JPS58167985A - Scintillation camera - Google Patents

Scintillation camera

Info

Publication number
JPS58167985A
JPS58167985A JP5079382A JP5079382A JPS58167985A JP S58167985 A JPS58167985 A JP S58167985A JP 5079382 A JP5079382 A JP 5079382A JP 5079382 A JP5079382 A JP 5079382A JP S58167985 A JPS58167985 A JP S58167985A
Authority
JP
Japan
Prior art keywords
scintillators
data
image
memory
scintillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5079382A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hattori
服部 博幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP5079382A priority Critical patent/JPS58167985A/en
Publication of JPS58167985A publication Critical patent/JPS58167985A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1644Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using an array of optically separate scintillation elements permitting direct location of scintillations

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To minimize the distortion of an image by introducing an image reconstructive processing method with a computer. CONSTITUTION:When radiations from a radioactive isotope enter respective scintillators 11, 12..., a pulse signal is generated from PMTs (photomultiplier) 31, 32... corresponding to the incidence of the radiations. The detection signals are counted separately with counters 61, 62... to obtain numerous count outputs simultaneously. This data is written into a memory 73 under the control of a CPU72. The scintillators 11, 12... and collimators 41, 42... are rotated to write outputs of the counters 61, 62... into the memory 73 at each slight angle. After the end of the collection thereof, data is read out of the memory 73 to reconstruct a distribution image of the radioactive isotope by computation for the reconstruction of images.

Description

【発明の詳細な説明】 この発明は放射性同位元素(以下、RIと略す)の分布
像を得るシンテレーシ冒ンカメラに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a synteresis camera that obtains a distribution image of radioactive isotopes (hereinafter abbreviated as RI).

従来、シンチレーシ曹ンカメラとしてアンが一型シンチ
レーシ冒ンカメラが普及しているが、画像に%膚な歪が
生じ、を九感度も低い等の問題がある。
Conventionally, one-type scintillation cameras have been popular as scintillation cameras, but they have problems such as significant distortion in images and low sensitivity.

本発明は従来のシンチレーシ■ンカメラとは原理を異に
し、コンビエータによる画像再構成処理手法を導入する
ことによ〉画像の歪がなく、感度が高く、シかも実用分
解能の高いシンチレーシ箇ンカメラを提供することを目
的とする。
The present invention differs in principle from conventional scintillation cameras by introducing an image reconstruction processing method using a combiator to provide a scintillation camera with no image distortion, high sensitivity, and high practical resolution. The purpose is to

以下、本発明の一実施例について図面を参照しながら説
明する。第1図において、実質的に、細長い多数のシン
チレータ11,12.13゜・・・がその幅方向に平面
状に並べられて全体の外形は円板状になっている。具体
的KFi個別的に製造され九細長いシンチレータを実際
に並べるようKしてもよく、ま九°l・個の平板状シン
チレータを区分して細長いシンチレータが並べられ九よ
うに構成してもよい。シンチレータ11゜12.13.
・・・の各々の発光はその発光の長さ方向位置依存性な
く、例えば光学繊維等でなるライトガイド21,22.
23m・・・のそれすれによ)多数のPMT(フォトマ
ルチプライア)31.32,33.・・・勢の光電変換
器の各々に導かれる。シンチレータt1.1113.・
・・の前面には各シンチレータの幅方向における放射線
入射方向を規制する平行コリメータ41゜42.43.
・・・が設けられている。そして少なくともシンチレー
タ11,12.・・・とコリメータ41 = 42 m
・・・とが軸0を中心軸として一体KO’〜180°ま
たは0°〜360°回転されるようになっている。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, a large number of elongated scintillators 11, 12, 13 degrees, . Specifically, nine elongated scintillators manufactured individually may be actually arranged in a row, or nine elongated scintillators may be arranged by dividing nine slender scintillators into sections. Scintillator 11°12.13.
The light emitted from each of the light guides 21, 22, .
23m...) A large number of PMTs (photomultipliers) 31.32,33. ... are guided to each of the photoelectric converters. Scintillator t1.1113.・
Parallel collimators 41, 42, 43, .
...is provided. And at least scintillators 11, 12. ...and collimator 41 = 42 m
. . . are rotated integrally by KO'~180° or 0°~360° with axis 0 as the central axis.

ある回転角度の位置においてRIからの放射線がコリメ
ータ41.42.・・・を通ってシンチレータ11.1
2.・・・に入射し九とすると、その放射線入射の各々
に対応してPMT31゜32、・・・よ〉Δルス信号が
生じる。この・々ルス信号はA Q、スハイトアナライ
デ51.52.・・・でそれぞれピーク弁別され、所定
のエネルギウィンド内の放射線入射に対応する検出信号
を得る。この検出信号はカウンタ61.62.・・・の
各々によ砂計数される。従っである回転角度の位置にお
いて一定時間静止している場合、その時間内でカウンタ
61−62 )・・・の各々Kl計数が行なわれて多数
個の計数値出力が同時に得られる。これをシンチレータ
11,12.・・・の配列位置に対応して並べると第2
図に示すようなデータP1となる。このデータはインタ
ーフェイス71を通してCPU(中央制御装置)72の
制御のもとにメモリ73に書き込まれる。
At a certain rotational angle position, the radiation from the RI passes through the collimators 41, 42 . Through scintillator 11.1
2. . . , 9, a PMT31°32, . This signal is AQ, Schheit Analyzer 51.52. ... to obtain detection signals corresponding to incident radiation within a predetermined energy window. This detection signal is sent to the counters 61, 62. The sand is counted by each of... Therefore, when the motor remains stationary for a certain period of time at a certain rotational angle position, each of the counters 61-62) performs a Kl count during that period, and a large number of count value outputs are obtained simultaneously. The scintillators 11, 12. If arranged according to the array position of ..., the second
The data P1 is as shown in the figure. This data is written to memory 73 through interface 71 under the control of CPU (central control unit) 72 .

シンチレータ11.12.・・・とコリメータ41゜4
2、・・・とが回転していってその微小負度毎にカウン
タ5it62t・・・の出力をメモリ73に書き込むと
とも゛にカウンタ61,62.・・・をリセットするよ
うにすれば微小負度毎の第2図に示すような多数のデー
タP1〜pmが得られ、これらがメモリ73に蓄積され
ることになる。
Scintillator 11.12. ...and collimator 41゜4
As the counters 61, 62, . . . rotate, the outputs of the counters 5it, 62t, . By resetting . . . , a large number of data P1 to pm as shown in FIG.

こうしてデータの収集が終わった後、メモリ73から読
み出して画像再構−のための演算処理を行なう。この実
施例では画像再構成アルゴリズムとしてコンゲリエーシ
1ン法を用いる。
After data collection is completed in this manner, the data is read out from the memory 73 and arithmetic processing for image reconstruction is performed. In this embodiment, a congeliation method is used as the image reconstruction algorithm.

すなわち、前記のデータP1〜pmと再構成すべきRI
分布像との関係を考えてみると、公知のX@CT装置(
コンビーータ断層撮影装置)における投影データと断層
像との関係に等しいか゛らである。従って他にX1iC
T装置で一発され九フィルタ補正逆投影法等の画像再構
成手法を用いることもできる。ここでは第115!OK
示すよ5K、コンがルパ74によ〉コンIリエーシ■ン
(重畳積分)を行なっ九のちパックグロジエクタ75で
逆投影して画像メモリ7−6に書き込んでいく。すると
画像メモリ76KR′I分布像が再構成されるのでCR
T装置77勢の表示装置に表示することができる。
That is, the above data P1 to pm and RI to be reconstructed
Considering the relationship with the distribution image, the well-known X@CT device (
This is the same as the relationship between projection data and tomographic images in a combinator tomography system. Therefore, in addition to X1iC
Image reconstruction techniques such as back projection with one shot and nine filter corrections can also be used. Here is the 115th! OK
As shown in FIG. 5K, the image is subjected to convolution integration using the Lupa 74, and is then back-projected using the pack radiator 75 and written into the image memory 7-6. Then, the image memory 76KR'I distribution image is reconstructed, so CR
It can be displayed on 77 display devices.

次に菖2の実施例について第3図を参照しながら説明す
る。この図に示すように平行コリメータ41,42t・
・・の各シールド板はそれぞれ所定の角度#(0’(−
≦90°)K傾けられている(なお上記第1の実施例で
は一=90°とし、コリメータ41 e 42 e・・
・の各シールド板はシンチレータ11.11・・・がな
す平面に対し直角になっている)。ギして他の構成は第
1図と同様とし、得られ九−−タP1〜Pmの個々のデ
ータにおける中心位置を1転中心軸OからLだけ離れた
シンチレータから得九信号として同様の画像再構成手法
を行なう。すると距離LiC対応する距離dの前後の画
愉情籟は散乱してぼけてしまい、距離d付近で唸同−位
置に集束する九め蛇離d付近の千両上におけるRI分布
像が得られる。従ってデータを一旦記憶しておけば、演
算処理過薯でLの設定を任意に行なうことによ〉任意の
距離dにおける断層像を得ることができる。
Next, an embodiment of the irises 2 will be described with reference to FIG. As shown in this figure, parallel collimators 41, 42t,
Each shield plate of... is at a predetermined angle #(0'(-
≦90°)
Each shield plate is perpendicular to the plane formed by the scintillators 11, 11...). The other configuration is the same as that in FIG. 1, and the center position of each data of the obtained nine-taters P1 to Pm is set as the nine-signal obtained from the scintillator separated by L from the central axis O of one rotation, and the same image is obtained. Perform the reconstruction method. Then, the images before and after the distance d corresponding to the distance LiC are scattered and blurred, and an RI distribution image on Senryo near the distance d, which converges at the same position near the distance d, is obtained. Therefore, once the data is stored, a tomographic image at any distance d can be obtained by arbitrarily setting L using arithmetic processing.

なお、この第3図の実施例において、第4図に示すよう
にシンチレータ11.12.・・・もま九−だけ傾はズ
放射線入射方向に対してコリメータ41.42.・・・
とシンチレータ11.12゜・・・とが直線状に並ぶよ
うKすれば、コリメータ41e41・・・を通ってシン
チレータ11゜12、・・・の各々に入射し九放射線が
各シンチレータをつき抜けて隣りのシンチレータに入射
する損金が減るため、高エネルギの放射−に対しても分
解能が向上する。
In addition, in the embodiment of FIG. 3, as shown in FIG. 4, scintillators 11, 12, . . . . The collimators 41, 42... ...
and the scintillators 11, 12°, and so on are lined up in a straight line, then the radiation passes through the collimators 41e41 and enters each of the scintillators 11, 12, and so on, and nine rays pass through each scintillator. Since the amount of radiation incident on the adjacent scintillator is reduced, the resolution is improved even for high-energy radiation.

以上、実施例について説明し九ように1本発明によれば
、従来のシンチレーシ冒ンカメラとは異なる原理を採用
し、コンビエータによる画像再構成手法を導入している
丸め、画像の歪がなく、感度が高く、シかも実用分解能
の高いシンチレーシ曹ンカメラを構成することができる
As described above, the embodiments have been described.1 According to the present invention, a principle different from that of conventional scintillation cameras is adopted, and an image reconstruction method using a combinator is introduced.There is no rounding, no image distortion, and high sensitivity. This makes it possible to construct a scintillating camera with a high practical resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例のブロック図、第2図は
データを表わすグラフ、第3図は第2の実施例の模式図
、第4図は変形例の模式図である。 11.12.・・・シンチレータ  2t、22.・・
・ライドブイド31.32.・・・P M T    
  41,42.・・・コリメータ5L52−・・・ノ
臂ルスハイトアナライザ61.62.・・・カウンタ 
  71・・・インターフェイス72・・・CP U 
      73・・・メモリ74・・・コンールパ 75・・・パックfロジエクタ 76・・・画像メモリ   77・・・CRT装置出願
人 株式会社島津製作所 洟2目
FIG. 1 is a block diagram of a first embodiment of the present invention, FIG. 2 is a graph representing data, FIG. 3 is a schematic diagram of the second embodiment, and FIG. 4 is a schematic diagram of a modified example. 11.12. ...Scintillator 2t, 22.・・・
・Ride Buid 31.32. ... P M T
41, 42. ... Collimator 5L52 - ... Arm height analyzer 61.62. ···counter
71...Interface 72...CPU
73...Memory 74...Conlpara 75...Pack f logicer 76...Image memory 77...CRT device applicant Shimadzu Corporation Sho 2

Claims (1)

【特許請求の範囲】[Claims] (1)  実質的に細長いシンチレータをその幅方向に
多数平面状に並べ、これら各シンチレータの発光をその
発光の長さ方向位置依存性なく多数の光電変換器のそれ
でれて検出して信号を得、前記シンチレ」りを回転させ
て微小角度毎に前記多数O光電変換器から同時に得九信
号Klデータを得て仁のデータを画像再構成処理して放
射性同位元素の分布像を再構成するようにし九シンチレ
ーシ冒ンカメラ、         −(2)前記多数
の細長いシンチレータにその幅方向において放射線入射
方向を規制する平行コリメータを設け、この平行コリメ
ータを所定角度傾けるとともに前記所定の距離だけ前記
シンチレータの回転中心から離れ九位置のシンチレータ
の信号をデータの中心として前記の画像再構成処理を行
ない、前記シンチレータがなす千両よ〉所定距離だけ離
れ九断層面における放射性同位元素の分布像を再構成す
るようにし九特許請求の範囲第1項記載のシンチレーシ
曹ンカメラ。
(1) A large number of substantially elongated scintillators are arranged in a plane in the width direction, and a signal is obtained by detecting the light emitted from each scintillator using a large number of photoelectric converters without depending on the position in the length direction of the emitted light. , the scintillator is rotated to simultaneously obtain nine signal Kl data from the multi-O photoelectric converter at every minute angle, and the data is subjected to image reconstruction processing to reconstruct a distribution image of radioactive isotopes. - (2) Parallel collimators for regulating the direction of radiation incidence in the width direction of the plurality of elongated scintillators are provided, the parallel collimators are tilted at a predetermined angle, and the predetermined distance is from the center of rotation of the scintillators. The aforementioned image reconstruction process is performed using the signals of the scintillators at nine distant positions as data centers, and the distribution image of radioactive isotopes in nine tomographic planes separated by a predetermined distance from the scintillators is reconstructed. A scintillating camera according to claim 1.
JP5079382A 1982-03-29 1982-03-29 Scintillation camera Pending JPS58167985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5079382A JPS58167985A (en) 1982-03-29 1982-03-29 Scintillation camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5079382A JPS58167985A (en) 1982-03-29 1982-03-29 Scintillation camera

Publications (1)

Publication Number Publication Date
JPS58167985A true JPS58167985A (en) 1983-10-04

Family

ID=12868673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5079382A Pending JPS58167985A (en) 1982-03-29 1982-03-29 Scintillation camera

Country Status (1)

Country Link
JP (1) JPS58167985A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11276470A (en) * 1998-01-20 1999-10-12 General Electric Co <Ge> Tomographic system and scintillator therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11276470A (en) * 1998-01-20 1999-10-12 General Electric Co <Ge> Tomographic system and scintillator therefor
JP4508305B2 (en) * 1998-01-20 2010-07-21 ゼネラル・エレクトリック・カンパニイ Tomographic system and scintillator therefor

Similar Documents

Publication Publication Date Title
Zanzonico Positron emission tomography: a review of basic principles, scanner design and performance, and current systems
Wilderman et al. Fast algorithm for list mode back-projection of Compton scatter camera data
US6762413B2 (en) Correction for depth-dependent sensitivity in rotating slat-collimated gamma camera
Knoll Single-photon emission computed tomography
US5818050A (en) Collimator-free photon tomography
CA1085974A (en) Positron imaging system with improved count rate and tomographic capability
US5793045A (en) Nuclear imaging using variable weighting
US3965353A (en) Cross-sectional X-ray emission imaging system
US20090078876A1 (en) Method and system for using tissue-scattered coincidence photons for imaging
CN114666495B (en) High-resolution Compton camera imaging method, device, electronic equipment and medium
US7129497B2 (en) Method and system for normalization of a positron emission tomography system
JPS58169078A (en) Scintillation camera
JP2535762B2 (en) Simultaneous Scattering Counting Method with Gamma Absorber in Positron Tomography Equipment and Positron Tomography Equipment
JP3311043B2 (en) Gamma camera
US20040200965A1 (en) Radiographic inspection apparatus and radiographic inspection method
WO1997008569A1 (en) An imaging apparatus
Vandenberghe et al. Iterative list mode reconstruction for coincidence data of gamma camera
JPS58167985A (en) Scintillation camera
JP4241048B2 (en) Diagnostic imaging apparatus and diagnostic imaging apparatus control method
Hua Compton imaging system development and performance assessment
Daube-Witherspoon et al. Developments in instrumentation for emission computed tomography
Townsend et al. Introduction to 3D PET
Dimmock et al. An OpenCL implementation of pinhole image reconstruction
JPH0552471B2 (en)
Hong Three-Dimensional reconstruction methods in near-field coded aperture for spect imaging system