JPS58167997A - Method of operating magnetic filter - Google Patents

Method of operating magnetic filter

Info

Publication number
JPS58167997A
JPS58167997A JP57051574A JP5157482A JPS58167997A JP S58167997 A JPS58167997 A JP S58167997A JP 57051574 A JP57051574 A JP 57051574A JP 5157482 A JP5157482 A JP 5157482A JP S58167997 A JPS58167997 A JP S58167997A
Authority
JP
Japan
Prior art keywords
magnetic filter
filter
magnetic
adsorbent
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57051574A
Other languages
Japanese (ja)
Inventor
江頭 泰夫
島田 ふみえ
孝二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57051574A priority Critical patent/JPS58167997A/en
Publication of JPS58167997A publication Critical patent/JPS58167997A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は原子力発電プラントの原子炉冷却水中に含まれ
る腐食生成物である溶解性コバルトを吸着除去する磁気
フィルタの運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of operating a magnetic filter that adsorbs and removes soluble cobalt, which is a corrosion product contained in reactor cooling water of a nuclear power plant.

〔発明の技術的背景〕[Technical background of the invention]

たとえば原子力発電プラントの原子炉の炉水には m濃
系構成材より生じる腐食生成物が混入蓄積し、かかる腐
食生成物のために、炉水の熱交換。
For example, the reactor water of a nuclear power plant reactor is contaminated with and accumulates corrosion products generated from m-concentrated constituent materials, and due to these corrosion products, the heat exchange of the reactor water is interrupted.

効率が低下し、経済性が悪くなる。そこで炉水系中に磁
気フィルタを設けて、腐食生成物の除去を図っている。
Efficiency decreases and economic efficiency deteriorates. Therefore, a magnetic filter is installed in the reactor water system to remove corrosion products.

上記磁気フィルタは、t!k1図に示すように、強磁性
体製ケーシングlと、このクーシングl内に充填される
ステンレス勢の強a性体細線からなるフィルタニレメン
トコとこのフィルタニレメントコを囲むように配置され
る励磁コイル3とを有して構成されていて、フィルタニ
レメントコを充填する非磁性体製容器ダの一側には流入
管5か、他側には流出管−がそれぞれ連結されている。
The above magnetic filter has t! As shown in Figure k1, a casing l made of ferromagnetic material, a filter element made of a stainless steel ferromagnetic fine wire filled in the casing l, and a filter element arranged to surround this filter element are arranged. An inflow pipe 5 is connected to one side of a non-magnetic container filled with a filter element, and an outflow pipe is connected to the other side.

〔背景技術の問題点〕[Problems with background technology]

しかし上記形式の磁気フィルタではコバルトイオンのよ
うな重金属イオンを含む溶解性物質を除去できないため
、カオリン、タルクなどの窯業原料、紙のコート材原料
のスラリニ、冷熱間圧延設備用冷却水および精練排水な
どO工場排尿に混入する微細鉄粉、あるいは各穏発電プ
ラントにおける高温水中の主成分が磁性体である腐食生
成物の除去に使用されている。
However, magnetic filters of the above type cannot remove soluble substances containing heavy metal ions such as cobalt ions, so they cannot remove soluble substances such as ceramic raw materials such as kaolin and talc, slurry as a raw material for paper coating materials, cooling water for cold and hot rolling equipment, and scouring wastewater. It is used to remove fine iron powder mixed in the urine of the O factory, or corrosion products whose main component is magnetic material in the high-temperature water at each moderate power generation plant.

そこで上記磁気フィルタにマグネタイト(′!/勧04
)、酸化ジルコニウム(Zr0t ) 、および酸化チ
タニウム(tiot)などの金属酸化物粒子をP材とし
たf過装置を付設して、高温条件下において高温水中の
コバルトイオンを吸着除去するようにし良技術千′段が
開発されているが、この場合にはコバルトイオンの吸着
反応をe#衣表面行なう関係上、金属酸化物の粒子を少
さく、すなわち微粒子のものを用いなけれ杜ならず、e
過装置の流入筒と流出側の圧力損失が大きくなり、処理
流量を大きくとれず、このこと社太き表P遇装置を必要
とし、被処理水給水ポンプの消費電力が大きくなり装置
の建設費および運転費が大となるという一点がある。
Therefore, the above magnetic filter is made of magnetite ('!/K04).
), zirconium oxide (Zr0t), titanium oxide (tiot), and other metal oxide particles are attached as P materials to adsorb and remove cobalt ions in high-temperature water under high-temperature conditions. 1,000 stages have been developed, but in this case, because the adsorption reaction of cobalt ions takes place on the surface of the coating, it is necessary to use a small number of metal oxide particles, that is, fine particles.
The pressure loss between the inflow pipe and the outflow side of the filtration device becomes large, making it impossible to obtain a large treatment flow rate.This necessitates the use of a thicker diaphragm device, which increases the power consumption of the water supply pump to be treated and increases the construction cost of the device. Another problem is that the operating costs are high.

一方磁気フィルタによる原子力発電プラントにおする高
温、ta圧圧水水中腐食生成物の浄化について糟々の実
験を行なった結果/μm以下の粒子径の/p−以下の低
11J[マグネタイト、マンカンフ8ライト、ニッケル
フェライト、亜鉛)、ライト、銅フェライトのようなフ
ェライト糸微粒子、またはフェライト系微粒子に酸化錫
、酸化マンガン、il化チタン、ジルコニア、アルミナ
、緻化亜鉛などの金属酸化物微粒子を混入したものを含
有した含有水をたとえば200 論の高流速で磁気フィ
ルタに供給すると、仁の微粒子がフィルタエレメント上
に規則的に分散し、特に放射化された溶解性コパル)を
吸着保持されることが判りた。
On the other hand, the results of extensive experiments on the purification of corrosion products in high-temperature, ta-pressure water water used in nuclear power plants using magnetic filters were as follows. , nickel ferrite, zinc), light, copper ferrite, or ferrite particles mixed with metal oxide particles such as tin oxide, manganese oxide, titanium oxide, zirconia, alumina, and densified zinc. It has been found that when water containing Copal is supplied to a magnetic filter at a high flow rate of, for example, 200 mm, fine particles of Copal are regularly dispersed on the filter element, and in particular activated soluble copal is adsorbed and retained. Ta.

〔発明の目的〕[Purpose of the invention]

本発明は上記した点に鑑みてなされた−ので。 The present invention has been made in view of the above points.

磁気フィルタのフィルタエレメントにコバルト吸着材を
磁気力を利用して吸着し、そこへ溶解性コバルトを含む
、高温、高圧水を通し、溶解性コバルトを吸着除去する
ようにした磁気フィルタの運転方法を提供することを目
的とする。
A method of operating a magnetic filter in which a cobalt adsorbent is adsorbed to the filter element of the magnetic filter using magnetic force, and high-temperature, high-pressure water containing soluble cobalt is passed through it to adsorb and remove the soluble cobalt. The purpose is to provide.

〔発明の概要〕[Summary of the invention]

本発明の目的は、磁気フィル−のフィルタエレメント上
に磁気力を利用して溶解性コバルトを吸着し得る特性を
有する吸着材を分散保持させ、しかる俵磁気フィルタに
溶解性コバルトを含有する高温、高圧炉水を通して、溶
解性コバルトを吸着除去するとともに、装置全体の小形
化を可能にした磁気フィルタの運転方法によって達成さ
れる。
An object of the present invention is to disperse and hold an adsorbent having a property of adsorbing soluble cobalt using magnetic force on a filter element of a magnetic filter, and to apply a high-temperature filter containing soluble cobalt to a bale magnetic filter. This is achieved by a method of operating a magnetic filter that adsorbs and removes soluble cobalt through high-pressure reactor water and makes it possible to downsize the entire device.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面につき説−する。 An embodiment of the present invention will be explained below with reference to the drawings.

第Jl!lにおいて符号10は従来構造のものと同じ磁
気フィルタであって、この磁気フィルタ10は。
No. Jl! 1, reference numeral 10 denotes a magnetic filter that is the same as that of the conventional structure, and this magnetic filter 10 is.

たとえば沸騰水形原子力発電プラントの一次冷却水系/
Iに配置されている。上記−次冷却水系/lの供給ll
11νに設けた弁ノコと磁気フィルタIOの流入管50
閣には吸着スラリー用管w1/3の一端が接続されてお
シ、との管路13の他端は弁lダ、流量計lSおよび吸
着スラリー供給ポンプ16を介して執着スラリータ/り
lりに接続されている。ま九−次冷却水系//の排出側
qに設は友邦/1と磁気フィルタ10の流出管40間に
は、吸着スラリー用管路19の一端が接続され、この管
路/?は弁〃を介して上記スラリータンク/7に接続さ
れ、全体としてqsts路を構成している。
For example, the primary cooling water system of a boiling water nuclear power plant/
It is located at I. Supply of the above-mentioned secondary cooling water system/l
11ν valve saw and magnetic filter IO inflow pipe 50
One end of the adsorption slurry pipe w1/3 is connected to the cabinet, and the other end of the pipe line 13 is connected to the adsorption slurry tank through a valve l, a flow meter lS, and an adsorption slurry supply pump 16. It is connected to the. One end of an adsorbed slurry pipe 19 is connected between the outlet pipe 40 of the magnetic filter 10 and the magnetic filter 10 on the discharge side q of the ninth-order cooling water system. is connected to the slurry tank/7 via a valve, and constitutes a qsts path as a whole.

一方上配一次冷却水系/lの排出m1ll Qの弁/l
よシ上R@には逆洗用管路21の一端が接続されておシ
、この管路コlの他端は弁U、Uを介して並列配置した
洗、浄水タンクJシよび圧縮空気供給装#I君にそ ・
れぞれ接続されている。また圧縮空気供給装置おと弁コ
の間で分岐し九管路コロは弁−りを介して洗浄水タンク
−に接続され、洗浄水タンクコダ内の水を加圧して、水
の流速を調整し得るようにしている。
On the other hand, upper primary cooling water system/l discharge ml Q valve/l
One end of the backwash pipe 21 is connected to the upper R@, and the other end of this pipe is connected to the wash water tank J and compressed air arranged in parallel via valves U and U. Supply equipment #I-kuniso ・
are connected to each other. In addition, the nine pipes branched between the compressed air supply device and the valve are connected to the wash water tank via the valve, which pressurizes the water in the wash water tank and adjusts the water flow rate. I'm trying to get it.

他方上記一次冷却水系l/の供給−1の弁/Jより上流
側には吸着材回収用管路Uの一端が接続されておシ、こ
の管路コの他端は弁コブを介して吸着材回収タンク30
に接続されている。
On the other hand, one end of the adsorbent recovery pipe U is connected to the upstream side of the supply-1 valve /J of the primary cooling water system L/, and the other end of this pipe is connected to the adsorption material via the valve knob. Material recovery tank 30
It is connected to the.

上記吸着材としては、7μm以下の粒子径のマグネタイ
ト、マンガンフェライト、ニッケル7sライト、亜鉛フ
ェライト、銅フェライトのようなフェライト系微粒子、
あるいは7sライト系微粒子と酸化錫、酸化マンガン、
酸化チタン、ジルコニア、アル(す、酸化亜鉛などの金
属酸化物微粒子との準合体を、/ ppm以下の低濃度
の含肴水とし九屯のでTo−)て、30ozの流速でフ
ィルタニレメントコに供給されるようKなっている。
The above-mentioned adsorbent includes ferrite fine particles such as magnetite, manganese ferrite, nickel 7Site, zinc ferrite, and copper ferrite with a particle size of 7 μm or less;
Or 7s light type fine particles and tin oxide, manganese oxide,
A quasi-combination of metal oxide fine particles such as titanium oxide, zirconia, aluminum oxide, and zinc oxide was mixed with water containing a low concentration of / ppm or less, and filtered at a flow rate of 30 oz. K is set so that it is supplied to

なお第一図中符号、?/d吸着剤スラリーo**を均一
にするための攪拌器である。
Furthermore, the code in the first figure is ? /d A stirrer to make the adsorbent slurry o** uniform.

次に作用を説明する。Next, the effect will be explained.

励磁コイル3に通電す石と、fi11方向に平行な磁束
が発生し、フィルタニレメントコが磁化し、いわゆる磁
気フィルタが形成される。
When the excitation coil 3 is energized, a magnetic flux parallel to the fi11 direction is generated, the filter element is magnetized, and a so-called magnetic filter is formed.

ついで吸着スラリー供給ポンプ/4f起動すると、吸着
スフリータンタ17内の吸着材は流量側/JおSよび弁
陣を通り、流入管jがら磁化したフィルタニレメン)J
を過シ抜け、遍シ抜けた吸着材は弁〃を介して管路lデ
を通りて吸着スラリータンクに戻ることKなる。このフ
ィルタニレメントコを通シ抜けるII!4c/吸着材は
フィルタニレメントコ上に分散吸着される。この吸着材
の分散吸着量が所定量に達したら、吸着スラリー供給ポ
ンプ16を停止する。同時に弁陣、弁〃を閉じる。これ
にょシ吸着材回路は閉じることになる。
Next, when the adsorption slurry supply pump/4f is started, the adsorbent in the adsorption slurry tanker 17 passes through the flow rate side/JS and the valve array, and flows through the inflow pipe (J) into the magnetized filter element (J).
The adsorbent that has passed through the pipe passes through the valve and returns to the adsorption slurry tank through the pipe. I can pass through this filter! 4c/The adsorbent is dispersed and adsorbed on the filter. When the amount of dispersed adsorption of this adsorbent reaches a predetermined amount, the adsorption slurry supply pump 16 is stopped. At the same time, the bento and the valves are closed. This will close the adsorbent circuit.

次に弁トコおよび弁/lを開くと、被処理液は一次冷却
水系tiを通って、磁気フィルタIQに導かれ、吸着材
を分散吸着したフィルタエレメント−を通り抜け、弁/
lを介して処理水として処理される。
Next, when the valve TOP and valve /l are opened, the liquid to be treated passes through the primary cooling water system ti, is guided to the magnetic filter IQ, passes through the filter element which has dispersed and adsorbed the adsorbent, and passes through the valve /l.
It is treated as treated water through 1.

このフィルタニレメントコを通ル抜ける除に、処理液に
含まれている不溶性のコバルト成分はその状態のままフ
ィルタエレメント上に磁気方にょシ吸着される。また溶
解性コバルトはフィルタニレメントコ上に吸着保持され
ている微粒子吸着材の表面に化学吸着される。この溶解
性コバルトの吸着は予め定めた処理時間行なわれる。
While passing through this filter element, the insoluble cobalt component contained in the processing liquid is magnetically adsorbed onto the filter element in its state. In addition, soluble cobalt is chemically adsorbed on the surface of the particulate adsorbent that is adsorbed and held on the filter. This adsorption of soluble cobalt is carried out for a predetermined treatment time.

溶解性コバルトの吸着が限界量に適すると、磁気フィル
タIOの励磁電流を切少フィルタニレメンiを消磁する
とともに弁トコおよび弁/Iを閉じる。
When the adsorption of soluble cobalt reaches the limit amount, the excitation current of the magnetic filter IO is cut off, the filter element i is demagnetized, and the valves I and I are closed.

次に弁u、u、27を論陣することで圧縮空気と水の混
合フラッジ、流を磁気フィルタIOに送り込み、フィル
タエレメント−に吸着されている吸着材およびコバルト
成分をフィルタニレメントコから剥離する。これと同時
に弁−デを開き、フラッジ集流とともに吸着材および;
バ今ト成分t−吸着材回収夕ン夕30に排出する。これ
によシ磁抵フィルタ10は再生されることになる0次に
弁/g 、u、u。
Next, by turning valves u, u, and 27, a mixed flow of compressed air and water is sent to the magnetic filter IO, and the adsorbent and cobalt components adsorbed on the filter element are separated from the filter element. . At the same time, the valve D is opened, and the adsorbent and;
Vacuum component t-adsorbent collection is discharged at 30 pm. As a result, the magnetoresistive filter 10 will be regenerated.

コア、−tを閉じると逆洗作業は終了する。When the core and -t are closed, the backwashing operation is completed.

以下同様の作用を繰〉返えすことになる。The same action will be repeated thereafter.

第3図は本発明の方法によp得られた溶解性コバルト濃
度を示す図でありて、マグネタイト微粒子のみを吸着材
として用い九場合には高温水中の溶解性コバル)lj&
が運転時間(処理時間)とともに徐々に減少するのに対
し、フェライト系微粒子あるいはマグネタイトと金属酸
化物混合微粒子を吸着材として用いた場合には、溶解性
コバルト談巌が運転時間とと4に急激に減少することを
示している。
FIG. 3 is a diagram showing the concentration of soluble cobalt obtained by the method of the present invention, and shows the concentration of soluble cobalt in high-temperature water using only magnetite fine particles as an adsorbent.
In contrast, when ferrite particles or mixed particles of magnetite and metal oxide are used as the adsorbent, the soluble cobalt concentration decreases rapidly with increasing operating time (processing time). This shows that the value decreases to .

〔発明の効果〕〔Effect of the invention〕

以上述べえように本発明によれば、吸着材粒子の大きさ
によらず任意の充填率(フィルタ容器容積に対する吸着
材粒子全体積の割合)を選定し得。
As described above, according to the present invention, any filling rate (ratio of the total volume of the adsorbent particles to the volume of the filter container) can be selected regardless of the size of the adsorbent particles.

したがってフィルタ流入側と、流出allの圧力損失を
小さくし得、しかもフィルタ単位面積当シの処理流速を
従来の磁気フィルタと同等の流速に設定でき、したがっ
て装筐全体を小形化できるとともに、不溶性および溶解
性コバルトの両方を一緒に除去できるという効果を奏す
る。
Therefore, the pressure loss on the filter inflow side and all outflow sides can be reduced, and the processing flow rate per unit area of the filter can be set to the same flow rate as that of a conventional magnetic filter. This has the effect of being able to remove both soluble cobalt at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の磁気フィルタの断面図、第2図は本発明
による磁気フィルタの運転方法を示すフローチャート図
、第3図は吸着材による溶解性コパルト濃度変化を示す
図である。 /・・・ケーシング、コ・・:フィルタエレメント、3
・・・励磁コイルでダ・・・容器、IO・・・磁気フィ
ルタ、//・・・−次冷却水系、/J・・・管路、16
・・・吸着スラリー供給ポンプ、/7・・・吸−着ス2
リータンク、評・・・洗浄水タンク、、、30・・・吸
着槽回収タンク。 。 出願人代理人  猪  股     清第1 図 ′#、2図 第3図 −一二時間
FIG. 1 is a sectional view of a conventional magnetic filter, FIG. 2 is a flowchart showing a method of operating a magnetic filter according to the present invention, and FIG. 3 is a diagram showing changes in soluble copal concentration due to adsorbent. /...Casing, Co...: Filter element, 3
...Exciting coil...container, IO...magnetic filter, //...-secondary cooling water system, /J...pipeline, 16
...Adsorption slurry supply pump, /7...Adsorption slurry 2
Lee tank, review...Washing water tank,,,30...Adsorption tank recovery tank. . Applicant's agent Kiyoshi Inomata Figure 1, Figure 2, Figure 3 - 12 hours

Claims (1)

【特許請求の範囲】 /、原子力発電プラントの高温、高圧な炉水系に、磁気
フィルタを設け、この磁気フィルタのフィルタエレメン
ト上に、磁気力を利用して溶解性コバルトを吸着し得−
る特性を有する吸着材を分散保持させ、しかる後磁気フ
ィルタに溶解性コバルトを含有する高温、高圧炉水を通
して、溶解性コバルトを吸着除去するようKしたことを
特徴とする磁気フィルタの運転方法。 コ、:2パルト吸着材がマグネタイト、マンガンフ8フ
ィト、ニッケシフSライト、亜鉛フェライト、銅フ、゛
2イトのよう表フsライト系微粒子の少なくともl種類
のものでめることを特徴とする特許請求の範囲第1項記
載の磁気フィルタの運転方法。    ・ 3゜コバルト吸着材がフェライト系微粒子の少なくとも
/種goものに非磁性体である酸化錫、嫁化マンガン、
11化チタン、ジルコニア、アル建す、Il化亜鉛など
の金属酸化物微粒子の少なくとも7種−のものを混合し
て構成されていることを特徴とする特許請求の範囲第1
項記載の磁気フィルpo運転方法。
[Claims] / A magnetic filter is provided in the high-temperature, high-pressure reactor water system of a nuclear power plant, and soluble cobalt can be adsorbed onto the filter element of the magnetic filter using magnetic force.
A method for operating a magnetic filter, comprising: dispersing and holding an adsorbent having such characteristics, and then passing high-temperature, high-pressure reactor water containing soluble cobalt through the magnetic filter to adsorb and remove soluble cobalt. A patent characterized in that the 2-part adsorbent is made of at least l kinds of fluorite-based fine particles such as magnetite, manganese 8-phyte, nickel sulfite, zinc ferrite, copper oxide, and 2-ite. A method of operating a magnetic filter according to claim 1.・ 3゜ Cobalt adsorbent contains at least/seed of ferrite-based fine particles, which are non-magnetic substances such as tin oxide, doped manganese,
Claim 1, characterized in that it is composed of a mixture of at least seven types of metal oxide fine particles such as titanium 11, zirconia, aluminum, and zinc chloride.
Magnetic filter po operation method described in section.
JP57051574A 1982-03-30 1982-03-30 Method of operating magnetic filter Pending JPS58167997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57051574A JPS58167997A (en) 1982-03-30 1982-03-30 Method of operating magnetic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57051574A JPS58167997A (en) 1982-03-30 1982-03-30 Method of operating magnetic filter

Publications (1)

Publication Number Publication Date
JPS58167997A true JPS58167997A (en) 1983-10-04

Family

ID=12890717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57051574A Pending JPS58167997A (en) 1982-03-30 1982-03-30 Method of operating magnetic filter

Country Status (1)

Country Link
JP (1) JPS58167997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128395A (en) * 1983-12-15 1985-07-09 東京電力株式会社 Purifier for furnace water of nuclear reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128395A (en) * 1983-12-15 1985-07-09 東京電力株式会社 Purifier for furnace water of nuclear reactor
JPH037916B2 (en) * 1983-12-15 1991-02-04 Tokyo Denryoku Kk

Similar Documents

Publication Publication Date Title
US8002990B2 (en) Uses of fibrillated nanofibers and the removal of soluble, colloidal, and insoluble particles from a fluid
WO2015025681A1 (en) Radioactive waste liquid treatment method and radioactive waste liquid treatment device
JP6868755B2 (en) Soil purification system
WO1996030121A1 (en) Removal of lead from drinking water
US5401416A (en) Water filtration method
EP1153889A1 (en) Clarification apparatus for liquid
JPS58167997A (en) Method of operating magnetic filter
JP6028545B2 (en) How to recover cesium
US6872308B1 (en) Condensate polisher with deep cation bed and powdered resin bed
JP2004174357A (en) Water cleaning cartridge and water cleaner
JP4480450B2 (en) Magnetic negative ion reduction water purifier
JPS6159163B2 (en)
Tytkowska et al. Sorption of Ni (II) on surface of bed grains used in iron and manganese removal filters
JP3143177U (en) Water purification reduction filter
JPH07328621A (en) Water purifier
JP2544426B2 (en) Fluid purification device
WO2020202808A1 (en) Water treatment apparatus
JPS58133809A (en) Electromagnetic filter for system water
CN215439881U (en) Water purifier
JP3097872U (en) Water purification reduction filter
JPS63274405A (en) Reverse washing treatment method of hollow fiber membrane filter apparatus
JPS6261688A (en) Method for precoating of oxine-added activated carbon
JP2721393B2 (en) Water purification system
JPS6014493Y2 (en) electromagnetic filter
JP2003024955A (en) Apparatus for supplying large amount of city water cleaned by using coral and diffusion type coral treatment means for city water