JPS5816793A - Build up welding method for low alloy steel - Google Patents

Build up welding method for low alloy steel

Info

Publication number
JPS5816793A
JPS5816793A JP11688081A JP11688081A JPS5816793A JP S5816793 A JPS5816793 A JP S5816793A JP 11688081 A JP11688081 A JP 11688081A JP 11688081 A JP11688081 A JP 11688081A JP S5816793 A JPS5816793 A JP S5816793A
Authority
JP
Japan
Prior art keywords
less
weld metal
overlay
alloy steel
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11688081A
Other languages
Japanese (ja)
Other versions
JPS6410317B2 (en
Inventor
Tadamichi Sakai
酒井 忠迪
Kiyoshi Asami
浅見 清
Hiroshi Saida
斎田 博
Yukinobu Matsushita
松下 行伸
Osamu Tanaka
治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11688081A priority Critical patent/JPS5816793A/en
Publication of JPS5816793A publication Critical patent/JPS5816793A/en
Publication of JPS6410317B2 publication Critical patent/JPS6410317B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To obtain sound padding metal which does not peel by specifying the contents of the specific components in weld metal and the composition of a flux in such a way as to satisfy the equationsIand II simultaneously. CONSTITUTION:In a method of performing build-up welding by spraying a flux in the surface of a low alloy steel contg. <=0.2% (wt%) C, <=1.0% Si, <=1.0% Mn, <=1.0% Ni, <=3.5% Cr, <=2.0% Mo, <=0.1% Al, and consisting of the balance Fe and unavoidable impurities, the weld metal of the 1st layer is so welded as to contain <=0.1% C, <=1.0% Si, <=7.0% Mn, 7-30% Ni, 16-30% Cr, <=3.0% Mo, and to consist of the balance Fe and unavoidable impurities, and the contents of the Si, P, S, O in the weld metal and the compsn. of the flux are so specified as to satisfy the equationIand the equation II.

Description

【発明の詳細な説明】 本発明は低合金鋼の肉盛溶接方法に関し、殊に高温高圧
水素を取扱う容器等の内面に形成されるステンレス糸肉
盛溶接金属と母材低合金鋼との界面に発生する割れ(以
下剥離と称する)を防止する方法に関し、詳細には、母
材の成分組成金規定すると共に、第1層目の肉盛溶接金
属の成分組成を、フラックス組成との関係を考慮しつつ
適正に調整することにより、使用中の水素侵入に起因す
る剥離を防止した肉盛溶接方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for overlay welding of low alloy steel, and in particular to an interface between stainless thread overlay weld metal and base material low alloy steel, which is formed on the inner surface of a container etc. that handles high temperature and high pressure hydrogen. Regarding the method for preventing cracks (hereinafter referred to as peeling) that occur in The present invention relates to an overlay welding method that prevents peeling caused by hydrogen intrusion during use by properly adjusting the present invention.

石油精製工業における脱硫や水添分解或いは石灰液化反
応等には高温高圧の水素が使用されるが、これらの反応
装置としては耐熱性及び耐水素侵食性等の観点からCt
−MO系等の低合金鋼が使用され、且つ内面には腐食防
止の為にステンレス鋼溶の肉盛溶接層を形成するのが通
例である。この種の母材低合金鋼と肉盛ステンレス鋼の
境界には約20〜100μmに亘って遷移領域が存在し
、この部分では成分組成が母材組成から肉盛金属組成に
かけて連続的に変化している。但し戻素は灰化物となっ
てこの領域に析出し、該遷移領域内に濃度のピークをシ
している。
High-temperature, high-pressure hydrogen is used in desulfurization, hydrogenolysis, lime liquefaction reactions, etc. in the oil refining industry.
- It is customary to use low-alloy steel such as MO-based steel, and to form an overlay welded layer of molten stainless steel on the inner surface to prevent corrosion. There is a transition region of approximately 20 to 100 μm at the boundary between this type of base metal low alloy steel and overlay stainless steel, and in this region the component composition changes continuously from the base metal composition to the overlay metal composition. ing. However, the returned element becomes ash and precipitates in this region, and a concentration peak occurs in the transition region.

ところでこの容器に高温高圧の水素を収容して運転を行
なうと水素が容器素材中へ拡散侵入し、この水素は運転
停止後も容器素材中に残って鋼材を脆化させ、特に上記
遷移領域での割れを発生させることがある。この割れ(
即ち剥離)t−起こす要因としては、主に■遷移領域に
おける成分組成が水素脆化感受性の高いものであること
、■オーステナイトとフェライトの熱膨張係数の差異に
起因する内部応力や歪の発生、02点が考えられるが、
いずれにしても水素が存在しない限り剥離は起こらない
By the way, when this container is operated with high-temperature, high-pressure hydrogen stored in it, the hydrogen diffuses into the material of the container, and this hydrogen remains in the material of the container even after the operation is stopped, causing the steel to become brittle, especially in the above-mentioned transition region. may cause cracks. This crack (
In other words, the factors that cause delamination are: (1) the composition in the transition region is highly susceptible to hydrogen embrittlement; (2) the occurrence of internal stress and strain due to the difference in thermal expansion coefficients between austenite and ferrite; 02 points are possible, but
In any case, peeling will not occur unless hydrogen is present.

本発明者等は上記の様な事情に着目し、低合金鋼母材と
肉盛金属の剥離をなくすべく、その発生原因を明確にす
ると共にその防止手段を確立すべく研究を進めてきた。
The present inventors have focused on the above-mentioned circumstances, and have conducted research to clarify the cause of this occurrence and to establish means for preventing it, in order to eliminate peeling between the low-alloy steel base material and overlay metal.

その結果、剥離は前記遷移領域内に存在する結晶粒界に
沿って発生する粒界破壊であること、そしてこの粒界に
P及びSが偏析して粒界脆化を促進し、Slもこの脆化
を促進していることを知った。また剥離感受性は遷移領
域内の結晶粒径によっても影響され、結晶粒径が大きい
場合は粒界面積が減少する為に脆化促進元素であるP%
s、siの粒界への偏析が増大し、剥離感受性が高まる
。そこで遷移領域内の結晶粒径を支配する因子について
研究を進め九ところ、肉盛溶接時に使用するフラックス
組成が大きな影響を及はしていることtつ色とめた。即
ちCaO。
As a result, we found that flaking is a grain boundary fracture that occurs along the grain boundaries existing in the transition region, and that P and S segregate at these grain boundaries, promoting grain boundary embrittlement, and that Sl also I learned that it promotes embrittlement. Peeling susceptibility is also affected by the crystal grain size in the transition region; if the crystal grain size is large, the grain boundary area decreases, so P%, an element that promotes embrittlement, decreases.
Segregation of s and si to grain boundaries increases, increasing susceptibility to peeling. Therefore, we conducted research on the factors that control the grain size in the transition region and found that the composition of the flux used during overlay welding has a large influence. That is, CaO.

BIO,MgO等の塩基性成分やCaF2、BaF2、
MgF、等のぶつ化物を多量含有するフラックスを使用
すると、アーク温度が高くなったり、或いはスラグの導
電性が良好となり抵抗発熱量が増大して溶融池の温度が
上昇し、溶接金属の冷却速度が低下して結晶粒径が大き
くなる。また塩基性フラックスでは、溶融金属の清浄度
が高まり凝固時点の結晶核生成量が少なくなる為、結晶
粒径は大きくなる。
Basic components such as BIO, MgO, CaF2, BaF2,
If a flux containing a large amount of agglomerates such as MgF is used, the arc temperature will rise, or the conductivity of the slag will become good, increasing the amount of heat generated by resistance and raising the temperature of the molten pool, which will reduce the cooling rate of the weld metal. decreases and the crystal grain size increases. In addition, with basic flux, the cleanliness of the molten metal increases and the amount of crystal nuclei generated at the time of solidification decreases, so the crystal grain size increases.

本発明者等はと記の様な知見を基に、肉盛溶接金属の剥
離を防止すべく、母材の成分組成、肉盛溶接用フラック
スの成分組成及び遷移領域の成分組成等に影41を与え
る第1層目の肉盛溶接金属組成を主体として総合的な研
究を進めてきた。本発明はかかる研究の結果完成された
ものであって、その構成は、C:0.2−(重量哄:以
下同じ)以下、Si:1.01L以下、Mn:t、o哄
以下、Ni:1.0以下、Cr:8.5%以下、MO:
2.(l以下、A#:0.1%以下を含有し、残部がF
・及び不可避不純物よりなる低合金鋼の内面にブランク
スを散布して肉感溶接を行なう方法において、1層目の
溶接金属が、C:0,111.以下、S l : 1.
0哄以下、Mnニア、0悌以下、Niニア 〜80%。
Based on the knowledge described above, the inventors of the present invention have investigated the composition of the base metal, the composition of the flux for overlay welding, the composition of the transition region, etc. in order to prevent the peeling of overlay weld metal. Comprehensive research has been carried out mainly on the composition of the first layer overlay weld metal that provides the The present invention was completed as a result of such research, and its composition is as follows: C: 0.2 - (weight: the same below) or less, Si: 1.01 L or less, Mn: t, o or less, Ni : 1.0 or less, Cr: 8.5% or less, MO:
2. (Contains 0.1% or less, A#: 0.1% or less, and the remainder is F
- In a method in which blanks are sprinkled on the inner surface of low alloy steel containing unavoidable impurities and sensual welding is performed, the first layer weld metal has C: 0,111. Hereinafter, S l: 1.
Below 0, Mn near, below 0, Ni near ~80%.

Cr:1@〜80%、Mo:Jl、Q%以下を含有し、
Contains Cr: 1@~80%, Mo: Jl, Q% or less,
.

或いはこれらと共にNb:Cの8倍以上101以下を含
有し、残部がFe及び不可避不純物からなる様に肉盛溶
接すると共に、下記(I)、(IF)式を満足する様に
調整するところに要旨が存在する。
Or, together with these, Nb:C contains 8 times or more and 101 or less, and is overlay welded so that the remainder consists of Fe and unavoidable impurities, and is adjusted to satisfy the following formulas (I) and (IF). A gist exists.

0.6≦(S 1+5 (0) + 前述の如く肉盛溶接金属の剥離に及埋す因子としては、
母材と肉盛溶接金属の前記遷移領域における粒界上のP
、S及びsiの偏析、及び該領域の結晶粒径等が挙げら
れる。そこでこれらに影響すると考えられる因子のうち
、母材低合金鋼の成分組成、散布ブランクスの成分組成
及び第1PfI目の溶接金属組成について総合的な研究
を行なった。
0.6≦(S 1+5 (0) + As mentioned above, the factors that affect the peeling of overlay weld metal are:
P on the grain boundaries in the transition region between the base metal and the overlay weld metal
, segregation of S and Si, and crystal grain size in the region. Therefore, among the factors considered to influence these, a comprehensive study was conducted on the composition of the base material low alloy steel, the composition of the scattered blank, and the composition of the first PfI weld metal.

そして後記実験例にその一例を示す如く多数の実験を行
ないそのデータを整理したところ、肉盛金属の剥離を防
止する為には、*1層目の肉盛金属中に含まれる81%
P%Sの量と使用するブランクス組成(殊に酸化物とぶ
つ化物)との相互関係を適正に調整する必要があり、両
者の関係が前記CI)式を満足する様なものに調整すべ
きことが分かった。
After conducting many experiments and organizing the data, as shown in the experimental example below, we found that in order to prevent the overlay metal from peeling off, *81% of the overlay metal contained in the first layer must be
It is necessary to appropriately adjust the interrelationship between the amount of P%S and the composition of the blank used (especially oxides and hybrids), and the relationship between the two should be adjusted so that it satisfies the above CI) formula. That's what I found out.

但し仮に肉盛金属中の2%51,5の含有率を低下させ
ても、例えば母材Cr−Mo系低合金銅のP含有率が高
いと、母材から遷移領域への固体拡散によって割れ感受
性が高まる為、両金属中のP、Sl、8の含有率の高い
方の値が割れ発生の有無を決定する。従って母材の選定
にも十分な考慮を払う必要がある。一方肉盛金属中の8
1含有率は、溶接作業性を考慮すると必ずしも低く抑え
ることは好ましくないが、実験の結果、肉盛溶接金属中
の酸票量をブランクス組成との関係で81含有率の下限
値を設定すれば、割れ感受性と溶接作業性の両者を満足
し得ることが明らかになった。
However, even if the content of 2%51,5 in the overlay metal is reduced, for example, if the base material Cr-Mo low alloy copper has a high P content, cracking may occur due to solid diffusion from the base material to the transition region. Since the sensitivity increases, the higher content of P, Sl, and 8 in both metals determines whether or not cracking occurs. Therefore, sufficient consideration must be given to the selection of the base material. On the other hand, 8 in overlay metal
Although it is not necessarily desirable to keep the 81 content low considering welding workability, as a result of experiments, we found that if the lower limit of the 81 content is set in relation to the blank composition, the amount of acid residue in the overlay weld metal It became clear that both cracking susceptibility and welding workability could be satisfied.

即ち樵基性成分及びふっ化物を多量含有するブランクス
を使用し、且つ溶接金属中の81及び0量が少ない場合
には、溶接ビードのなじみが悪く融合不良等の欠陥が多
発し、この融合不良は肉盛溶接金属の剥離を助長する。
In other words, if a blank containing a large amount of woodcutter-based components and fluoride is used, and the amount of 81 and 0 in the weld metal is small, the weld bead will not fit well and defects such as poor fusion will occur frequently, and this poor fusion will occur. promotes peeling of overlay weld metal.

そこで割れ感受性と溶接作業性の両者を満足すべく、溶
接金属中の81及び0含有率並びにフラックス組成につ
いて詳細に研究を行なったところ、前記CH2式の条件
を満足する様に各成分の含有率を規定することによって
上記の目的を達成し得るという結論に達した。
Therefore, in order to satisfy both cracking sensitivity and welding workability, we conducted detailed research on the 81 and 0 content in the weld metal and the flux composition, and found that the content of each component satisfies the conditions of the CH2 formula. We have reached the conclusion that the above objective can be achieved by specifying the following.

尚(I[)式において上限[?8.6に設定した理由は
次の通りである。即ちSlは前述の如く粒界脆化元素で
あるので極力少なく抑える必要があり、また0含有率が
高すぎ、或いは酸性成分量の多いブランクスを使用する
と、良好なビードが形成され難くなると共に、溶接金属
中の非金属介在物が多くなって機械的性質や耐食性が乏
しくなるからである。
In addition, in formula (I[), the upper limit [? The reason for setting it to 8.6 is as follows. That is, as mentioned above, Sl is an element that causes grain boundary embrittlement, so it must be kept as low as possible, and if the 0 content is too high or a blank with a large amount of acidic components is used, it will be difficult to form good beads, and This is because nonmetallic inclusions in the weld metal increase, resulting in poor mechanical properties and corrosion resistance.

この様に、CI)式及び(II)式を同時に満足する様
に溶接金属中のsi、p%S10量及びブランクス組成
を特定することによって、剥離を生じることのない健全
な肉盛金属t−得ることができる。尚これら(I)、(
It)式の要件を定めた理由は、後記実験例で更に明確
にされる通りである。
In this way, by specifying the amount of Si and p%S10 in the weld metal and the blank composition so as to simultaneously satisfy formula CI) and formula (II), a sound overlay metal t- Obtainable. Furthermore, these (I), (
The reason for determining the requirements of the formula It) will be further clarified in the experimental examples described later.

本発明では上記の要件に加えて母材低合金鋼及び溶接金
属の成分組成を厳密に規定しているが、その理由は次の
通りである。
In addition to the above-mentioned requirements, the present invention strictly defines the component compositions of the base material low alloy steel and weld metal, and the reason for this is as follows.

まず第1層目の溶接金属について説明する。First, the first layer of weld metal will be explained.

Cは、ステンレス系溶接金属の耐食性を高めるうえで少
ない方が好ましく、肉盛溶接時における母材からの溶込
み量を考厘して01−を上限とした。53及びMuは溶
接材料の脹酸剤として利用されるが、多すぎると機械的
性質及び耐食性が低下すると共に溶接性も低下する館内
があるので、5tはt、OS、Mnは7.0哄をチ4上
限に定めた。
A smaller amount of C is preferable in order to improve the corrosion resistance of the stainless steel weld metal, and the upper limit was set at 01- in consideration of the amount of penetration from the base metal during overlay welding. 53 and Mu are used as oxidizing agents for welding materials, but if there are too many, the mechanical properties and corrosion resistance will deteriorate as well as weldability, so 5t is t, OS, and Mn are 7.0 liters. is set as the upper limit of Chi4.

Ni及び(rは溶接金属の耐食性を高める為の基本成分
であり、オーステナイト鋼では通常N1が約7哄以上、
Crが約16哄し上火々含まれているが、多すぎると溶
接時の高n3割れや熱処理に伴う脆化等の問題が生じる
ので、適正範囲としてNIは7〜801j11Crは1
6〜80%を夫々定めた。
Ni and (r) are basic components for increasing the corrosion resistance of weld metal, and in austenitic steel, N1 is usually about 7 or more,
The Cr content is about 16%, which is high, but if it is too high, problems such as high N3 cracking during welding and embrittlement due to heat treatment will occur, so the appropriate range is NI of 7 to 801j11 Cr of 1.
6 to 80% was determined respectively.

MOは高温強度を高める作用があるが、多すぎるとシグ
マ相が析出し耐食性及び耐衝撃性を阻害するので、8−
以下に抑えなければならない。
MO has the effect of increasing high-temperature strength, but if it is too large, sigma phase will precipitate and impair corrosion resistance and impact resistance.
Must be kept below.

Nb#iC量が少ないものでは必須とされないが、C量
が比較的多い場合は強力な戻化物生成元素として重要な
機能を発揮し、溶接金属中のCvi−固定して粒界腐食
を防止する。Cを完全に固定する為にはC量の8倍以上
を含有させなければならないが、多すぎるとシグマ相が
析出し耐食性及び耐衝撃性が低下するのでion以下に
止めねばならない。
Although it is not essential when the amount of Nb#iC is small, when the amount of C is relatively large, it exerts an important function as a strong reversion product-forming element, fixing Cvi- in the weld metal and preventing intergranular corrosion. . In order to completely fix C, it is necessary to contain at least 8 times the amount of C, but if it is too large, a sigma phase will precipitate and corrosion resistance and impact resistance will decrease, so it must be kept below ion.

次に母材について説明する。Next, the base material will be explained.

Cは焼入性と強度を確保するのに不可欠の成分であるが
、多すぎると靭性及び溶接性が劣化し、更には耐水素侵
食性が乏しくなるので0.2哄以下にする必要がある。
C is an essential component to ensure hardenability and strength, but if it is too large, toughness and weldability will deteriorate, and furthermore, hydrogen corrosion resistance will become poor, so it must be kept below 0.2 ml. .

Slは引張強さを高めるが、多すぎると靭性及び耐水素
侵食性が低下するので1.0%t−上限とした。
Sl increases tensile strength, but if it is too large, toughness and hydrogen corrosion resistance decrease, so the upper limit was set at 1.0% t-.

Mllは強度を高める作用があるが、多すぎると焼戻し
脆化を促進させるので上限vil−t、o哄とした。
Although Mll has the effect of increasing strength, too much Mll promotes tempering embrittlement, so the upper limit was set at vil-t and o-l.

Niは焼入性を高めるが、多すぎると溶接性が線化する
ので1.0s以下に抑えるべきである。(r及びMoは
耐水素侵食性や耐酸化性及び高温強度を高める作用があ
るが、多すぎると溶接性が悪化するので上限を夫々8.
6哄及び2哄と定めた*AJは脱酸剤として利用される
が、多すぎると靭性を劣化させるので0.1%以下とす
る。
Ni improves hardenability, but if it is too large, weldability becomes linear, so it should be kept at 1.0 seconds or less. (R and Mo have the effect of increasing hydrogen corrosion resistance, oxidation resistance, and high-temperature strength, but if they are too large, weldability deteriorates, so the upper limit of each is set at 8.
*AJ defined as 6 liters and 2 liters is used as a deoxidizing agent, but too much will deteriorate toughness, so the content should be 0.1% or less.

本発明・における成分組成及び数値範囲設定の理由は概
略以上の通りで多るが、それらの限定理由を一層明確に
する為、実験例を挙げて拝趨に説明する。
There are many reasons for setting the component composition and numerical range in the present invention as outlined above, but in order to further clarify the reasons for these limitations, experimental examples will be given and explained in detail.

厚さ60fiのCr−Mo系低合金鋼よりなる母材上に
、オーステナイト系ステンレス鋼製フープ(厚さQ、 
4 am 1幅75m1)を用いて肉盛溶接を行なう、
尚使用したフフツクスの組成(七V分率)は第1表に、
母材の化学成分は第2表に夫々示す。
An austenitic stainless steel hoop (thickness Q,
Perform overlay welding using 4 am 1 width 75 m1),
The composition of the fufutuks used (7V fraction) is shown in Table 1.
The chemical components of the base materials are shown in Table 2.

また使用したフープ及び得られた溶接金−の住学成分を
第8表(a)〜(e)に示す。
Tables 8 (a) to (e) show the chemical compositions of the hoops used and the weld metals obtained.

得られた各肉盛溶接鋼について、実機11?模擬した条
件で水素による剥離抵抗性を求める為、計算及び実験に
より本出願人自身が開発した下記お方法で水素剥離試験
を行なった。即ち第1図はこの試験法を略示する一部破
断見取9図で、立方体の鋼塊1.1に2つのねじ孔2を
直交万両に守役する。一方上記で得た各肉盛溶接鋼を第
2図に示す如く円柱状に打抜き、上部外周に雄ねじ8を
形成して供試片4とする(図中Aは母材、Bは肉盛溶接
金属を示す)。得られた各供試片4を、第1図に示す如
く肉盛溶接金属が対向する様に前記ねじ孔2に螺合する
と共に、図示し穴様に被試験体2組を管5で接続し、且
つ該管5を分肢させて水素ボンベ(図示せず)を接続す
る。被試験体の中央部の空間6に水素ガスを圧入した後
、これを炉内に装入して加熱し、温度450℃、水素圧
150気圧に維持した状頗で約50時間保持する。この
苛酷条件での実験により水素が肉−溶接金属中に侵入し
、実機の定常運転時における水素の浸入状況及び分布状
況をほぼ正確に模擬することができる0次に試験体を炉
から取り出し、約1時間で室温まで冷却する。尚冷却速
度は、十分量の水素が肉盛溶接金属中に取り残される様
、計算及び分析実験によって定めた。この様にして室温
まで冷却し放置すると、耐剥離性の悪い肉盛溶接金属の
場合は十〜数十時間の潜伏期間の後剥離が発生する。
For each obtained overlay welded steel, actual machine 11? In order to determine the peeling resistance due to hydrogen under simulated conditions, a hydrogen peeling test was conducted using the following method developed by the applicant himself through calculations and experiments. That is, FIG. 1 is a partially cutaway diagram 9 schematically showing this test method, in which two screw holes 2 are orthogonally inserted into a cubic steel ingot 1.1. On the other hand, each of the overlay welded steels obtained above is punched into a cylindrical shape as shown in Fig. 2, and a male thread 8 is formed on the outer periphery of the upper part to obtain a specimen 4 (A in the figure is the base metal, B is the overlay welded steel). metal). Each of the obtained specimens 4 was screwed into the screw hole 2 so that the overlay weld metals faced each other as shown in FIG. Then, the pipe 5 is separated and connected to a hydrogen cylinder (not shown). After hydrogen gas is pressurized into the space 6 in the center of the test object, it is charged into a furnace and heated, and maintained at a temperature of 450° C. and a hydrogen pressure of 150 atmospheres for about 50 hours. As a result of the experiment under these severe conditions, hydrogen penetrated into the meat-weld metal, and the zero-order test specimen, which can almost accurately simulate the hydrogen penetration and distribution conditions during steady operation of the actual machine, was removed from the furnace. Cool to room temperature in about 1 hour. The cooling rate was determined through calculations and analytical experiments so that a sufficient amount of hydrogen would remain in the overlay weld metal. When cooled to room temperature and left to stand in this manner, in the case of overlay weld metal with poor peeling resistance, peeling occurs after an incubation period of ten to several tens of hours.

従って耐剥離性の検出は、冷却後48時間放置した後超
音波探傷試験によって行なった。
Therefore, peeling resistance was detected by an ultrasonic flaw detection test after cooling and leaving for 48 hours.

結果を第8表(a)〜(e)に示す。The results are shown in Table 8 (a) to (e).

上記の実験で得た結果を、各フラックス組成毎1 に51と(P+(S )の関係として整理すると第8〜
6図の関係が得られる。これらの図から明らかな様に、
(81+50P−1158)が各フラックスの組成によ
って決定されるある一定の*t−越えると剥離が発生し
、それ以下では発生せず、これらの傾向は極めて明確で
ある。′また第7図は、(Sl+60F+258)とフ
ラックス組成の関係として整理したグラフであるが、(
Sl+50?+!!68)の値が、フラックス組成(特
に酸化物及びふつ化物の含有率:モルS)の関数として
定まる値: を越えると剥離が発生しており、この条件が剥離の有無
を決定する重要な要素となっていることが明白である。
If the results obtained in the above experiment are organized as the relationship between 51 and (P+(S)) for each flux composition, the 8th to
The relationship shown in Figure 6 is obtained. As is clear from these figures,
When (81+50P-1158) exceeds a certain *t- determined by the composition of each flux, peeling occurs, and below this it does not occur, and these trends are very clear. 'Also, Figure 7 is a graph organized as the relationship between (Sl+60F+258) and flux composition.
Sl+50? +! ! 68) is a value determined as a function of the flux composition (particularly the content of oxides and fluorides: molar S): If it exceeds this value, peeling has occurred, and this condition is an important factor in determining the presence or absence of peeling. It is clear that.

即ち第8表における実施例1〜22は上記の要件を満足
する例であり、溶接性はもとより耐剥離性もすべて良好
であるが、上記の要件から外れる比較例28〜48の場
合は、何れも耐剥離性が乏しく本発明の目的t−達成で
きない、また比較例49〜58は前記(I[)式の要件
から外れた場合、即ち の値が0.6〜8.6の範囲を外れる比較例であり、こ
の場合は溶接作業性が悪く、良好なビード形状が得られ
なかったり融合不良が多発する為に健全な肉II廖接部
を得ることができず、耐剥離性以前の問題である。
That is, Examples 1 to 22 in Table 8 are examples that satisfy the above requirements, and have good weldability and peeling resistance in all cases, but Comparative Examples 28 to 48, which deviate from the above requirements, are examples that satisfy the above requirements. Also, Comparative Examples 49 to 58 have poor peeling resistance and cannot achieve the objective of the present invention, and Comparative Examples 49 to 58 deviate from the requirements of the above formula (I [), that is, the values deviate from the range of 0.6 to 8.6. This is a comparative example, and in this case, welding workability was poor, a good bead shape could not be obtained, and poor fusion occurred frequently, making it impossible to obtain a healthy meat II joint, and the problem was more than peeling resistance. It is.

これらの結果からも明らかな様に、健全な肉盛溶接部を
確保すると共に肉盛金属(D @Mを防止する為には、
前記(i)式及び(]I)式の要件を同時に満足させる
ことが不可欠である。
As is clear from these results, in order to ensure a healthy overlay weld and to prevent overlay metal (D@M),
It is essential to simultaneously satisfy the requirements of formula (i) and formula (]I).

本発明は概略以上の様に構成されており、肉盛溶接金属
の耐剥離性を阻害する81、P及びSの許容限界を、使
用するフラックス組成との関連で適正に規定することに
よって、耐剥離性の優れた健全な肉盛溶接部が得られる
ことになった。前述の如く肉盛溶接金属中の31、P及
びslを極低レベルに抑えることによって耐剥離性を改
善することは、実験室規模であれば十分可能である。し
かしその為には母材及び溶接材料を原料段階で厳選し且
つ溶製法を、工夫しなければならず、製造コストが猷増
する為に工業規模での実現性は極めて 少ない。これに
対し本発明では、前述の如く耐剥離性阻害元素の許容限
界をフフックス組成との関連で規定する方法でろ9、工
業的規模での実用性は極めて大きい、その結果、この技
術を高温高圧水素を取り扱う圧力容器等に適用すること
により、肉盛溶接金属層の剥離に起因する事故を未然に
防止し得ることになった。
The present invention is roughly constructed as described above, and the tolerance limits of 81, P, and S, which inhibit the peeling resistance of overlay weld metal, are appropriately defined in relation to the flux composition used. A healthy overlay weld with excellent peelability was obtained. As mentioned above, it is possible to improve the peeling resistance by suppressing 31, P and sl in the overlay weld metal to extremely low levels on a laboratory scale. However, this requires careful selection of base metals and welding materials at the raw material stage, as well as devising a melting process, which increases manufacturing costs and is extremely unlikely to be realized on an industrial scale. On the other hand, in the present invention, as mentioned above, the permissible limit of elements that inhibit peeling resistance is defined in relation to the composition of fufux9, and this technology is extremely practical on an industrial scale. By applying this method to pressure vessels that handle hydrogen, it has become possible to prevent accidents caused by peeling of overlay weld metal layers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実験で使用した耐剥離性試験装置を示す一部
切除概略見最9図、第2図は供試片を示す見取り図、第
8〜6図は溶、接金間中の51及びCP+MS)と耐割
れ性の関係をフフックス組成毎に示したグラフ、第7図
は、酎割れ性に及ぼす溶接金属中の(S i+50P+
258 ) とyラックス組成の関数との関係を示すグ
ラフである。 1・・・鋼塊      8・・・ねじ孔8・・・雄ね
じ     4・・・供試片A・・・母材      
B・・・肉盛溶接金属出願人  株式会社神戸製鋼所 第2図 0.010  0.02り  0.030  0.(+
40P+−25C′l) 第7図 0.5         1.0 (Si02+Ae203+0.7TiO,、)(NaO
十BaO+−MgO+ 0.4 (caF + BaF
、1MgF :)12   〜   6゜ 手続補正書(賎] 昭+++ 56 (l19月 2711特許庁長官 島
 1)春 樹 殿 特許庁審判長           殿特許庁審査官 
          殿111件の表示 昭和 56年 特 許 願第116880  号昭和 
  年  審 ・判  第       “−;3 補
11:、をするイ 名称 (I+!’l)株式会社神戸製鋼所代 表 と 
 高  橋  孝  +’i1 代  理  人 郵便
番シじ530住 所  大阪市北区堂島2TII3番7
 +;、  シンコーヒル? 7、補11:、の内容 (1)明細書第8頁第9付目の「51o2AA′l−2
o3」Ir5lo   A#203Jに訂正します一1 (2)同第7頁第H?目12) rl、(I下J t−
rl、01以下」k訂正します。 (3)「第7図」全別紙のものと差し替えます。
Figure 1 is a partially cut-out schematic view of the peeling resistance testing device used in the experiment, Figure 2 is a sketch showing the test piece, and Figures 8 to 6 are 51 parts of the test piece during welding and welding. Figure 7 is a graph showing the relationship between (S i + 50P +
258) and a function of y-lux composition. 1...Steel ingot 8...Threaded hole 8...Male thread 4...Specimen A...Base metal
B... Overlay welding metal applicant Kobe Steel, Ltd. Figure 2 0.010 0.02 0.030 0. (+
40P+-25C'l) Fig. 7 0.5 1.0 (Si02+Ae203+0.7TiO,) (NaO
10BaO+-MgO+ 0.4 (caF + BaF
, 1MgF:) 12 ~ 6゜ Procedural Amendment (Shi) Sho+++ 56 (l19/2711 Commissioner of the Japan Patent Office Shima 1) Haruki, Japan Patent Office Chief Examiner, Japan Patent Office Examiner
Display of 111 items 1982 Patent Application No. 116880 Showa
2016 Trial and Judgment No. ``-;3 Supplement 11: ``Name (I+!'l) Representative of Kobe Steel, Ltd.
Takashi Takahashi +'i1 Deputy Director Postal Code Shiji 530 Address 2TII 3-7 Dojima, Kita-ku, Osaka
+;, Shinko Hill? 7, Supplement 11: Contents (1) "51o2AA'l-2" on page 8, issue 9 of the specification
o3'' Ir5lo A#203J is corrected to 1 (2) Same page 7 H? 12) rl, (I lower J t-
rl, 01 or less”k Correct. (3) Replace all of “Figure 7” with the attached sheet.

Claims (1)

【特許請求の範囲】 (13G:0.2哄(重量−:以下同じ)以下、Sl:
i、os以下、Mn:1.9%以下、Ni:1.O哄以
下、Cf:8.811以下、M o : 2.O哄以下
、A4!:O,tS以下を含有し、残部がF・及び不可
避不純物よりなる低合金鋼の表面に7フツクスを散布し
て肉感溶接を行なう方法において、1層目の溶接金属が
、C:0.11以下、Si:1゜〇−以下、Malニア
、0−以下、Ni ニア 〜80s%Cr:16〜80
哄、MO:8.O哄以下を含有し、残部FC及び不可避
不純物からなるように溶接すると共に、(Si+50?
+258)≦ 0.6≦〔S量+5  (0) + の関係を満足する様に調整することを特徴とする低合金
鋼の肉盛溶接方法。 (2)C:0.2悌(重量II:以下同じ)以下、Si
:1、O1以下、Mn:t、os以下、?Ji:1.0
哄以下、Cr : 8.5 哄以下、MO21011+
以下、Ajl:0.1111以下を含有し、残部がir
e及び不可避不純物よりなる低合金鋼の表面にブラック
スt−e布して肉盛溶接を行なう方法において、1層目
の溶接金属が、c : o、 を哄以下、si:1.6
哄以下、Mnニア、9%以下、N ’ : 7〜8 (
1+、 Cr :16〜80哄、Mo:8.0哄以下、
Nb:Cの8倍以上1.0惧以下を含存し、残部Fe及
び不可避不純物からなる様に溶接すると共に、 (S i+50P+25s)≦ 0.5≦(S 1+5 (0) + の関係を満足する様に調整することを特徴とする低合金
鋼の肉盛溶接方法。
[Claims] (13G: 0.2 liters (weight: the same applies hereinafter) or less, Sl:
i, os or less, Mn: 1.9% or less, Ni: 1. 0 or less, Cf: 8.811 or less, Mo: 2. Below O, A4! :O, tS or less, with the remainder being F and unavoidable impurities. In the method of performing tactile welding by dispersing 7x on the surface of low alloy steel, the first layer weld metal contains C: 0.11. Below, Si: 1゜〇- or less, Mal near, 0- or less, Ni near ~80s% Cr: 16-80
哄, MO:8. It is welded so that it contains less than 100% of Si and the remainder consists of FC and unavoidable impurities, and (Si+50?
+258)≦0.6≦[S amount +5 (0) + A method for overlaying low alloy steel, characterized by adjusting the amount to satisfy the following relationship. (2) C: 0.2° (weight II: same below) or less, Si
:1, O1 or less, Mn:t, os or less, ? Ji:1.0
Below 哄, Cr: 8.5 below 哄, MO21011+
The following contains Ajl: 0.1111 or less, and the remainder is ir
In the method of overlay welding by applying black t-e to the surface of low-alloy steel consisting of e and unavoidable impurities, the first layer weld metal has c: o, less than or equal to , si: 1.6
Less than 100%, Mn near, 9% or less, N': 7-8 (
1+, Cr: 16-80 liters, Mo: 8.0 liters or less,
Nb: Contains 8 times or more of C and 1.0 or less, and is welded so that the remainder consists of Fe and unavoidable impurities, and satisfies the relationship of (S i + 50P + 25s) ≦ 0.5 ≦ (S 1 + 5 (0) + A method for overlay welding of low alloy steel, which is characterized by adjusting it so as to
JP11688081A 1981-07-24 1981-07-24 Build up welding method for low alloy steel Granted JPS5816793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11688081A JPS5816793A (en) 1981-07-24 1981-07-24 Build up welding method for low alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11688081A JPS5816793A (en) 1981-07-24 1981-07-24 Build up welding method for low alloy steel

Publications (2)

Publication Number Publication Date
JPS5816793A true JPS5816793A (en) 1983-01-31
JPS6410317B2 JPS6410317B2 (en) 1989-02-21

Family

ID=14697918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11688081A Granted JPS5816793A (en) 1981-07-24 1981-07-24 Build up welding method for low alloy steel

Country Status (1)

Country Link
JP (1) JPS5816793A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594971A (en) * 1982-06-29 1984-01-11 Kawasaki Steel Corp Build up welding
JPS60111793A (en) * 1983-11-21 1985-06-18 Kawasaki Steel Corp Flux for electroslag build-up welding using belt-like electrode
JPS63154292A (en) * 1986-12-17 1988-06-27 Nippon Uerudeingurotsuto Kk Flux for horizontal electroslag overplaying
JP2005246399A (en) * 2004-03-02 2005-09-15 Jfe Steel Kk Electroslag welding method
WO2015005002A1 (en) * 2013-07-12 2015-01-15 株式会社神戸製鋼所 Flux-cored wire for build-up welding
JP2016165750A (en) * 2015-03-10 2016-09-15 株式会社神戸製鋼所 Build-up welding metal and machine structure
CN106413977A (en) * 2014-06-11 2017-02-15 株式会社神户制钢所 Buildup welded body
CN106457480A (en) * 2014-06-11 2017-02-22 株式会社神户制钢所 Buildup welded metal and machine structure

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594971A (en) * 1982-06-29 1984-01-11 Kawasaki Steel Corp Build up welding
JPH035913B2 (en) * 1982-06-29 1991-01-28 Kawasaki Steel Co
JPS60111793A (en) * 1983-11-21 1985-06-18 Kawasaki Steel Corp Flux for electroslag build-up welding using belt-like electrode
JPH0450111B2 (en) * 1983-11-21 1992-08-13 Kawasaki Steel Co
JPS63154292A (en) * 1986-12-17 1988-06-27 Nippon Uerudeingurotsuto Kk Flux for horizontal electroslag overplaying
JP4622267B2 (en) * 2004-03-02 2011-02-02 Jfeスチール株式会社 Electroslag welding method
JP2005246399A (en) * 2004-03-02 2005-09-15 Jfe Steel Kk Electroslag welding method
WO2015005002A1 (en) * 2013-07-12 2015-01-15 株式会社神戸製鋼所 Flux-cored wire for build-up welding
CN106413977A (en) * 2014-06-11 2017-02-15 株式会社神户制钢所 Buildup welded body
CN106457480A (en) * 2014-06-11 2017-02-22 株式会社神户制钢所 Buildup welded metal and machine structure
EP3156170A4 (en) * 2014-06-11 2017-11-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Buildup welded body
EP3156169A4 (en) * 2014-06-11 2017-11-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Buildup welded metal and machine structure
JP2016165750A (en) * 2015-03-10 2016-09-15 株式会社神戸製鋼所 Build-up welding metal and machine structure
WO2016143509A1 (en) * 2015-03-10 2016-09-15 株式会社神戸製鋼所 Build-up welding metal and mechanical structure
EP3269495A4 (en) * 2015-03-10 2019-01-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Build-up welding metal and mechanical structure

Also Published As

Publication number Publication date
JPS6410317B2 (en) 1989-02-21

Similar Documents

Publication Publication Date Title
Korinko et al. Considerations for the weldability of types 304L and 316L stainless steel
JP5463527B2 (en) Welding material made of austenitic stainless steel, stress corrosion cracking preventive maintenance method and intergranular corrosion preventive maintenance method using the same
JPWO2020203335A1 (en) Manufacturing method of high-strength welded joints for extremely low temperatures
JP7135649B2 (en) Welding consumables for austenitic stainless steel
Ramirez Weldability evaluation of supermartensitic stainless pipe steels
JPS5816793A (en) Build up welding method for low alloy steel
Li et al. Microstructure and mechanical properties of welding metal with high Cr-Ni austenite wire through Ar-He-N2 gas metal arc welding
Rizvi et al. Effect of different welding parameters on the mechanical and microstructural properties of stainless steel 304h welded joints
Yurioka Comparison of preheat predictive methods
Vassilaros et al. The development of high-strength, cooling-rate insensitive ultra-low-carbon steel weld metals
Eun et al. Types and requirements of materials and corrosion
Krivonosova A review of stress corrosion cracking of welded stainless steels
du Toit Filler metal selection for welding a high nitrogen stainless steel
Hall The effect of welding speed on the properties of ASME SA516 Grade 70 steel
KR20010043411A (en) Welding processes with ferritic-austenitic stainless steel
Işcan et al. Investigation of the mechanical properties of AISI 304 austenitic stainless steel joints produced by TIG and MIG welding methods using 308L filler wire
Nowacki Ferritic-austenitic steel and its weldability in large size constructions
Liu et al. A Comparative Study on Microstructure, Mechanical Properties and Corrosion Resistance of M390 and 304 with Different Welding Methods
Reichel et al. Production of Metallurgically Cladded Pipes for High End Applications in the Oil and Gas Industry
Suda et al. Reheat Cracking in Welds of 1¼Cr-½Mo Steel Pressure Vessel During Fabrication
Russell et al. The development of qualification standards for cast duplex stainless steel
Nowacki Duplex-steel welding problems in the building of chemical cargo ships
Tyszko et al. EFFECT OF TIG REMELTING ON PROPERTIES AND STRUCTURE OF WELDED JOINTS OF AUSTENITIC STAINLESS STEEL.
Anaele et al. Effect of electrode coating on austenitic stainless steel weld metal properties
Sulaiman Structure of properties of the heat affected zone of P91 creep resistant steel