毎に最少中継リ
ンク数で到達できるF回線グループ、2回線より1中継
リンク数だけ増えるE回線グループとそれ以外のB回線
グループとに分け、規制措置をグループ毎に行うので、
同一中継リンク数の回線で規制対象と規制対象外の回線
が存在するという問題を生じさせない。更に通信呼をそ
の重要性に応じてグレード付けして、そのグレードと規
制段階を対応させて措置を行っているので、重要な通信
呼程、規制措置の適用を受けることが少なく、多くの回
線を径路として選択し得るので、重要通信呼の疎通改善
が期待できる。
According to the present invention, since the restriction stage is determined by comparing the traffic processing capacity of the communication network and the amount of traffic generated within the communication network, there is no need to know about overflow calls on the line in order to determine detour restriction measures. In addition, the lines are divided into the F line group, which can reach each game with the minimum number of relay links, the E line group, which has one more relay link than two lines, and the other B line group, and regulatory measures are taken for each group.
To avoid the problem that there are lines subject to regulation and lines not subject to regulation among lines having the same number of relay links. Furthermore, communication calls are graded according to their importance, and measures are taken to match the grade to the regulatory level, so important communication calls are rarely subject to regulatory measures, and many lines are can be selected as the route, it is expected that communication of important communication calls will be improved.

以下、本発明の通信網管制方式の詳細を図面を用いて説
明する。
Hereinafter, details of the communication network control system of the present invention will be explained using the drawings.

第2図は分布通信網における呼量率と通信呼が疎通でき
なかった割合(以下、閉塞率という)の関係をF、E、
B@線すべてを径路として選択可能にしたときの特性(
一点鎖線で示した曲線■)とF。
Figure 2 shows the relationship between the call volume rate and the rate at which communication calls could not be communicated (hereinafter referred to as blockage rate) in a distributed communication network as F, E,
Characteristics when all B@ lines are selectable as routes (
Curves ■) and F shown by dashed-dotted lines.

8回線を径路として選択可能にしたときの特性(実線で
示した曲線■)と2回線のみを径路として選択可能にし
たときの特性(破線で示した曲線■)について測定し示
した一例である。この図より分るように呼量率が88以
上になった場合には2回線のみを、また、&2より小さ
く、’tより大きい場合にはF、E回線を、&1より小
さい場合にはF。
This is an example of measuring and showing the characteristics when 8 lines can be selected as a route (curve ■ shown by a solid line) and the characteristics when only 2 lines can be selected as a route (curve ■ shown by a broken line). . As can be seen from this figure, when the call volume rate is 88 or more, only 2 lines are used, when it is less than &2 and greater than 't, F and E lines are used, and when it is less than &1, F and E lines are used. .

E、 B回線すべてを、それぞれ選択させた方がそれ以
外の場合と比べて、閉塞率を小さくし、通信呼の疎通向
上を図ることができる。従うて通信網のトラヒック容量
と、加わるトラヒック量に対応させて径路選択における
回線の適用範囲を変えるならば通信網の有効利用ができ
疎通改善を図ることができる。
When all E and B lines are selected, the blockage rate can be reduced and communication call communication can be improved compared to other cases. Therefore, if the applicable range of the line in route selection is changed in accordance with the traffic capacity of the communication network and the amount of added traffic, the communication network can be used effectively and communication can be improved.

第3図は本発明を適用する分布通信網の一例を示したも
のである。第3図中のst l S!+・・・tSSは
交換局を、実線で示されるL 1 yl + I7m+
lr・・・。
FIG. 3 shows an example of a distributed communication network to which the present invention is applied. st l S! in Figure 3! +...tSS is the switching center, L 1 yl + I7m+ shown by the solid line
lr...

Lt、j 、 ”・I LaI3は通信回線名を、(L
l、jFi局S11    よりSjを見た回線名で・
Lj・“は局SjよりS”を見た回線名を示し、同一回
線である。) 、(JM*・・・、C1,j、・・・+
 C4* 5は回線のチャネル容量を示したもので、C
i、Jは回線Li、JとLj、iのチャネル容量である
。Kはこの通信網を管制する管制装置であり、管制装置
にと交換局S1  とは図中の破線の如く網管理信号線
で結ばれる。但L1この接続は回線群(Li、j ) 
 とは側回線をもうけ非対応網構成で行っても、また、
回線群(Ll、j) を利用した対応網構成で行っても
よい。
Lt,j, ”・I LaI3 is the communication line name, (L
l, jThe line name seen from Sj from Fi station S11.
Lj.'' indicates the line name seen from station Sj to S, and is the same line. ) , (JM*..., C1,j,...+
C4*5 indicates the channel capacity of the line, and C4*5 indicates the channel capacity of the line.
i, J are the channel capacities of lines Li, J and Lj, i. K is a control device that controls this communication network, and the control device and the switching center S1 are connected by a network management signal line as shown by the broken line in the figure. However, L1 This connection is a line group (Li, j)
Even if you create a side line and use a non-compatible network configuration,
A corresponding network configuration using the line group (Ll,j) may also be used.

第4図は、本発明を実施する管制装置にの各部構成を示
したものである。
FIG. 4 shows the configuration of each part of a control device implementing the present invention.

管制送受信部1は通信網を構成する局S1から局S1 
に隣接する局群(Sj)とその間を結ぶ回線Li、j 
 のチャネル容量C1,5%及び、各対局間の発生トラ
ヒック推定量’f1.k  を受信しこれを網構成容量
推定部2へ伝えると共に網構成容量推定部2で作成した
通信網の局間接続構成表を各局に送信する。更に、各局
Si で、単位時間内に発生した通信呼数F1 を単位
時間毎に受信し、これを規制段階決定部3へ伝え、ると
共に規制段階決定部3で決定した規制段階Mを各局へ送
信する。
The control transmitting/receiving unit 1 connects stations S1 to S1 constituting a communication network.
The station group (Sj) adjacent to , and the line Li,j connecting therebetween
The channel capacity C1.5% and the estimated amount of generated traffic between each game 'f1. k and transmits it to the network capacity estimating unit 2, and also transmits the inter-office connection configuration table of the communication network created by the network capacity estimating unit 2 to each station. Furthermore, each station Si receives the number of communication calls F1 that occurred within a unit time, and transmits this to the regulation stage determination unit 3, and at the same time, transmits the regulation stage M determined by the regulation stage determination unit 3 to each station. Send.

網構成容量推定部2では局S1  とそれに接続する局
群(SJ)をもとに通信網の局間接続構成表を作り、こ
れを管制送受信部1へ伝える。
The network configuration capacity estimating unit 2 creates an inter-station connection configuration table of the communication network based on the station S1 and the station group (SJ) connected thereto, and transmits this to the control transmitting/receiving unit 1.

表1 表1は第3図の通信網の局間接続W成表を示したもので
ある。表中の局S1 の横軸と局Sj  の縦軸の交叉
点は局S1と局Sj間の回[1tLi、j の有無を表
しており、0はLi、jが存在しないこと、1はLi、
、iの存在を示している。更に、網構成容量推定部2は
各回線のチャネル容量C1,jと平均中継リンク数ψか
ら式(1)により通信網のトラヒック容t Ncを推定
し、これを規制段階決定部3へ伝える。
Table 1 Table 1 shows the inter-station connection W configuration table of the communication network shown in FIG. The intersection point of the horizontal axis of station S1 and the vertical axis of station Sj in the table represents the presence or absence of the circuit [1tLi,j] between station S1 and station Sj, where 0 means that Li,j does not exist, and 1 means that Li,j does not exist. ,
, indicates the existence of i. Further, the network configuration capacity estimating unit 2 estimates the traffic capacity t Nc of the communication network using equation (1) from the channel capacity C1,j of each line and the average number of relay links ψ, and transmits this to the regulation stage determining unit 3.

(但し N:局数、1笑j) なお、平均中継リンク数ψは、局間接続構成表から求め
た各対局間最短中継リンクWkDi、にと各局から送ら
れてくる局間トラヒック推定量’l’i、kをもとに式
(2)によ抄推定する。
(However, N: number of stations, 1) Note that the average number of relay links ψ is the shortest relay link between each station WkDi obtained from the inter-station connection configuration table, and the estimated amount of inter-station traffic sent from each station. Estimation is performed using equation (2) based on l'i and k.

・・・・・・(2) (但し、N:局数t ”’;、k) 規制段階決定部3では各局s1 で単位時間内に発生し
た呼数Fi を集計し、この値と平均保留時間Hから単
位時間内に通信網内で発生したトラヒック量Qc を以
下の式(3)により推定し、とのGcと網構成容量推定
部2で推定した網トラヒック容量NOより呼量率Pを以
下の式(4)より求め、この値をもとに規制段#Mを決
定する。
......(2) (However, N: number of stations t'';, k) The restriction stage determination unit 3 totals the number of calls Fi that occurred within a unit time at each station s1, and combines this value with the average pending call count. The traffic volume Qc generated in the communication network within a unit time from time H is estimated using the following equation (3), and the traffic rate P is calculated from Gc and the network traffic capacity NO estimated by the network component capacity estimator 2. It is obtained from the following equation (4), and the regulation step #M is determined based on this value.

P = Gc / Na           −(4
)規制段階Mは通信呼の重要性に応してそのグレ−ドG
をOからW段階に分けた場合、W+2段階にする。この
規制段階Mは呼量率Pの閾値をαl。
P = Gc / Na - (4
) Restriction level M is grade G depending on the importance of the communication call.
If it is divided into stages O to W, it is divided into stages W+2. In this regulation stage M, the threshold value of the traffic rate P is αl.

G1.・・・、G1.・・・、α、、、 (但し、G1
くG3〈G3・・・α、〈・・・α、ヤ3)と定めるこ
とにより呼量率Pがどの範囲にあるかによって次の如く
決定される。呼量率Pがα□以上でα1イ、より小さい
俺□≦P〈α11□)とき規制段階Mを1とする。(但
し、1≦1≦W+1)なおP〈αtのときはM二〇とし
、α1+雪≦PのときはM=W+2と規制段f#Mを決
定し、管制送受信部1を通して全局へ送信して、すべて
の通信呼に対し規制を実施させる。なお通信呼のグレー
ド段階Gの値が大きい呼量、重要性の高い呼とし、通信
呼のグレード付けとその段階はあらかじめ決めておくも
のとする。一方、閾値α□の値や平均保留時間Hは通信
網の形、チャネル容量と通信呼の性質等に合せて適宜変
えることができる。
G1. ..., G1. ...,α,,, (However, G1
By setting G3<G3...α, <...α, Ya3), the call volume rate P is determined as follows depending on the range. When the call volume rate P is greater than or equal to α□ and α1 is smaller than α□≦P<α11□, the regulation stage M is set to 1. (However, 1≦1≦W+1) When P〈αt, M20 is set, and when α1+snow≦P, M=W+2 is determined as the restriction stage f#M, and the control stage f#M is determined and transmitted to all stations through the control transmitting/receiving unit 1. and enforce regulations on all communication calls. It is assumed that the value of the grade level G of a communication call indicates a large call volume and a high importance call, and the grading of the communication call and its level are determined in advance. On the other hand, the value of the threshold α□ and the average holding time H can be changed as appropriate depending on the form of the communication network, channel capacity, nature of the communication call, etc.

第5図は本発明を実施゛するために局SZ交換機4に付
与すべき装置5とその各部構成を示したものである。
FIG. 5 shows a device 5 to be added to the station SZ exchange 4 in order to implement the present invention and the configuration of each part thereof.

計数部6は自局S1に加入する端末から自局外の局Sj
 への接続要求呼が起った場合単位時間当りの局外発信
呼数F1と対Sl局への対局呼数Ti、jを計測し、単
位時間毎に網管理信号送受信s7を通して管制装置にへ
送信する。
The counting unit 6 calculates the data from the terminal joining the local station S1 to the station Sj outside the local station.
When a connection request call is made to the station, the number of outgoing calls F1 per unit time and the number of calls to the SL station Ti,j are measured and sent to the control device through network management signal transmission/reception s7 for each unit time. Send.

網管理信号送受信部7Vi局外発信呼数F土  と各対
局呼数Ti、jばかりでなく局S1に隣接する局群(S
l)とその間を結ぶ回線群(Li、!)及びそのチャネ
ル容量C1jを交換機4より知り、単位時間毎に管制装
置にへ送信すると共に、管制装置により送られてくる迂
回規制段階Mと局間接続構成表とを受信し、回線選択部
9と径路表作成部8とへそれぞれ知らせる。
Network management signal transmitting/receiving unit 7Vi not only the number of outgoing calls F and the number of calls Ti and j for each station, but also the number of stations adjacent to station S1 (S
1) and the line group (Li,!) connecting between them and their channel capacity C1j are known from the exchange 4, and are transmitted to the control device every unit time, and the detour regulation stage M sent by the control device and the inter-office The connection configuration table is received and notified to the line selection section 9 and the route table creation section 8, respectively.

径路表作成部8は局間接続構成表をもとに各回@L1.
tを対局毎にもつとも中継リンク数が少ない数で到達で
きる回線を2回線グループに、1回線より1中継リンク
敷金分にかかる回線を8回線グループに、それ以外の回
線を8回線グループに分類し、径路表を作成する。第3
図の分布通信網の局S3について対局S2の場合を考え
てみると、Ls、1を選べば1中継リンク数で局S2に
到達できるがLs、5の場合は2中継リンク数、Ls、
4の場合には3中継リンク数かかるのでLs、1は1回
線、Ls、sHE回線、Ls、4は8回線になる。
The route table creation unit 8 creates @L1. each time based on the inter-station connection configuration table.
Lines that can be reached with a small number of relay links even if each game has t are classified into 2 line groups, lines that require more than 1 relay link deposit are classified into 8 line groups, and other lines are classified into 8 line groups. , create a route table. Third
Considering the case of game S2 for station S3 in the distributed communication network shown in the figure, if Ls, 1 is selected, station S2 can be reached with 1 relay link, but if Ls, 5, the number of relay links is 2, Ls,
In the case of 4, it takes 3 relay links, so Ls,1 becomes 1 line, Ls,sHE line, and Ls,4 becomes 8 lines.

表2 表2は第3図の分布通信網の局S3で表1の局間接続構
成表をもとに回11Ls、2 L3+4  Ls+sを
各対局毎にF、E、8回線グループに分類した径路表で
ある。
Table 2 Table 2 shows the routes for station S3 of the distributed communication network in Figure 3, which are classified into F, E, and 8 line groups for each game based on the inter-station connection configuration table in Table 1. It is a table.

回線選択部9は、相手端末が加入している対局Sjへの
径路となり得る中継回線をF、E、B@線ダグループ順
に選択し、見つける働きをする。回線選択要求は要求呼
のグレードG1中継/発信呼の別、経過局に関する情報
と共に交換機4より受ける。
The line selection unit 9 functions to select and find, in the order of F, E, and B@line groups, a relay line that can serve as a route to the game Sj to which the partner terminal has joined. The line selection request is received from the exchange 4 together with information regarding whether the requested call is a grade G1 relay/originating call and the transit station.

第6図は回線選択部9の処理動作をフローチャートにし
て示したものである。判断10は回線選択要求の有無を
判断する。要求が有った場合には処理11で交換機4よ
り回線選択に必要な呼のグ    \レードG1相手端
末の加入している対局Sj1 中継/発信呼の別、中継
呼の場合は今までの経過局に関する情報を得る。判断1
2は中継呼と発信呼の別を判断する。発信呼の場合は処
理14へ、中継呼の場合には判断13で経過局情報をも
とに自局S1が既に経過した呼であるかどうかを判断す
る。既に経過していれば径路はループを作ることkなる
ので処理31で以後の回線選択を中止し、今まで接続し
てきた回線の解放を交換機4全通して行わせる。処理1
4では対局Sjへの2回線グループを径路表より知りこ
れを記憶する。処理15でFiF回線グループよりその
中の1つの回線をランダムに選び出しその回線に空チャ
ネルがあるかどうかを調べる。判断16は空チャネルの
有無を判断する。空チャネルが有れば処理32でその回
線を中継回線と決定し、経過局情報に自局Siを記入し
1以後の回線接続を交換機4に行わせる。
FIG. 6 is a flowchart showing the processing operation of the line selection section 9. Decision 10 determines whether there is a line selection request. If there is a request, in process 11, the exchange 4 sends the call grade necessary for line selection \ Grade G 1 The game station Sj 1 to which the other party's terminal has joined, whether it is a relay/outgoing call, and the progress so far in the case of a relay call Get information about stations. Judgment 1
Step 2 determines whether the call is a relay call or an outgoing call. In the case of an originating call, the process goes to step 14, and in the case of a relay call, in decision 13, it is determined based on the past station information whether or not the call to the local station S1 has already passed. If it has already passed, the route will form a loop, so in step 31, the subsequent line selection is canceled and the lines that have been connected so far are released through the entire exchange 4. Processing 1
4, the two line groups to the game Sj are known from the route table and stored. In process 15, one line is randomly selected from the FiF line group and it is checked whether there is an empty channel on that line. Decision 16 determines whether there is an empty channel. If there is an empty channel, the line is determined to be a relay line in step 32, the own station Si is entered in the passing station information, and the exchange 4 is made to connect the line after 1.

チャネルがすべて塞ならば、処理17で、その選択した
回線を記憶している2回線グループより消去する。判断
18では、2回線グループに記憶されている回線がある
かどうかを判断する。記憶されていれば処理15へ行き
同様な処理を行う。記憶されていなければ判断19で規
制段階Mと通信呼のグレードGとを比較し、M≦(G+
 1 )であるかどうかを判断する。M≦(G+1)で
ない場合、規制対象呼として処理31において以後の回
線選択を中止する。M≦(G+1)である場合処理20
で対局Sj への8回線グループを径路表より知り、こ
れを記憶する。判断21では8回線グループに記憶され
ている回線があるかどうかを判断する。記憶されていな
ければ判断25へ行く。
If all channels are occupied, in step 17 the selected line is deleted from the stored two-line group. In decision 18, it is determined whether there are any lines stored in the two-line group. If it is stored, the process goes to step 15 and the same process is performed. If it is not stored, in judgment 19, the regulation stage M is compared with the communication call grade G, and M≦(G+
1) Determine whether or not. If M≦(G+1), the call is considered to be regulated and subsequent line selection is canceled in process 31. If M≦(G+1), process 20
Then, the 8-line group to the game Sj is known from the route table, and this information is memorized. In decision 21, it is determined whether there are any lines stored in the 8-line group. If it is not stored, go to judgment 25.

記憶されていれば処理22で8回線グループの中(より
ランダムに1回線を選び□出し、その回線に空チャネル
があるかどうかを調べる。判断23ではその回線のチャ
ネルの空塞を判断する。空チャネルがあれば処理32で
その回線を中継回線と決定し、以後の回線接続を交換機
4に行わせる。すべてのチャネルが塞ならば、処理24
で8回線グループよりその回線の記憶を消去し1判断2
1に戻り、同様な判断処理を行う。判断25では規制段
階Mと通信呼のグレードGとを比較し、02Mであるか
どうかを判断する。02Mでない場合は、この呼を規制
対象呼として処理31で以後の回線選択を中止する。一
方、02Mである場合は処理26で対局Sj への8回
線グループを径路表より知りこれを記憶する。判断27
でViB回線グループとして記憶されている回線がある
かどうかを判断する。記憶されていない場合は処理31
で以後の回線選択を中止する。記憶きれている場合は処
理28で8回線グループに記憶されている1つの回線を
ランダムに選び出し、その回線に空チャネルがあるかど
うかを調べる。判断29は空チャネルの有無を判断する
。空チャネルがあれば、その回線を中継回線と決定し、
以後の回線接続を交換機4に行わせる。すべてのチャネ
ルが塞であれば処理30でその回線を記憶している8回
線グループより消去し、判断27に戻り、再び同様な処
理判断を行う。処理32では中継回線となる回線を決定
し、経過局に自局S1 を追加し、以後の対局Sj へ
の回S接続を交換機4に行わせるとともに記憶している
回線グループを消失し、判断10に戻る。処理31では
回線選択を中止し、今まで接続してきた回線の解放を交
換機4を通して行うと共に回線グループに関する記憶を
消去して判断10に戻り、回線選択要求を待つ。
If it is stored, in process 22 one line is selected at random from the 8 line group (□) and checked to see if there is an empty channel on that line. In judgment 23, it is determined whether the channel of that line is empty or blocked. If there is an empty channel, the line is determined to be a relay line in process 32, and subsequent line connections are made by the exchange 4. If all channels are occupied, process 24
Delete the memory of that line from the 8 line group with 1 judgment 2
1 and performs the same judgment process. In judgment 25, the restriction level M is compared with the grade G of the communication call, and it is determined whether the grade is 02M or not. If it is not 02M, this call is treated as a restricted call and subsequent line selection is canceled in process 31. On the other hand, if it is 02M, in step 26, the 8-line group to the game Sj is learned from the route table and stored. Judgment 27
It is determined whether there is a line stored as a ViB line group. If not stored, process 31
to cancel further line selection. If the memory is full, one line stored in the eight line group is randomly selected in step 28, and it is checked whether there is an empty channel on that line. Decision 29 determines whether there is an empty channel. If there is an empty channel, that line is determined to be a trunk line,
The exchange 4 is made to perform subsequent line connections. If all channels are occupied, the line is deleted from the 8-line group stored in step 30, and the process returns to decision 27, where the same processing decision is made again. In process 32, a line to be a relay line is determined, the own station S1 is added to the transit stations, the exchange 4 is made to connect the next station Sj to the game station Sj, and the stored line group is deleted. Return to In process 31, the line selection is canceled, the lines that have been connected so far are released through the exchange 4, the memory regarding the line group is erased, and the process returns to decision 10 to wait for a line selection request.

なお、本実施例では、呼のグレード値が大きい程重要性
の高い呼として、蜆、制段階Mの値が大きくなるに従い
、順次、呼のグレードGの値が大きい呼まで規制範囲を
拡大して行く方式で説明したが、この逆に、呼のグレー
ド値が小さい程重要な呼として、規制段階が大きくなる
に従い、グレードの値が小さいものへと規制範囲を拡大
する方式%式% 以上説明した如く、本発明によれば、あふれ呼をもとに
迂回規制適用範囲を決定できない分布通信網においても
、通信網が処理し得る推走Fラヒッ装置と各交換局で発
生した呼数等から推定した発生トラヒック量との比より
求めた呼量率から迂回規制適用範囲を決定できるように
なる。従って、分布通信網においても通信網に加わるト
ラヒック量が増大したときは迂回回線の選択を制限し、
できるだけ最小中経リンク数で径路を構成させ、できる
だけ多くの通信呼が通信網を利用できるようにすると共
にトラヒック量が減少したときは迂回適用範囲を拡大し
、できる限り多くの回線の選択を許して通信径路の確立
を図れるようにするので通信網の有効利用が可能になる
。更に、通信呼をその重要性に応じてグレード付けし、
迂回規制措置を段階化することにより呼量率の増大に伴
って順次グレードの低い通信呼より措置を適用して行け
るので重要通信呼の疎通改善を図ることができる。
In this embodiment, the larger the call grade value is, the more important the call is.As the value of the control level M becomes larger, the restriction range is sequentially expanded to calls with a larger call grade G value. In contrast, the lower the grade value of a call, the more important the call is, and as the restriction level increases, the restriction range is expanded to those with lower grade values. As described above, according to the present invention, even in a distributed communication network where it is not possible to determine the application range of detour restrictions based on overflow calls, it is possible to determine the scope of application of detour restrictions based on the number of calls that occur at each exchange and the number of calls that can be processed by the communication network. The application range of detour regulation can be determined from the call volume rate obtained from the ratio of the estimated generated traffic volume. Therefore, even in a distributed communication network, when the amount of traffic added to the communication network increases, the selection of detour lines is restricted,
Configure routes with the minimum number of intermediate links to allow as many communication calls as possible to use the communication network, and when traffic volume decreases, expand the scope of detour application and allow the selection of as many lines as possible. This enables the establishment of a communication route, making effective use of the communication network possible. Furthermore, communication calls are graded according to their importance,
By grading the detour control measures, it is possible to sequentially apply measures to communication calls of a lower grade as the call volume rate increases, thereby improving the communication of important communication calls.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般に使用されている階位型の通信網の構成図
、第2図は分布通信網における呼量率と閉塞率の関係を
示すグラフ、第3図は本発明を適用する分布通信網を示
す構成図、第4図は本発明を実施するための管制装置に
の各部構成の構成図、第5図は本発明を実施するために
交換l1i4に付加すべき装置の構成図、第6図は回線
選択部9の処理動作フローチャートを示す説明図である
01・・・管制送受信部、2・・・網構成容量推定部、
3・・・規制段階決定部、4・・・交換機、5・・・交
換機4に付加すべき装置、6・・・計数部、7′・・・
網管理送受信部、8・・・径路表作成部、9・・・回線
選択部。 特許出願人 防衛庁技術研究本部長 大森幸衛 代理人  弁理士 村井 隆 第1図 al        al 0051Ω 一°1量牢 第2図
Figure 1 is a configuration diagram of a commonly used hierarchical communication network, Figure 2 is a graph showing the relationship between call volume rate and blockage rate in a distributed communication network, and Figure 3 is a distributed communication network to which the present invention is applied. FIG. 4 is a configuration diagram showing the configuration of each part of the control device for implementing the present invention. FIG. FIG. 6 is an explanatory diagram showing a processing operation flowchart of the line selection section 9. 01... Control transmitting/receiving section, 2... Network configuration capacity estimating section,
3... Regulation stage determining unit, 4... Exchange, 5... Device to be added to exchange 4, 6... Counting unit, 7'...
Network management transmitting/receiving unit, 8... Route table creation unit, 9... Line selection unit. Patent applicant Director of the Technical Research Headquarters, Agency of Defense Yukie Omori Patent attorney Takashi Murai Figure 1 al al 0051Ω 1°1 quantity Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)  通信網の交換局間を結ぶ回線が、通信しよう
とする相手端末が属する交換局(以下対局という)Kよ
って最適回線、または迂回回線となる分布通信網におい
て、その通信網に加え得る推定トラヒック容量と実際に
通信網内で発生した通信呼数とをもとに推定したトラヒ
ック量との比(以下、呼量率という・)に従りて、径路
として、迂回回線を選択し得る適用範囲を決定し、この
ことを通信網を構成する全交換局に通知して、各交換局
が径路となる回線選択を行5際に迂回回線の選択を決定
した適用範囲までしか行わせないととKより、通信疎通
向上を図ることを**とする通信網管制方式。
(1) In a distributed communication network, a line that connects exchanges in a communication network becomes an optimal line or a detour line depending on the exchange station (hereinafter referred to as the other station) K to which the other party's terminal belongs, and can be added to that communication network. A detour line can be selected as a route according to the ratio between the estimated traffic capacity and the traffic volume estimated based on the number of communication calls actually occurring within the communication network (hereinafter referred to as the call volume rate). Determine the scope of application, notify all exchanges that make up the communication network, and allow each exchange to select a circuit as a route, and only select a detour line up to the scope of application for which it was decided. From TotoK, a communications network control system designed to improve communications.
(2)  各回線のうち各交換局で各対局ととに最少中
継リンク数で到達できる回線をF回線(最適回線)K、
最少中継リンク数+1の中継リンク数で到達できる回線
と、それ以外の回線とを、それぞれ、8回線と、B回I
ii!(迂回回線)とに分類し、径路となる回線選択に
おいて、前記呼量率Pがある閾値へより小さい(P<α
υときはF、 E、  B回線すべてを選択対象とする
が、呼量率Pが閾値α1以上で、もう一つの閾値α、よ
り小さい(α1≦P〈α、)ときには、J  8回線を
選択対象とし、呼量率Pが閾値α3以上になりた(偽≦
P)ときは、F回線しか選択対象とさせないことKより
回線の有効利用を図ることを特徴とする特許請求の範囲
第1項記載の通信網管制方式。
(2) Among each line, the line that can reach each game station at each exchange with the minimum number of relay links is called F line (optimal line) K.
The lines that can be reached with the minimum number of relay links + 1 and the other lines are respectively 8 lines and B times I.
ii! (Detour line), and in selecting the route line, the call volume rate P is smaller than a certain threshold (P<α
When υ, all F, E, and B lines are selected, but when the call volume rate P is greater than or equal to the threshold α1 and smaller than the other threshold α (α1≦P<α,), the J8 line is selected. target, and the call volume rate P exceeds the threshold α3 (false ≦
2. The communication network control system according to claim 1, wherein in case P), only the F line is selected, thereby making more effective use of the line.
(3)通信呼をその重[L性に応じて0からW段階のグ
レード付け(但し、グレード付けをしない場合はW=0
とする)をすると共に、W+2段階の閾値αi(1≦i
≦W+2)をもうけ、呼量率Pが閾値α、より小さい(
P<αI)場合には規制段階Mを0に、閾値α1以上で
αl+1より小さい場合には規制段階Mをi(1≦i≦
W+1)に、閾値αw+!以上の場合には規制段階Mを
W+2と決定し、この規制段階Mを各交換局に通知して
、各交換局が径路となる回線を選択する場合、通信呼の
グレード段階Gと(0≦G≦W)そのときの規制段階M
とを比較しMがGより2以上大きい(M≧G+2)とき
Kは、2回線のみを選択対象とし、MがGより1だけ大
きい(M=G+1)ときにはF、  8回線を選択対象
とするが、MがG以下(M≦G)のときには、F、  
E、  BIJ線すべてを選択対象にすることKより、
重要通信呼の疎通改善と回線の有効利用を図ることを特
徴とする特許請求の範囲#!1項又は第2項記載の通信
網管制方式。
(3) Grading communication calls from 0 to W according to their weight [L nature (however, if no grading is done, W = 0)
) and W + 2 stages of threshold αi (1≦i
≦W+2), and the call volume rate P is smaller than the threshold α (
P<αI), the regulation stage M is set to 0, and when the threshold value α1 or more is smaller than αl+1, the regulation stage M is set to i (1≦i≦
W+1), the threshold αw+! In the above case, the restriction level M is determined to be W+2, this restriction level M is notified to each switching center, and each switching center selects the route route. G≦W) Regulation stage M at that time
When M is 2 or more larger than G (M≧G+2), K selects only 2 lines, and when M is 1 larger than G (M=G+1), F selects 8 lines. However, when M is less than or equal to G (M≦G), F,
E, From K to select all BIJ lines,
Claim #! characterized by improving communication of important communication calls and making effective use of lines! The communication network control method described in paragraph 1 or paragraph 2.
JP5137382A 1982-03-31 1982-03-31 Communication network management system Granted JPS58170262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5137382A JPS58170262A (en) 1982-03-31 1982-03-31 Communication network management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5137382A JPS58170262A (en) 1982-03-31 1982-03-31 Communication network management system

Publications (2)

Publication Number Publication Date
JPS58170262A true JPS58170262A (en) 1983-10-06
JPH0124463B2 JPH0124463B2 (en) 1989-05-11

Family

ID=12885134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5137382A Granted JPS58170262A (en) 1982-03-31 1982-03-31 Communication network management system

Country Status (1)

Country Link
JP (1) JPS58170262A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134143A (en) * 1984-12-04 1986-06-21 Mitsubishi Electric Corp Method of packet transmission in packet switching network
JPS61281658A (en) * 1985-06-06 1986-12-12 Nec Corp Originating regulation system
JPS62216561A (en) * 1985-12-18 1987-09-24 ブリテイシユ・テレコミユニケ−シヨンズ・パブリツク・リミテツド・カンパニ Method and apparatus for determining communication route
JPS63502550A (en) * 1985-12-05 1988-09-22 ベル コミュニケ−ションズ・リサ−チ・インコ−ポレ−テッド How to route network traffic

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138612A (en) * 1977-05-10 1978-12-04 Nec Corp Trunk connection control system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138612A (en) * 1977-05-10 1978-12-04 Nec Corp Trunk connection control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134143A (en) * 1984-12-04 1986-06-21 Mitsubishi Electric Corp Method of packet transmission in packet switching network
JPH037299B2 (en) * 1984-12-04 1991-02-01 Mitsubishi Electric Corp
JPS61281658A (en) * 1985-06-06 1986-12-12 Nec Corp Originating regulation system
JPS63502550A (en) * 1985-12-05 1988-09-22 ベル コミュニケ−ションズ・リサ−チ・インコ−ポレ−テッド How to route network traffic
JPS62216561A (en) * 1985-12-18 1987-09-24 ブリテイシユ・テレコミユニケ−シヨンズ・パブリツク・リミテツド・カンパニ Method and apparatus for determining communication route

Also Published As

Publication number Publication date
JPH0124463B2 (en) 1989-05-11

Similar Documents

Publication Publication Date Title
JP2679895B2 (en) Information transmission method and device
JP2851432B2 (en) Non-hierarchical traffic routing method in communication networks
US5042027A (en) Communication network system and method of controlling a communication network
CA2157144C (en) Method for adaptive routing in a communication network
JP3016811B2 (en) Predictive access control and routing system for integrated services telecommunications networks
EP0724800B1 (en) Least cost route selection in distributed digital communication networks
AU663968B2 (en) System and method for call-by-call source routing with rule-based fallbacks
EP1056246B1 (en) Internet protocol (IP) class-of-service routing technique
JP2897875B2 (en) Integrated Network Controller for Dynamic Non-Hierarchical Routing Switching Network
EP0660569A1 (en) Method and system for improving the processing time of the path selection in a high speed packet switching network
CA2187926A1 (en) Method and system for routing packets in a packet communication network using locally constructed routine tables
JPH08274875A (en) Autcmatic provision device and its method of parameter of trunk line selection and path selection in communication network
JP2001077848A (en) Band allocating method
CN111355660B (en) Routing determination method and system based on capacity balance and relative time delay
CN108848030A (en) Data transmission method and system
JPS58170262A (en) Communication network management system
JPH0715382A (en) Protocol for multiple access and its network
JPH06338918A (en) Burst band reservation method in asynchronous transfer network
Schwartz et al. Routing and flow control in data networks
Jabbari Routing and congestion control in common channel Signaling System No. 7
CN102388649B (en) Method and device for flow control
JPH0247943A (en) Communication method between local area networks
US6954426B2 (en) Method and system for routing in an ATM network
Prosser Routing procedures in communications networks-part ii: Directory procedures
Miller et al. MSE routing algorithm comparison