JPS58168984A - Submarine investigating device - Google Patents

Submarine investigating device

Info

Publication number
JPS58168984A
JPS58168984A JP57051877A JP5187782A JPS58168984A JP S58168984 A JPS58168984 A JP S58168984A JP 57051877 A JP57051877 A JP 57051877A JP 5187782 A JP5187782 A JP 5187782A JP S58168984 A JPS58168984 A JP S58168984A
Authority
JP
Japan
Prior art keywords
towing
buoy
towed
fish
seabed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57051877A
Other languages
Japanese (ja)
Inventor
Yuzo Tokumaru
得丸 雄三
Yoshizo Noji
野地 吉蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumitomo Heavy Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57051877A priority Critical patent/JPS58168984A/en
Publication of JPS58168984A publication Critical patent/JPS58168984A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oceanography (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To hold the fish of a side sonar at constant height, by towing the fish by an investigating machine run on the sea bottom through a specific-length towing rope. CONSTITUTION:The investigating machine 1 is towed by a tugboat through the rope 2. A buoy 10 towed in the sea is locked atop of the rope 9 unwound from a take-up drum on the investigating machine 1 and the fish 11 of the side sonar for investigating the topography of the sea bottom is coupled with the rear of the buoy 10 through a towing cable 12 to two the fish 11 by the buoy 10. The length of the rope 9 is specified on the basis of the measurement range of the side sonar. Consequently, the fish 11 is held nearly at specific height from the sea bottom surface.

Description

【発明の詳細な説明】 本発明は海底調査装置に関し、より特別にi′i超音波
機器を使用して海底形状を調査する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for investigating the ocean floor, and more particularly to an apparatus for investigating the shape of the ocean floor using i'i ultrasonic equipment.

従来、地形調査用の超音波機器、すなわちサイドソーナ
を使用して海底地形を調査するには、曳船により該サイ
ドソーナを包蔵せるフ・イシュが海中を走行するごと(
該フイラスを曳航し、サイドソーナより海底面に対し所
定の角度をもった超音波を送信し、反射波を受信するこ
とにより海底形状を観測してきた。力へろ海底形状め一
観測においてはサイドソーナのフイラスを海底面から一
定の高さに維持することが測定範囲を一定に保つために
必要である。しかしながら、上記従来の方法ではサイド
ソーナのフイラスが曳船より牽引ロープを介して海中を
曳航されるも・つであるために、サイドソーナのフイラ
スと海底面との間の距離が水深の変化や曳船の速度変化
等に#つて変化し、これを修正すべく常時水深ヰ・曳船
速度等を監視して牽引ロープの長さを調節する必要があ
り、操作が面倒でかつ正確な観測結果を得うことが難し
い欠点がある。
Conventionally, in order to investigate the seafloor topography using ultrasonic equipment for topographical survey, that is, side sonar, each time a ship carrying the side sonar is moved underwater by a tugboat (
The shape of the seafloor has been observed by towing the filas, transmitting ultrasonic waves at a predetermined angle to the seabed surface from a side sonar, and receiving the reflected waves. In order to observe the shape of the seafloor using force, it is necessary to maintain the filler of the side sonar at a constant height above the seafloor in order to keep the measurement range constant. However, in the conventional method described above, the fillet of the side sonar is towed through the sea by the tugboat via a tow rope. In order to correct this, it is necessary to constantly monitor the water depth, towing speed, etc. and adjust the length of the towing rope, which is cumbersome to operate and difficult to obtain accurate observation results. There are difficult drawbacks.

本発明は、上記従来の欠点な除去すべくなされたもので
あって、このため本発明は曳船によりサイドソーナのフ
イラスを曳航し、該サイドンーナより海底面に向は超音
波を送信し、反射波を受信t7て海底の形状を調査する
海底調査装置において、前記サイドソーナのフイラスを
曳船により牽引されて海底面上を滑走する調査機より所
定長さの牽索を介して海中を曳航されるブイにより牽引
することを特徴とする。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional technology.For this reason, the present invention uses a towboat to tow the fillet of a side sonar, and transmits ultrasonic waves from the side sonar toward the seabed surface to emit reflected waves. In a seabed survey device that receives reception t7 and investigates the shape of the seabed, the filler of the side sonar is towed by a buoy that is towed under the sea via a tether of a predetermined length from a surveying machine that is towed by a tugboat and glides on the seabed surface. It is characterized by

以下、本発明の一実施例を添附図に沿って説明する。An embodiment of the present invention will be described below with reference to the accompanying drawings.

図は本発明の一実施例を示す概略図で、図において1は
図示しない海水面上の曳船より牽索2を介して牽引され
海底面6上を滑走する楠状の調査機、4は該調査機に昇
降可能に設けられ海底に突出可能な鋤掘削式硬さ測定装
置、5は該調査機1上に搭載された海底地質調査用の超
音波機器すなわちジオソーナ、6は調査機11り曳行索
7を介して牽引され海底面上を滑走する櫓状の磁気探査
機である。
The figure is a schematic diagram showing an embodiment of the present invention. In the figure, 1 is a camphor-shaped surveying machine that is towed by a tugboat on the sea surface (not shown) via a tug 2 and slides on the seabed 6, and 4 is a A plow excavation type hardness measuring device that is installed on the surveying machine so that it can be raised and lowered and that can protrude to the seabed; 5 is an ultrasonic device for seabed geological survey mounted on the surveying machine 1, that is, a geosoner; 6 is towed by the surveying machine 11; It is a turret-shaped magnetic probe that is towed by a cable 7 and slides on the sea floor.

しかして、本発明においては、図示のように、調査機1
上の巻取りドラム8より引出された牽索9の先端に海中
を曳航されるブイ10を係止し、該曳航ブイ10の後尾
に海底地形調査用のサイドソー尤のブイシュ11を曳航
ケーブル12を介して連結し、先行する曳航ブイ10に
よってサイドソー尤のブイシュ11を牽引する。牽索9
の長さ1ます、イドンーナによる測定範囲に基き所定の
長さに維持される。このように、海底を滑走する調査機
1(てより一定長さの牽索9を介して曳航ブイ10を牽
引し、該先行する曳航ブイ10によりサイドソー尤のブ
イシュ11を牽引することにより、サイドソー尤のブイ
シュ11は水深の変化や曳船の速度の変化等に拘らずつ
ねに海底面よりほぼ一定の高さに維持され、したがって
従来のように、水深等が変化する度毎にサイドソー尤の
ブイシュ位置を調節するという面倒な操作を回避できる
とともに、つねに測定範囲を一定に維持して正確な地形
観6)1jを行うことができる。なお、サイドソー尤か
らの超音波の送受信および巻取りドラム8の巻取り、巻
戻し動作は図示しないコントロールケーズルを介して曳
船上より行われ、またサイドソー尤の海底面からの高さ
は巻取りドラム8から巻戻された牽索9の長さを監視す
ることにより曳船上にて監視することができる。さらに
、受信信号の      1処理は曳船上にて公知の方
法で行うことができる。
However, in the present invention, as shown in the figure, the investigation device 1
A buoy 10 to be towed underwater is anchored to the tip of a towing line 9 pulled out from the upper winding drum 8, and a towing cable 12 is attached to the rear of the towing buoy 10 with a side saw buoy 11 for surveying the submarine topography. The side saw buoy 11 is towed by the preceding towing buoy 10. Chasing 9
The length of 1 is maintained at a predetermined length based on the measurement range by Idonna. In this way, by towing the towing buoy 10 via the towing line 9 of a certain length from the surveying aircraft 1 sliding on the seabed, and by towing the towing buoy 11 of the side saw with the preceding towing buoy 10, the side saw The actual buoy 11 is always maintained at a substantially constant height above the seabed regardless of changes in water depth or the speed of the towboat, and therefore, as in the past, the position of the side saw buoy is adjusted every time the water depth changes. It is possible to avoid the troublesome operation of adjusting the measurement range, and to always maintain a constant measurement range to perform an accurate topographic view 6) 1j. The transmission and reception of ultrasonic waves from the side saw blade and the winding and unwinding operations of the winding drum 8 are performed from the towboat via a control case (not shown), and the height of the side saw blade from the seabed is determined by the height of the winding drum 8. By monitoring the length of the towline 9 unwound from 8, it can be monitored on the tugboat. Furthermore, processing of the received signals can be performed onboard the tugboat in a known manner.

上記曳航ブイ10およびサイドソー尤のブイシュ11は
、不使用時には巻取りドラム8により牽索9を巻取るこ
とによって調査機1上の収納梓1ろ内へ収納することが
できる。
When the towing buoy 10 and side saw buoy 11 are not in use, they can be stored in the storage cage 1 on the surveying machine 1 by winding up the towing line 9 with the winding drum 8.

なお、上記硬さ測定装置4は鋤前面に土圧割測用の圧力
センサを埋込み、鋤に加わる土圧を測定することにより
硬さを判定するもので、圧力センサを上下に複数個設け
ることにより掘削深さに対応した硬さの判定が可能であ
る。また、上記ジオソーナ5は海底面より至近距離位置
から小出力の超音波を送信して精度のよい調査を行うこ
とができ、海底下1〜2mの底質変化を判別することが
できる。さらに、上記磁気探査装置6はフラックスゲー
ト方式の磁気探知器6aを複数個並べて非金属材料を主
体としだ橿6bに搭載したものである。これら硬さ測定
装置4.:)オソーナ5および磁気探知器6は上記サイ
ドソー尤11と組合わせて海底地質、硬さ、地形および
磁気探査を同時に行うことができる。と(に、地形調査
と硬さ調査とを同時に行うことにより、従来のように別
々に行うことから生ずる航跡のずれに基因する誤測定を
排除することができる。
The hardness measuring device 4 has a pressure sensor embedded in the front surface of the plow to measure soil pressure, and determines the hardness by measuring the soil pressure applied to the plow, and a plurality of pressure sensors may be provided above and below. It is possible to judge the hardness corresponding to the excavation depth. Furthermore, the geosoner 5 can transmit low-output ultrasonic waves from a position close to the seabed surface to perform highly accurate surveys, and can determine changes in the bottom sediment 1 to 2 meters below the seafloor. Furthermore, the above-mentioned magnetic exploration device 6 has a plurality of fluxgate type magnetic detectors 6a lined up and mounted on a rod 6b mainly made of non-metallic material. These hardness measuring devices4. :) The osonar 5 and the magnetic detector 6 can be combined with the side saw 11 to simultaneously conduct seabed geology, hardness, topography, and magnetic exploration. Additionally, by conducting the topography survey and the hardness survey simultaneously, it is possible to eliminate erroneous measurements caused by track deviations that would otherwise occur if they were conducted separately as in the past.

以上のように、本発明によれば水深′摩の変化に拘らず
つねにサイドソー尤を海底面から一定の高さに保つこと
ができ、したがって操作が簡単でかつ正確な観測結果が
得られろ海底調査装置が得られる。
As described above, according to the present invention, it is possible to always maintain the side saw at a constant height above the seabed regardless of changes in water depth, and therefore the operation is simple and accurate observation results can be obtained. An investigation device is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略側面図、第2図は
同平面図である。 1・・・調査機、     9・・・牽索、10・・・
曳航ブイ、  11・・・ザ・イドソナーブイシュ。 特許出願人  住友電気工業株式会社 同    住友重機棹工業株式会社
FIG. 1 is a schematic side view showing one embodiment of the present invention, and FIG. 2 is a plan view thereof. 1... Investigation aircraft, 9... Towing, 10...
Towing Buoy, 11...The Ido Sonar Buoy. Patent applicant: Sumitomo Electric Industries, Ltd. Sumitomo Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 曳船によりサイドソーナのフイラスを曳航し該サイドソ
ーナより海底面に向は超音波を送信し、反射波を受信し
て海底の形状を調査する海底調査装置において、前記サ
ーイードソーナのフイラスを曳船により牽引されて海底
面上を滑走する調査機より所定長さの牽索を介して海中
を曳航されるノイにより牽引することを特徴とする海底
調査装置。
In a submarine survey device that investigates the shape of the seafloor by towing the fillus of a side sonar by a tugboat, transmitting ultrasonic waves from the side sonar toward the seabed surface, and receiving reflected waves, the shape of the seabed is investigated. A submarine survey device characterized in that it is towed by a noi that is towed underwater via a towline of a predetermined length by a survey vehicle that glides on a surface.
JP57051877A 1982-03-30 1982-03-30 Submarine investigating device Pending JPS58168984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57051877A JPS58168984A (en) 1982-03-30 1982-03-30 Submarine investigating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57051877A JPS58168984A (en) 1982-03-30 1982-03-30 Submarine investigating device

Publications (1)

Publication Number Publication Date
JPS58168984A true JPS58168984A (en) 1983-10-05

Family

ID=12899104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57051877A Pending JPS58168984A (en) 1982-03-30 1982-03-30 Submarine investigating device

Country Status (1)

Country Link
JP (1) JPS58168984A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276673A (en) * 2006-04-10 2007-10-25 Matsushita Electric Ind Co Ltd Basket and bicycle furnished with basket

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314310A (en) * 1976-07-27 1978-02-08 Toshiba Corp Controlling device of ac motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314310A (en) * 1976-07-27 1978-02-08 Toshiba Corp Controlling device of ac motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276673A (en) * 2006-04-10 2007-10-25 Matsushita Electric Ind Co Ltd Basket and bicycle furnished with basket

Similar Documents

Publication Publication Date Title
US8400871B2 (en) Seafloor-following streamer
US4726315A (en) Apparatus for towing arrays of geophysical devices
JPH0339742Y2 (en)
US4781140A (en) Apparatus for towing arrays of geophysical devices
KR101538981B1 (en) A system and method for optimizing dredging
JP2010190726A (en) Method and system for surveying terrain of bottom of water
CA2920447C (en) Apparatus and method for surveying
CN113534260B (en) Broadband near-seafloor deep sea geological structure acoustic detection system and method
KR102389050B1 (en) Hydrographic survey system having variable wing traction assist device
US5616059A (en) Tailbuoy with self-deploying mast
KR20190141341A (en) Method for Inspection Underwater Structures Using Drone and Sonar
JPS61142488A (en) Marine probing method by utilizing one or more of remote control ship
JPS58168984A (en) Submarine investigating device
KR102389051B1 (en) Hydrographic survey system having traction sensor
Chesterman et al. Acoustic surveys of the sea floor near Hong Kong
Bryant Side scan sonar for hydrography-an evaluation by the Canadian hydrographic service
EP1215114A1 (en) Method of laying an underwater cable
KR101656860B1 (en) Deflector system with angle adjustable vane of towing receiver onto the underwater for the based on divided type of marine seismic survey of 3dimension
JPS58168983A (en) Submarine investigating device
JPS58168942A (en) Submarine investigating machine
EP3087225B1 (en) Device and method for obtaining information about the ground of an area for dredging
LaFond et al. A sonic device for underwater sediment surveys
Spiess et al. Fine scale mapping near the deep sea floor
Chuku et al. Geophysical methods of investigating the seafloor for the emplacement and monitoring of subsea facilities offshore Niger Delta (Nigeria)
Kudrass Improvement of deep-sea dredging operations through the use of a depth meter