JPS58169002A - Attaching method of welding type strain gage - Google Patents

Attaching method of welding type strain gage

Info

Publication number
JPS58169002A
JPS58169002A JP5344782A JP5344782A JPS58169002A JP S58169002 A JPS58169002 A JP S58169002A JP 5344782 A JP5344782 A JP 5344782A JP 5344782 A JP5344782 A JP 5344782A JP S58169002 A JPS58169002 A JP S58169002A
Authority
JP
Japan
Prior art keywords
strain
groove
temperature
gauge
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5344782A
Other languages
Japanese (ja)
Inventor
Masakazu Matsuo
松尾 正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5344782A priority Critical patent/JPS58169002A/en
Publication of JPS58169002A publication Critical patent/JPS58169002A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges

Abstract

PURPOSE:To prevent the damage of a strain sensitive part due to an external force, by providing a groove in a body to be measured, and inserting the strain sensitive part of the strain gage into said groove. CONSTITUTION:In the surface of the body to be measured 5, the groove 10, which is matched with the protruded strain sensitive part 1 of the welding type strain gage, is cut. The strain sensitive part 1 is inserted in said groove 10, and the part of a base 2 is fixed by spot welding. Therefore, the part which is directly exposed to a high temperature gas flow 8, is only said base 2.

Description

【発明の詳細な説明】 本発明は、物体の表面に溶接して取り付けて。[Detailed description of the invention] The present invention can be attached by welding to the surface of an object.

物体に作用しているひずみを測定する溶接型ストレンゲ
ージの取り付は方法に関するものである。
The installation of a welded strain gauge for measuring the strain acting on an object relates to a method.

溶接型ストレンゲージは主として高温の金属物体の歪計
測に使用するストレンゲージであるが、第1図に溶接型
ストレンゲージの従来の方法によって取り付けた外観図
を示しである。
A welded strain gauge is a strain gauge mainly used to measure strain on high-temperature metal objects, and FIG. 1 shows an external view of a welded strain gauge installed by a conventional method.

溶接型ストレンゲージは薄い金属板からなるベース2に
溶接にて固定した感歪部lと、感歪部1の抵抗値変化を
外部へ取り出すリード線3と、リード線3を機械的に”
あるいは耐熱的に丈夫なように保護する保護管4とから
構成されるもので、金属材からなる被計測物体5にこの
溶接型ストレンゲージを取付けるには、ベース2を歪計
測場所に当てがい2点溶接にて取り付ける。第1図には
点溶接跡6を図示している。
A welded strain gauge has a strain-sensitive part 1 fixed to a base 2 made of a thin metal plate by welding, a lead wire 3 for taking out the resistance change of the strain-sensitive part 1 to the outside, and a mechanically connected lead wire 3.
Alternatively, it consists of a protective tube 4 that protects it from heat resistance and toughness.To attach this welded strain gauge to an object to be measured 5 made of a metal material, place the base 2 at the strain measurement location. Attach by spot welding. In FIG. 1, spot weld marks 6 are illustrated.

溶接型ストレンゲージを取付けた状態の感歪部lの拡大
縦断面図を第2図に示しである。感歪部lはその内部に
歪を恩知する金属抵抗線1aを内蔵しており、Mgo(
酸化マグネ7ア)粉末等の電気絶縁材を充てんしである
FIG. 2 shows an enlarged longitudinal cross-sectional view of the strain-sensitive portion 1 with a welded strain gauge attached thereto. The strain sensing part l has a built-in metal resistance wire 1a that senses strain inside it, and Mgo(
Magnetooxide 7a) Filled with electrical insulating material such as powder.

被計測物体5にはベース2を点溶接することによって取
り付けられているが9通常感歪部1の外径は0.5 T
R5l〜1.0あるため取付部表面からその分たけ突き
出した状態になる。
The base 2 is attached to the object to be measured 5 by spot welding, and the outer diameter of the normal strain-sensitive part 1 is 0.5 T.
Since R5l is 1.0, it protrudes by that amount from the mounting surface.

いまこの被計測物体5が高温ガス流8の中にあるとすれ
ば感歪部1は取付部表面から突き出ていることになり、
(1)高温ガス流8による熱伝達が良く行なわれる。(
2)感歪部lの内部はMgO粉末が充てんしであるため
、感歪部1自身の熱伝導は悪い。(3)感歪部1はベー
ス2との接触面積がその外径に比して比較的小さいため
、被計測物体5との熱伝導が悪い。等の理由で感歪部1
の温度は被計測物体5の温度よりも高温ガス流8の温度
に近い値となる。
If the object to be measured 5 is now in the high-temperature gas flow 8, the strain-sensitive part 1 will protrude from the surface of the mounting part.
(1) Heat transfer by the high-temperature gas flow 8 is well performed. (
2) Since the inside of the strain sensitive part 1 is filled with MgO powder, the heat conduction of the strain sensitive part 1 itself is poor. (3) Since the contact area of the strain sensing portion 1 with the base 2 is relatively small compared to its outer diameter, heat conduction with the object to be measured 5 is poor. Due to such reasons, the distortion part 1
The temperature is closer to the temperature of the high-temperature gas flow 8 than the temperature of the object to be measured 5.

溶接型ストレノゲージは本来高温の歪計測を目的として
製作されているため構成素材は耐熱的に吟味して使用さ
れているが、それでも振動応力等の動的歪針側に対して
はその使用限界は現状では、850℃程度までである。
Welded strain gauges are originally manufactured for the purpose of high-temperature strain measurement, so the constituent materials are carefully considered for heat resistance, but there are still limits to their use against dynamic strain needles such as vibration stress. Currently, the temperature is up to about 850°C.

なお、静的歪計測に対してはもっと使用限界が下り通常
550℃程度1でとされている。
Note that for static strain measurement, the usage limit is lower and is usually about 550°C.

一方最近ガスタービン、ボイラ、その他高温ガスを使用
する機種の高温ガス中における歪計11111が増加し
つつあり、ガス温度が1000℃を超えるケースがざら
にある。この様に溶接型ストン/ゲージの耐熱限界85
0℃以上のガス体の場合は千6F測ができないか、ある
いはわざわざガス温度を一時的に850℃以下に下げて
歪計測を行わなければならない不都合があった。
On the other hand, recently, the number of strain gauges 11111 in high-temperature gas in gas turbines, boilers, and other models that use high-temperature gas has been increasing, and there are many cases where the gas temperature exceeds 1000°C. In this way, the heat resistance limit of welded stone/gauge is 85
In the case of a gas body with a temperature of 0° C. or higher, it is not possible to measure 1,600 F, or it is inconvenient that the gas temperature must be temporarily lowered to 850° C. or lower to measure strain.

本発明はこれらの欠点を排除するものであっ。The present invention eliminates these drawbacks.

て、溶接型ストン/ゲージを歪計測対象物に点溶接する
に際5.歪計測物体の計測点の場所に。
5. When spot welding the welding type stone/gauge to the strain measurement object. At the location of the measurement point of the strain measurement object.

浴接型ストレノゲージの突起した感歪部に合せて予め溝
切りをしておき、上記溝内にストレノケーン感歪部を挿
入して、ストレノゲージのベースを点溶接にて取付ける
ので、高温ガス流に晒される物体の歪を計測する場合で
あっても。
A groove is cut in advance to match the protruding strain-sensing part of the bath-contact type strain gauge, the strain-sensing part of the strain gauge is inserted into the groove, and the base of the strain gauge is attached by spot welding, so it is not exposed to high-temperature gas flow. Even when measuring the strain of an object that is

その感歪部の温度が高温ガス流の温度の値よりも、ゲー
ジを取付けた物体の温度の値に近くなるようにすること
ができる。
The temperature of the strain sensitive part can be made closer to the temperature of the object to which the gauge is attached than the temperature of the hot gas flow.

以下本命°明による溶接型ストレノゲージの取41法を
第3図ないし第5図を参照しながら説明する。
Hereinafter, the 41 method of manufacturing a welded strain gauge according to Honmei will be explained with reference to FIGS. 3 to 5.

第3図において5は被計測物体であって歪計測場所を示
しており、その表面に溶接型ストレノゲージの突起した
感歪部lに合った溝10をまず切る。
In FIG. 3, reference numeral 5 denotes the object to be measured, which is the place where the strain is measured.First, a groove 10 is cut on the surface of the object to fit the protruding strain-sensitive portion 1 of the welded strain gauge.

次に、溝切りした被計測物体5の溝lOの部分に溶接型
ストン/ゲージの感歪部】を挿入し。
Next, insert the strain sensitive part of the welded stone/gauge into the groove lO of the grooved object 5 to be measured.

ベース2の部分を点溶接して固定する。Fix the base 2 by spot welding.

従って、被計測物体5の表面から突き出している部分は
ベース2の厚み相当分のみとなっており高温ガス流8に
直接暴露される部分は、このベース2のみである。
Therefore, the only part that protrudes from the surface of the object to be measured 5 is the thickness of the base 2, and the only part that is directly exposed to the high-temperature gas flow 8 is the base 2.

第5図は溶接型ストン/ゲージを本発明の取付法によっ
てタービン翼11に取付けた外観図であり、その目的は
翼振動応力を計測するためである。
FIG. 5 is an external view of a welded stone/gauge attached to a turbine blade 11 by the attachment method of the present invention, the purpose of which is to measure blade vibration stress.

なお感歪部分と同様な理由でリード線3および保護管4
もタービン翼11に加工した溝の内部に埋め込んであり
、翼11表面に突き出さない形状となっている。
In addition, for the same reason as the distortion part, the lead wire 3 and protection tube 4
The grooves are also embedded inside the grooves machined in the turbine blade 11 and have a shape that does not protrude from the surface of the blade 11.

もちろんこの溝内のリード線3などは図示しなし)が1
回転中に遠心力等によって移動したり。
Of course, the lead wire 3 in this groove is not shown).
It moves due to centrifugal force, etc. during rotation.

溝外部−\飛び出さな様に接着剤を充てんしたり。Outside the groove - Fill with adhesive to prevent it from popping out.

あるいは溝外部を金属薄板でカバーして点溶接する等、
適当なる方法でもって強固に固定しである。
Alternatively, cover the outside of the groove with a thin metal plate and spot weld it.
It must be firmly fixed using an appropriate method.

本発明の方法によって第4図に示す如く被計測物体5に
溝切りした溝1oの内側に溶接型ストン/ケージの感歪
部1を位置させた場合にはストレ/ケー7取付部の表面
から突き出している部分はストレノゲージのベース2の
厚み相当分たけであり、しかもこのベース2の厚みは通
帛0. I IIIJI程度でしがないため極く僅がし
か突き出ていないと言える。
When the strain-sensitive part 1 of the welded type stone/cage is located inside the groove 1o cut in the object to be measured 5 as shown in FIG. The protruding part is equivalent to the thickness of the base 2 of the streno gauge, and the thickness of the base 2 is 0. It can be said that it is only slightly protruding because it is only about I III JI.

したがって高温ガス流8によって溶接型ストレンゲ−/
に熱伝達される熱量は、ゲージの取イ1場所の近くの部
分の被計測物体5と大差ない。
Therefore, the hot gas flow 8 causes the welding type strainer/
The amount of heat transferred to the measured object 5 is not much different from that of the measured object 5 in the vicinity of the gauge takeout 1.

−また感歪部1の形状に合せてm10の形状が加工され
ているから、感歪部1と被計測物体5との接触面積は大
きく、その接触面における熱伝導は良く行なわれ、した
がって感歪部lの温度は高温ガス流8の温度よりも被計
測物体5の温度の方により近い値でおることは自明であ
る。
- Also, since the shape of m10 is machined to match the shape of the strain sensing part 1, the contact area between the strain sensing part 1 and the object to be measured 5 is large, and heat conduction on the contact surface is good, so It is obvious that the temperature of the strained portion l is closer to the temperature of the object to be measured 5 than the temperature of the high-temperature gas flow 8.

なお、一般に高温ガスの温度よりも被計測物体の温度の
方が低い場合の歪計測が多く、また第5図に示す場合も
この様なケースを対象とする訳であるが、この場合に溶
接型ストレンゲーンの温度の使用限界は高温ガスの温度
よりも被計測物体の温度によって定めることが可能とな
るO したがって、被計測物体11の温度が溶接型ストレノゲ
ージの使用温度限界(現状では約850℃)以内であれ
ば、高温ガスの温度がそれより高くても一向に差し支え
なく歪計側を実施できる利点がある。
In general, strain measurements are often performed when the temperature of the object to be measured is lower than the temperature of the high-temperature gas, and the case shown in Figure 5 is also intended for such cases. The operating temperature limit of the type strain gauge can be determined by the temperature of the object to be measured rather than the temperature of the high-temperature gas. ), there is an advantage that the strain gauge side can be operated without any problem even if the temperature of the high-temperature gas is higher than that.

一方9本発明の取付法によって取り付けた溶接型ストレ
ノゲージを高速流体中の歪−計測に適用すると、感歪部
1が突き出さない形状に溶接型ストし/ゲージを取付け
ることができるので。
On the other hand, if the welded strain gauge attached by the mounting method of the present invention is applied to strain measurement in high-speed fluid, the welded strain gauge can be attached in a shape where the strain sensitive part 1 does not protrude.

感イ≧部1が流体によって外力を受けて損傷することは
なく、また流体の流れも乱されることはなくなる利小が
ある。
Sensing I≧There is an advantage that the part 1 is not damaged by external force from the fluid, and the flow of the fluid is not disturbed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方法でゲージを取り付けた図。 第2図は第1図のト」断面図、第3図は物体表面VC*
切りした溝の図、第4図は本発明の塩11法によってゲ
ージを取り付けた図、第5図は+lIIIw例を示す図
である。 1、感歪部、2:ベース、3:リード線。 4:保護筒、5:被計測物体、8:高温ガス流、10:
Figure 1 shows the gauge installed using the conventional method. Figure 2 is a sectional view of Figure 1, Figure 3 is the object surface VC*
FIG. 4 is a diagram showing a cut groove, FIG. 4 is a diagram showing a gauge attached by the salt 11 method of the present invention, and FIG. 5 is a diagram showing a +lIIIw example. 1. Distortion sensitive section, 2. Base, 3. Lead wire. 4: Protective tube, 5: Measured object, 8: High temperature gas flow, 10:
groove

Claims (1)

【特許請求の範囲】 溶接型ストレンゲージを歪計測対象物に゛点溶接するに
際し、歪計測物体の計測点の場所に。 溶接型ストレンゲーンの突起した感歪部に合せて予め溝
切りをしておき、上記溝内にストレノゲージ感歪部を挿
入して、ストレンゲージのベースを点溶接にて取付ける
ことを特徴とする溶接型ストトンゲージの取付法。
[Claims] When spot welding a welding type strain gauge to the strain measurement object, at the measurement point location of the strain measurement object. Welding characterized in that a groove is cut in advance in line with the protruding strain sensitive part of the welding type strain gauge, the strain gauge sensitive part is inserted into the groove, and the base of the strain gauge is attached by spot welding. How to install a type Stoton gauge.
JP5344782A 1982-03-31 1982-03-31 Attaching method of welding type strain gage Pending JPS58169002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5344782A JPS58169002A (en) 1982-03-31 1982-03-31 Attaching method of welding type strain gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5344782A JPS58169002A (en) 1982-03-31 1982-03-31 Attaching method of welding type strain gage

Publications (1)

Publication Number Publication Date
JPS58169002A true JPS58169002A (en) 1983-10-05

Family

ID=12943101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5344782A Pending JPS58169002A (en) 1982-03-31 1982-03-31 Attaching method of welding type strain gage

Country Status (1)

Country Link
JP (1) JPS58169002A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100956847B1 (en) 2007-08-23 2010-05-11 한국기초과학지원연구원 Method for measuring stress of body
CN103604627A (en) * 2013-12-09 2014-02-26 东南大学 Problematic cable/concentrated load/generalized displacement progressive recognition method on basis of hybrid monitoring
CN103604635A (en) * 2013-12-09 2014-02-26 东南大学 Damaged cable/concentrated load recognition method on basis of generalized displacement hybrid monitoring
CN103604647A (en) * 2013-12-09 2014-02-26 东南大学 Damaged cable/concentrated load recognition method on basis of linear displacement angle monitoring
CN103616194A (en) * 2013-12-09 2014-03-05 东南大学 Progressive identifying method for damaged cable concentrated loads and support angular displacement based on angle monitoring
CN103616208A (en) * 2013-12-09 2014-03-05 东南大学 Identifying method for problem cable and concentrated loads based on angle monitoring
CN103616195A (en) * 2013-12-09 2014-03-05 东南大学 Identifying method for damaged cable and concentrated loads based on mixture monitoring in time of angular displacement
CN103616193A (en) * 2013-12-09 2014-03-05 东南大学 Hybrid-monitoring angular displacement identification method for defective cable and concentrated loads
CN103616245A (en) * 2013-12-09 2014-03-05 东南大学 Progressive concentrated load support angular displacement identification method for damaged cable in process of cable force monitoring
CN103616219A (en) * 2013-12-09 2014-03-05 东南大学 Hybrid-monitoring generalized displacement identification method for damaged cable and concentrated loads
CN103616223A (en) * 2013-12-09 2014-03-05 东南大学 Method for identifying concentrated loads of damaged cables in linear displacement process based on strain monitoring
CN103616243A (en) * 2013-12-09 2014-03-05 东南大学 Strain-monitoring damaged cable centralized load generalized displacement progressive recognition method
CN103616230A (en) * 2013-12-09 2014-03-05 东南大学 Damaged cables in process of cable force monitoring and progressive concentrated load identification method
CN103616217A (en) * 2013-12-09 2014-03-05 东南大学 Progressive identifying method for problem cable and concentrated loads based on mixture monitoring in time of angular displacement
CN103616202A (en) * 2013-12-09 2014-03-05 东南大学 Angular displacement strain monitoring identification method for defective cable and concentrated loads
CN103616237A (en) * 2013-12-09 2014-03-05 东南大学 Method for recognizing concentrated loads of damaged cable under condition of generalized displacement based on angle monitoring
CN103616004A (en) * 2013-12-09 2014-03-05 东南大学 Strain-monitoring damaged cable centralized load angular displacement recognition method
CN103616224A (en) * 2013-12-09 2014-03-05 东南大学 Damaged cable and concentrated load recognition method based on cable force monitoring
CN103630390A (en) * 2013-12-09 2014-03-12 东南大学 Space coordinate monitoring based damaged cable and concentrated load identification method
CN103630412A (en) * 2013-12-09 2014-03-12 东南大学 Method for progressively identifying concentrated loads of problematic cables by means of monitoring angles during angular displacement
CN103630410A (en) * 2013-12-09 2014-03-12 东南大学 Damaged cable and concentrated load progressive identification method based on generalized displacement mixed monitoring
CN103630409A (en) * 2013-12-09 2014-03-12 东南大学 Cable force monitoring damaged cable concentrated load support corner displacement recognition method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4322926Y1 (en) * 1965-05-04 1968-09-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4322926Y1 (en) * 1965-05-04 1968-09-27

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100956847B1 (en) 2007-08-23 2010-05-11 한국기초과학지원연구원 Method for measuring stress of body
CN103604627A (en) * 2013-12-09 2014-02-26 东南大学 Problematic cable/concentrated load/generalized displacement progressive recognition method on basis of hybrid monitoring
CN103604635A (en) * 2013-12-09 2014-02-26 东南大学 Damaged cable/concentrated load recognition method on basis of generalized displacement hybrid monitoring
CN103604647A (en) * 2013-12-09 2014-02-26 东南大学 Damaged cable/concentrated load recognition method on basis of linear displacement angle monitoring
CN103616194A (en) * 2013-12-09 2014-03-05 东南大学 Progressive identifying method for damaged cable concentrated loads and support angular displacement based on angle monitoring
CN103616208A (en) * 2013-12-09 2014-03-05 东南大学 Identifying method for problem cable and concentrated loads based on angle monitoring
CN103616195A (en) * 2013-12-09 2014-03-05 东南大学 Identifying method for damaged cable and concentrated loads based on mixture monitoring in time of angular displacement
CN103616193A (en) * 2013-12-09 2014-03-05 东南大学 Hybrid-monitoring angular displacement identification method for defective cable and concentrated loads
CN103616245A (en) * 2013-12-09 2014-03-05 东南大学 Progressive concentrated load support angular displacement identification method for damaged cable in process of cable force monitoring
CN103616219A (en) * 2013-12-09 2014-03-05 东南大学 Hybrid-monitoring generalized displacement identification method for damaged cable and concentrated loads
CN103616223A (en) * 2013-12-09 2014-03-05 东南大学 Method for identifying concentrated loads of damaged cables in linear displacement process based on strain monitoring
CN103616243A (en) * 2013-12-09 2014-03-05 东南大学 Strain-monitoring damaged cable centralized load generalized displacement progressive recognition method
CN103616230A (en) * 2013-12-09 2014-03-05 东南大学 Damaged cables in process of cable force monitoring and progressive concentrated load identification method
CN103616217A (en) * 2013-12-09 2014-03-05 东南大学 Progressive identifying method for problem cable and concentrated loads based on mixture monitoring in time of angular displacement
CN103616202A (en) * 2013-12-09 2014-03-05 东南大学 Angular displacement strain monitoring identification method for defective cable and concentrated loads
CN103616237A (en) * 2013-12-09 2014-03-05 东南大学 Method for recognizing concentrated loads of damaged cable under condition of generalized displacement based on angle monitoring
CN103616004A (en) * 2013-12-09 2014-03-05 东南大学 Strain-monitoring damaged cable centralized load angular displacement recognition method
CN103616224A (en) * 2013-12-09 2014-03-05 东南大学 Damaged cable and concentrated load recognition method based on cable force monitoring
CN103630390A (en) * 2013-12-09 2014-03-12 东南大学 Space coordinate monitoring based damaged cable and concentrated load identification method
CN103630412A (en) * 2013-12-09 2014-03-12 东南大学 Method for progressively identifying concentrated loads of problematic cables by means of monitoring angles during angular displacement
CN103630410A (en) * 2013-12-09 2014-03-12 东南大学 Damaged cable and concentrated load progressive identification method based on generalized displacement mixed monitoring
CN103630409A (en) * 2013-12-09 2014-03-12 东南大学 Cable force monitoring damaged cable concentrated load support corner displacement recognition method

Similar Documents

Publication Publication Date Title
JPS58169002A (en) Attaching method of welding type strain gage
US3857287A (en) Pressure transducers
US5999081A (en) Shielding unique for filtering RFI and EFI interference signals from the measuring elements
US5505092A (en) Non-invasive fluid condition sensing transducer
US4164433A (en) Tube skin thermocouples and method of making same
US2363181A (en) Strain gauge
US5864282A (en) Unique strain relief junction
US3539400A (en) High temperature composite support for a thermocouple probe
US2327935A (en) Explosion pressure gauge
US20070007049A1 (en) Housingless load cell
CN102538994A (en) Small inertia galvanic couple
US11009402B2 (en) Thermocouple assembly
JPS59204731A (en) Thermometer for high-temperature, high-pressure air flow
KR100456093B1 (en) Heat-flux gage and manufacturong method thereof
JPH05164626A (en) Temperature measuring method using thermocouple
CN217304200U (en) High-sensitivity temperature-change-resistant NTC temperature sensor
US4208567A (en) Weldable instrumentation installation tool
JP4496095B2 (en) Valve open / close detection sensor
CN211978184U (en) Ring strain gauge with self-heat dissipation and self-positioning functions
JP3027157B1 (en) Sensor
CN116352505A (en) Diamond cutter capable of automatically sensing cutting force and cutting temperature and manufacturing method thereof
CN220018741U (en) High-precision thermistor sensor
CN218673963U (en) Corrosion-resistant thermocouple
CN216246884U (en) Shock-proof thermometer
CN219284565U (en) Pressure sensor