JPS58168922A - Photodetecting circuit - Google Patents

Photodetecting circuit

Info

Publication number
JPS58168922A
JPS58168922A JP57051817A JP5181782A JPS58168922A JP S58168922 A JPS58168922 A JP S58168922A JP 57051817 A JP57051817 A JP 57051817A JP 5181782 A JP5181782 A JP 5181782A JP S58168922 A JPS58168922 A JP S58168922A
Authority
JP
Japan
Prior art keywords
signal
buffer
photodiode
switching
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57051817A
Other languages
Japanese (ja)
Inventor
Takeomi Suzuki
鈴木 武臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57051817A priority Critical patent/JPS58168922A/en
Publication of JPS58168922A publication Critical patent/JPS58168922A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To reduce power consumption by putting a switching FET in operation only when access to the output of a photodiode should be done and supplying electric power to an FET buffer, and supplying the electric power to only necessary element. CONSTITUTION:Through the on-off operation of the switching FET3, the photodiode D is charged up to a power supply voltage and then its discharge is started by photoelectrons. The potential of the S1 during light integration is power- amplified by a buffer T4 through a switching FETT1 in an on state and then led out of a voltage amplifier A used in common to other photodetecting elements through a signal line L. A capacitor C holds light integration signals at a time by turning off the FETT1 together with the other photodetecting elements and a specific photodetecting element signal is selected by a shift register SL. At this time, the buffer T4 is operated only for necessary photodetecting elements and the remaining buffers are powered off to reduce the whole power consumption.

Description

【発明の詳細な説明】 本発明はカメラの金魚検出装置などの比較的小規模の受
光素子配列における回路に関する。従来多数の受光素子
の配列からなるイメージ・センサーKMOg型と呼ばれ
る回路構成が良く用いられFIT  T  を介して電
源端子■より正の電圧が供給されている。まず端子SW
に電圧をかけてTをオン状11にするとホトダイオード
Dに電流が流れるが電圧がホトダイオードDの極性と逆
であるのでホトダイオードDKはそれに付随する容量O
に応じ九電荷Qo が蓄えられてホトダイオードDの正
極の電位が電源電位と同電位に々りて電流の流入が停止
する。次にSWの電位を下げてTをオフとしてホトダイ
オードDと電源との接続を遮断すると直ちにホトダイオ
ードDK入射する光によ多発生する光電子によシホトダ
イオードの電荷の放電が開始される。すなわち入射光強
度■の時間積分が開始される。積分開始して時間1経過
後再びSWに電圧をかけてTをオンにするとこの時まで
にホトダイオードに蓄えられた電荷QはQoからItに
比例した電荷kItだけ減じているから再び初期の電荷
量Qoに壜るまで電源よシミ流が流れ込む、この時その
電流に比例して負荷凡の下端8には電位の変化が現われ
る。すなわちこの時の8の電位のt化量は入射光強度I
を時間tにゎたυ積分した量を表わす事になる。この信
号は電圧増巾器Aを通して外に取シ出される。以上の動
作原理は各受光素子当シの回路構成が単純であるので多
数の受光素子を必要とする場合に従来良く用いられるも
のであるが、一方決の様な欠点を有する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a circuit in a relatively small-scale light receiving element array such as a goldfish detection device for a camera. Conventionally, a circuit configuration called an image sensor KMOg type consisting of an array of a large number of light-receiving elements is often used, and a positive voltage is supplied from a power supply terminal (2) via FITT. First, the terminal SW
When a voltage is applied to turn T into the ON state 11, a current flows through photodiode D, but since the voltage is opposite to the polarity of photodiode D, photodiode DK has its associated capacitance O.
Accordingly, nine charges Qo are stored, and the potential of the positive electrode of the photodiode D reaches the same potential as the power supply potential, and the flow of current stops. Next, when the potential of SW is lowered and T is turned off to cut off the connection between the photodiode D and the power source, the charge in the photodiode immediately starts to be discharged by photoelectrons generated by the light incident on the photodiode DK. That is, the time integration of the incident light intensity (2) is started. When time 1 elapses after the start of integration, voltage is applied to SW again and T is turned on. By this time, the charge Q stored in the photodiode has been reduced from Qo by the charge kIt proportional to It, so the initial charge is restored again. A current flows into the power supply until it reaches Qo, and at this time a change in potential appears at the lower end 8 of the load in proportion to the current. In other words, the amount of t change in the potential of 8 at this time is the incident light intensity I
It represents the amount obtained by integrating υ over time t. This signal is taken out through voltage amplifier A. The above principle of operation has been commonly used in cases where a large number of light receiving elements are required because the circuit configuration of each light receiving element is simple, but it has certain drawbacks.

すなわち多数の受光素子を有する場合にはSから他の多
くの受光素子(図には示されていない)と共有古れる増
巾器Atでには長い信号線りを必要としこの信号線に伴
って存在する容量は昔通ホトダイオードD1個の有する
容量よシはるかに大きい。従りて増巾器Aによ如検出さ
れる光積分信号るかに小さい量と表る。またこの信号線
りに附随する容量にも電源よシミ流が供給されるからホ
トダイオードDに電荷を供給する電流よりもかなり大き
な電流が負荷Rを通じて流れ従って必要とする信号よシ
もかなシ大きな余分な信号が8に発生する。普通この問
題に対処する為に各ホトダイオード毎に第1@と類似で
かつ光による放電のない補償用の回路を余分に設けてこ
れも同時に駆動して両方に生じる信号の差を光積分の信
号として取シ出す事が行々われている。また必要とする
信号はホトダイオードDを電源電圧にまで充電する為の
過渡的な電流の中に含まれる為充電の為のスイッチング
時に付随して生じる周辺回路の誘導の影響を受けやすい
。更に大きカ問題は上の様にして光積分信号を読み出す
とホトダイオードDの状態は光積分初期の状態に戻って
しまう事である。
In other words, when a large number of light-receiving elements are used, a long signal line is required from S to an old amplifier At that is shared with many other light-receiving elements (not shown in the figure). The capacitance that exists is much larger than the capacitance of one conventional photodiode D. Therefore, the optical integral signal detected by amplifier A appears to be of a much smaller amount. Also, since the capacitance associated with this signal line is also supplied with a power supply current, a considerably larger current than the current supplying charge to the photodiode D flows through the load R, and therefore there is a large redundancy in the required signal line. A signal is generated at 8. Normally, to deal with this problem, an extra compensation circuit similar to the first photodiode and without light discharge is provided for each photodiode, and this circuit is also driven at the same time, and the difference between the signals generated in both is converted into an optical integral signal. It is often taken out as a Furthermore, since the necessary signal is included in the transient current for charging the photodiode D to the power supply voltage, it is susceptible to the effects of induction from peripheral circuits that occur during switching for charging. An even bigger problem is that when the optically integrated signal is read out as described above, the state of the photodiode D returns to the state at the beginning of the optically integrated signal.

すなわち第1図の構成では光積分の状態を非破壊   
 π的にリアルタイムで読み出す事ができない。これは
カメラの合焦検出装置の様に広い範囲にわたる徐写体照
度変化に応じて光積分の時間を柔軟に論節するには大I
な困難となぁ。
In other words, in the configuration shown in Figure 1, the state of optical integration is not destroyed.
It cannot be read out in real time due to π. This is important for flexibly determining the light integration time in response to changes in illuminance over a wide range, such as in a camera focus detection device.
What a difficult thing.

本発明打上OIIな111kC)困難がなくしかも小さ
な消費電力で光積分信号を取シ出す回路を与えるもので
ある。第2図はその基本的構成とその動作を説明する図
である。第111iの場合と同様にスイッチングFIT
T、のオン−オフによシホトダイオードDa電源電圧K
tで充電された後光電子によp放電が開始される。光積
分途中の81の電位はオンとなっているスイッチングF
BTT1を通してバッファーT4で電力層中された後信
号IILを通して他の受光素子と共有される電圧増巾器
ムを介して外に読み出される。図中C社光積分艷始後成
る適正な時間が経過した時に他の受光素子と共にT、を
オフにする事によシー斉に光積分信号を保持する為のも
のである0本回路によると光積分中においてはすべての
受光素子のT1をオンとしてh−き、Toゐ特定の受光
素子の信号をシフトレジスタ8Lで選ぶかあるい社会部
または一部の受光素子の信号を順次シフトレジスタで選
ぶかして受光素子における光積分状態を非破壊的に観測
できる。そしてこの観測している信号がある適正なレベ
ルに達した時に一斉にすべてのT、をオフにしてその瞬
間の信号を各受光素子毎の信号ホールド用のコンデンサ
ー0に保持し、しかる後順次シフトレジメタ8Lの操作
によシ所要の受光素子の信号を読み出す事ができゐ。こ
の様に光強度に応じて柔軟に光積分時間を制御して適正
々レベルで信号を常に読み出す事が容易にできる。更に
本回路の場合缶受光素子の信号は常に82においてスタ
ティックな形で現われt−ので(光積分中は光積分の推
移に応じてゆるやかに変化はする)シフトレジスタ8L
等のスイッチング周期を十分に大きく取ればスイッチン
グに付随すゐ余分な誘導等の影響を避けて信号を読み出
す事が可能である。
The present invention provides a circuit for extracting an optical integral signal without difficulty and with low power consumption. FIG. 2 is a diagram illustrating its basic configuration and operation. Switching FIT as in the case of No. 111i
Depending on the on-off of T, the photodiode Da power supply voltage K
P discharge is started by the photoelectrons charged at t. The potential at 81 during optical integration is the switching F that is on.
After passing through BTT1 to the power layer in buffer T4, the signal is read out through a voltage amplifier shared with other light receiving elements through signal IIL. According to the zero-wire circuit shown in the figure, the circuit of Company C is used to simultaneously hold the optical integral signal by turning off T together with other light receiving elements when a proper time has elapsed after the start of optical integration. During optical integration, T1 of all the light receiving elements is turned on, and the signal of a specific light receiving element is selected by the shift register 8L, or the signal of the social part or a part of the light receiving elements is sequentially transferred to the shift register. The optical integration state in the photodetector can be observed non-destructively depending on the selection. When the observed signal reaches a certain appropriate level, all T's are turned off at the same time, and the signal at that moment is held in the signal holding capacitor 0 of each light receiving element. By operating 8L, the signal of the required light receiving element can be read out. In this way, it is easy to flexibly control the optical integration time according to the light intensity and always read out the signal at an appropriate level. Furthermore, in the case of this circuit, the signal of the can light receiving element always appears in a static form at 82 (t-) (during optical integration, it changes slowly according to the progress of optical integration), so the shift register 8L
If the switching period is set sufficiently long, it is possible to read the signal while avoiding the effects of extra induction accompanying switching.

従って第1図の場合のIIK余分な補償用回路を必要と
しない。またホトダイオードDに並列につながる容量は
ホールド用コンデンサー0によゐものとホトダイオード
DからバッファーT4のゲートまでに附随する容量のみ
であるので電圧増巾器A壕での長大な信号IsLに付随
すゐ大et容量の影響を受けず従って増巾各人の入力側
ですでに十分大きな信号のレベルを有している。従りて
増巾各人の増中度も第1図の場合に比較して小さくて良
量で代替して4良い。
Therefore, the extra compensation circuit IIK in the case of FIG. 1 is not required. In addition, since the capacitance connected in parallel to photodiode D is only that of the hold capacitor 0 and the capacitance associated from photodiode D to the gate of buffer T4, the capacitance connected in parallel with photodiode D is attached to the long signal IsL in voltage amplifier trench A. It is not affected by the large et capacitance and therefore already has a sufficiently large signal level on the input side of each amplifier. Therefore, the degree of increase in width for each person is also smaller than in the case of FIG. 1, and can be replaced with a good amount of 4.

ところで上述の様な種々の長所を有する第2図の構成に
お社る一つの大き々問題点はバッファーT4における消
費電力である。とこでの消費電流は典型的なIOの設計
例では電源電圧5■において約100μAである。従っ
て仮りにホトダイオードの数が100@とするとバッフ
ァー丁4の100個分として必要な電流は10mAに達
する。
However, one major problem with the configuration of FIG. 2, which has the various advantages described above, is the power consumption in the buffer T4. The current consumption here is about 100 .mu.A at a power supply voltage of 5.degree. in a typical IO design example. Therefore, if the number of photodiodes is 100, the current required for 100 buffers 4 reaches 10 mA.

この様な電流値祉消費電力に大きな制約のあるカメラ勢
の横巻においては大いに問題とされる。
This poses a serious problem in the horizontal winding of cameras, which have large restrictions on current value and power consumption.

そこで各バッファーT4毎に電源スイッチングの為のp
m’r’r!を設は信号読み出しのために必要とする受
光素子に対してだけバッファーT4を働かせ他の殆んど
のバッファーT4 Kは電力を供給しない、これにより
容易に大巾に全体の消費電力を低減できる。なおスイッ
チングFETT、は必ずしも各受光素子毎に殻叶る必l
!杜なく第3図の様に全体の受光素子を幾組かの受光素
子群に分割して各群毎に単一のスイッチングFETT4
−を設叶て吃良い。
Therefore, for each buffer T4, p
m'r'r! In this case, the buffer T4 works only for the light-receiving element required for signal readout, and most of the other buffers T4K do not supply power.This makes it easy to greatly reduce the overall power consumption. Note that the switching FETT does not necessarily have to be implemented for each photodetector.
! As shown in Figure 3, the entire light receiving element is divided into several groups of light receiving elements, and a single switching FET T4 is installed for each group.
It's good to have -.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMO811イメージセンサ−の基本動作
を説明する図、第2図は本発明の回路の基本動作を説明
する図、第3図はもう一つの本発明の例を示す図である
。 ■・・・電源端子、R・・・負荷、T・・・スイッチン
グFET、D・・・ホトダイオード、SW・・・スイッ
チングPETのゲート端子、A・・・電圧増巾器、L・
・・信号線、S・・・負荷R下端の電位を示す点、TI
 、 T2 rT@ −スイッチングFIT、8W1.
8W、、sws・・・スイッチングFITのゲート端子
、C・・・信号ホー゛ド用°7デ7サー・T4°°°電
力増巾FIT(。 バク7アーL SL・・・シフトレジスタ、81・・・
ホトダイオード正側極の電位を示す点、Sl・・・バク
ファーT4の出力を示す点、0・・・出力端子。 特許出願人  鈴 木 武 臣
FIG. 1 is a diagram explaining the basic operation of the conventional MO811 image sensor, FIG. 2 is a diagram explaining the basic operation of the circuit of the present invention, and FIG. 3 is a diagram showing another example of the present invention. . ■...Power supply terminal, R...Load, T...Switching FET, D...Photodiode, SW...Switching PET gate terminal, A...Voltage amplifier, L...
...Signal line, S...Point indicating the potential of the lower end of load R, TI
, T2 rT@-switching FIT, 8W1.
8W,, sws...Switching FIT gate terminal, C...°7 de7 circuit for signal hold, T4°°° power amplification FIT (. BACK7A L SL...Shift register, 81 ...
A point indicating the potential of the positive side electrode of the photodiode, Sl... A point indicating the output of buffer T4, 0... Output terminal. Patent applicant Takeomi Suzuki

Claims (1)

【特許請求の範囲】[Claims] 逆方向に電圧印加されるホトダイオードと該ダイオード
の一方の極から第1のスイッチング用FETを介して引
き出された信号!1に上記ホトダイオードに対して並列
に接線された信号ホールド用のコンデンサーと蚊コンデ
ンサーの接続を経た上記信号線が入力信号線としてゲー
ト端子に接続宴れ上記信号線からの信号を電力増巾する
ためのF′BTバッファーと#FBTFETバッファー
から電力を供給する為の線の中間に設けられた第2のス
イッチング用FBTとからなシ、平常においては第2の
スイッチング用FETの働きによシ上記FITバッファ
ーへの電力供給を遮断しておき上記ホトダイオードから
の信号へのアクセスの必要がある時にのみ限られた時間
だけ上記第2のスイッチング用FITを操作して上記F
ETバッファーへ電力を供給して該バッファーから信号
を取り出す事によシ消費電力の低減を計った事を特徴と
する光検出回路。
A photodiode to which a voltage is applied in the opposite direction and a signal extracted from one pole of the diode via the first switching FET! 1. The above signal line is connected to the gate terminal as an input signal line through the connection of a signal hold capacitor and a mosquito capacitor connected in parallel to the above photodiode. In order to amplify the power of the signal from the above signal line. F'BT buffer and a second switching FBT provided between the line for supplying power from the #FBTFET buffer. Normally, the above FIT depends on the action of the second switching FET. The power supply to the buffer is cut off, and the second switching FIT is operated for a limited time only when it is necessary to access the signal from the photodiode.
A photodetection circuit characterized in that power consumption is reduced by supplying power to an ET buffer and extracting a signal from the buffer.
JP57051817A 1982-03-30 1982-03-30 Photodetecting circuit Pending JPS58168922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57051817A JPS58168922A (en) 1982-03-30 1982-03-30 Photodetecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57051817A JPS58168922A (en) 1982-03-30 1982-03-30 Photodetecting circuit

Publications (1)

Publication Number Publication Date
JPS58168922A true JPS58168922A (en) 1983-10-05

Family

ID=12897447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57051817A Pending JPS58168922A (en) 1982-03-30 1982-03-30 Photodetecting circuit

Country Status (1)

Country Link
JP (1) JPS58168922A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157581A (en) * 1986-12-22 1988-06-30 Hamamatsu Photonics Kk Solid-state image pickup element
JPS63161780A (en) * 1986-12-25 1988-07-05 Hamamatsu Photonics Kk Solid-state image pickup element
JPS63161781A (en) * 1986-12-25 1988-07-05 Hamamatsu Photonics Kk Solid-state image pickup element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157581A (en) * 1986-12-22 1988-06-30 Hamamatsu Photonics Kk Solid-state image pickup element
JPH0511828B2 (en) * 1986-12-22 1993-02-16 Hamamatsu Photonics Kk
JPS63161780A (en) * 1986-12-25 1988-07-05 Hamamatsu Photonics Kk Solid-state image pickup element
JPS63161781A (en) * 1986-12-25 1988-07-05 Hamamatsu Photonics Kk Solid-state image pickup element
JPH0511830B2 (en) * 1986-12-25 1993-02-16 Hamamatsu Photonics Kk
JPH0511831B2 (en) * 1986-12-25 1993-02-16 Hamamatsu Photonics Kk

Similar Documents

Publication Publication Date Title
KR100344414B1 (en) Image sensor
JP4138104B2 (en) Photosensitive device
JP2003298940A (en) Photoelectric converter and gate voltage control method
JP4164590B2 (en) Optical sensor circuit
JP2014230212A (en) Photoelectric conversion apparatus and imaging system
KR940006394A (en) Solid state imaging device
JPS5793782A (en) Solid-state image pickup device having storage time controlling function
JPS58168922A (en) Photodetecting circuit
US7710480B2 (en) Scanning circuit of image sensor
US4677496A (en) Image reader for image processing apparatus
JPH06189204A (en) Solid-state image pickup device
CN102036019A (en) Photoelectric conversion apparatus and image pickup system
US6803553B1 (en) Image sensor with charge recycling
KR20040044117A (en) Image reading device and image reading method
JP2989992B2 (en) Image sensor
JPH0556213A (en) Solid-state image pickup device
JPS61120570A (en) Image reader
JP2003174596A (en) Output circuit for solid-state image pickup device
JP3116550B2 (en) Solid-state imaging device
CN101005559A (en) Solid-state imaging device
JPH05219302A (en) Image sensor circuit
JPS60169282A (en) Output signal processing circuit of solid-state image pickup element
JPS6148269A (en) Picture reader
JPS6150362A (en) Photoelectric conversion device
KR101241674B1 (en) Pixel, pixel array, image sensor including the same and method for operating the image sensor