JPS58166253A - Device for measuring concentration of component - Google Patents

Device for measuring concentration of component

Info

Publication number
JPS58166253A
JPS58166253A JP57049270A JP4927082A JPS58166253A JP S58166253 A JPS58166253 A JP S58166253A JP 57049270 A JP57049270 A JP 57049270A JP 4927082 A JP4927082 A JP 4927082A JP S58166253 A JPS58166253 A JP S58166253A
Authority
JP
Japan
Prior art keywords
dehumidified
signal
zirconia
base oxygen
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57049270A
Other languages
Japanese (ja)
Inventor
Masato Maeda
眞人 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Hokushin Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Hokushin Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP57049270A priority Critical patent/JPS58166253A/en
Publication of JPS58166253A publication Critical patent/JPS58166253A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To enable simultaneous measurement of dry base oxygen concn., wet base oxygen concn., and moisture concn., by introducing the not dehumidified gas to be measured into the first partition tube and the dehumidified gas to be measured into the second partition tube. CONSTITUTION:A measuring device has test tube type zirconia tubes 11, 12 forming the first and the second partition walls, and electrodes 13-16. The tubes 11, 12 are arranged in a pipe 2, with their tops opposite to each other. They are maintained at the same constant temp. in a thermostat comprising a heater, etc. The dehumidified and not dehumidified gases to be measured are introduced into the first and second partition wall tubes 11, 12, respectively, and measurements of dry base and wet base oxygen concns. and moisture concn. are executed by such a constitution.

Description

【発明の詳細な説明】 本発明は、カルジャ(Cab)、イツトリア(Y2O3
>等で安定化されたジルコニア磁器を用いて、測定ガス
中の酸素濃度及び水分濃醜を測定する成分濃度測定装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to
This invention relates to a component concentration measuring device that measures oxygen concentration and water concentration in a measurement gas using zirconia porcelain stabilized with > or the like.

従来から、第1図に示すような酸素濃rILitが知ら
れている。この図において、1はジルコニアパイプ、2
は金属製パイプ、3はパイプ2に固定されたと一′夕、
4は断熱材、5及び6はジルコニアパイプ1の両面に接
着された電極、7は信号処理部、8は受信計である。上
記パイプ2、ヒータ3、断熱材4及び図示しない温度セ
ンサや調節部は恒温槽を゛構成し、これによって、ジル
コニアパイプ1は−“定温度(約700’C)に保たれ
ている。この濃度計において、ジルコニアパイプ1の内
部A(測定ガス導入部)に測定ガスG×が導入され、ジ
ルコニアパイプ1とパイプ2で形′成される空fllB
(基準ガス導入部)に基準ガスGa  (通常は空気)
が導入されると、両ガス中の酸素濃゛度差に基づき、ネ
ルンストの式(後述の(1)弐′)で”知られる起電力
Eが、電極5及び6の間に生じ、これに対応した信号が
信号処理部7に送ら□れる。信号処理部7は、所定の演
算を行い、受信計8に酸素−”度[v01%1を積木・
記録させる。
Conventionally, an oxygen concentration rILit as shown in FIG. 1 has been known. In this figure, 1 is a zirconia pipe, 2
One night, 3 was fixed to a metal pipe, and 3 was fixed to pipe 2.
4 is a heat insulating material, 5 and 6 are electrodes bonded to both sides of the zirconia pipe 1, 7 is a signal processing section, and 8 is a receiver. The pipe 2, the heater 3, the heat insulating material 4, and the temperature sensor and adjustment section (not shown) constitute a constant temperature bath, whereby the zirconia pipe 1 is kept at a constant temperature (approximately 700'C). In the concentration meter, the measurement gas Gx is introduced into the interior A (measurement gas introduction part) of the zirconia pipe 1, and the air flIB formed by the zirconia pipe 1 and the pipe 2 is
(Reference gas introduction part) with reference gas Ga (usually air)
is introduced, an electromotive force E known by the Nernst equation ((1) 2′ described later) is generated between electrodes 5 and 6 based on the difference in oxygen concentration between the two gases, and this The corresponding signal is sent to the signal processing unit 7. The signal processing unit 7 performs a predetermined calculation and displays the oxygen degree [v01%1] in the receiver 8 as a building block.
Let it be recorded.

E= (RT/n F)In(Px /Pa )−(1
)但し、R・・・ガス定数 T・・・絶対温麿n・・・
4    F・・・ファラデ一定数P×・・・測定ガス
中の酸素濃度 [v01%I Pa・・・基準ガス中の酸素濃度 [vo1%] ところで、工業分析の分野、例えば、煙過等の排ガス成
分測定では、ドライベース酸素濃度、ウェットベース酸
素濃度及び水分濃度の同時測定が強く望まれている。
E= (RT/nF)In(Px/Pa)-(1
) However, R...Gas constant T...Absolute temperature n...
4 F...Faraday constant P×...Oxygen concentration in the measurement gas [v01%I Pa...Oxygen concentration in the reference gas [vo1%] By the way, in the field of industrial analysis, for example, smoke leakage, etc. When measuring exhaust gas components, simultaneous measurement of dry base oxygen concentration, wet base oxygen concentration, and water concentration is strongly desired.

しかし、従来のジルコニア酸素計では、上述のように、
測定ガスの酸素濃度しか測定することができないので、
上聞要求に応えるには、他の分析計を同時に使用する必
要が生じ、楡めて煩雑であるという問題があった。
However, as mentioned above, with conventional zirconia oxygen meters,
Since only the oxygen concentration of the measurement gas can be measured,
In order to meet the above requirements, it became necessary to use other analyzers at the same time, which caused the problem of being extremely complicated.

本発明は、この問題に鑑みてなされたもので、その目的
は、ドライベース酸素濃度、ウェットベース酸素濃度及
び水分濃度の同時測定が可能な成分濃度測定装置を実現
することにある。
The present invention has been made in view of this problem, and its purpose is to realize a component concentration measuring device that can simultaneously measure dry base oxygen concentration, wet base oxygen concentration, and water concentration.

以下、図面を参照し本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第2図は本発明の一実施例を示す説明図である(第1図
と同一部分には同一符号を付した)。
FIG. 2 is an explanatory diagram showing an embodiment of the present invention (the same parts as in FIG. 1 are given the same reference numerals).

この第2図において、11及び12はそれぞれ第1及び
第2の隔壁を形成する試験管形ジルコニア、13乃至1
6は電極で、試験管形ジルコニア11と12は各先端同
士(電極の固定部)を対向させた状態でパイプ2内に配
設されている。17は測定ガス採取箇所のフィルタ18
とジルコニア11の内部(測定ガス導入部)A1を連通
する管路、19はジルコニア11の内部A1とジルコニ
ア12の内部(測定ガス導入部)A2を除湿器20を介
して連通する管路、21はジルコニア12の内部A2と
排気先を連通ずる管路、22は管路21に設置されたエ
ジェクタである。尚、ジルコニア11及び12の開口部
は、蓋23及び24で閉塞されている。又、パイプ2と
ジルコニア11及び12で形成される9圓(基準ガス導
入部)Bには、強制的又は自然貫流により空気が導入さ
れる。
In this FIG. 2, 11 and 12 are test tube-shaped zirconia forming the first and second partition walls, respectively;
Reference numeral 6 denotes an electrode, and test tube-shaped zirconia 11 and 12 are arranged in the pipe 2 with their tips (fixed parts of the electrodes) facing each other. 17 is a filter 18 at the measurement gas sampling point
A pipe line 19 communicates the inside A1 of the zirconia 11 and the inside (measurement gas introduction part) A2 of the zirconia 12 via a dehumidifier 20, 21 2 is a conduit that communicates the inside A2 of the zirconia 12 with the exhaust destination, and 22 is an ejector installed in the conduit 21. Note that the openings of the zirconias 11 and 12 are closed with lids 23 and 24. Furthermore, air is introduced into the nine circles (reference gas introduction part) B formed by the pipe 2 and the zirconia 11 and 12 by forced or natural flow.

25及び26は増幅器、27は演算部である。25 and 26 are amplifiers, and 27 is an arithmetic unit.

増幅器25は電極13と14との間の起電ツノを増幅し
た信号E1を演舞部27に出力し、増幅器26は電極1
5と16闇の起電りを増幅した信号E2を演算部27に
出力するもので、演算部27は、この信号E1及びEl
をもとに後述する所定の演算を行い、受信計(図示せず
)にウェットベース酸素濃度信号E3、ドライベース酸
素濃度信号E4及び水分濃度信号E5を出力するもので
ある。
The amplifier 25 outputs a signal E1 obtained by amplifying the electromotive horn between the electrodes 13 and 14 to the performance section 27.
The signal E2 which amplifies the electromotive force of 5 and 16 darkness is output to the calculation section 27, and the calculation section 27 outputs the signal E1 and El
Based on this, a predetermined calculation, which will be described later, is performed, and a wet base oxygen concentration signal E3, a dry base oxygen concentration signal E4, and a water concentration signal E5 are output to a receiver (not shown).

次に、上記構成の成分濃度測定装置の動作について説明
する。
Next, the operation of the component concentration measuring device having the above configuration will be explained.

ヒータ3等で構成され、る恒温槽によって、ジルコニア
11及び12は一定(且つ同一)a!度に保持されてい
る。この状態で、■ジェクタ22が駆動されると、測定
ガスは、採取箇所−÷フィルタ18→管路17→ジル」
ニア11の内部A1→管路19→除湿器2o→管路19
−→ジルコニア12の内部A2→ニジlクタ22→排気
先の方向で流れる。このため、ジル」ニア11の内部A
1には、除湿しない生の測定ガスが導入され、ジルコニ
ア12の内部A2には、除湿器20で除湿した測定ガス
が導入される。一方、ジルコニア11及び12の外、即
ち上記中1i1Bには、空気が導入される。
Zirconia 11 and 12 are kept at a constant (and same) a! It is maintained at a certain degree. In this state, when the injector 22 is driven, the measured gas is collected at the sampling point - ÷ filter 18 -> pipe line 17 -> Jill.
Inside A1 of near 11 → pipe 19 → dehumidifier 2o → pipe 19
-→Inside A2 of zirconia 12→Niji lctor 22→Exhaust destination. For this reason, the internal A of Gilnia 11
A raw measurement gas that is not dehumidified is introduced into the zirconia 12, and a measurement gas that has been dehumidified by a dehumidifier 20 is introduced into the interior A2 of the zirconia 12. On the other hand, air is introduced outside the zirconias 11 and 12, that is, into the inside 1i1B.

従って、電極13と14間の起電力に対応する信号El
及び電極15と16間の起電力に対応する信号E2は、
(2)式及び(3)式となる。
Therefore, the signal El corresponding to the electromotive force between electrodes 13 and 14
And the signal E2 corresponding to the electromotive force between the electrodes 15 and 16 is
Equations (2) and (3) are obtained.

El =Kln(Px s ’/21 >−(2)El
 =Klri(PX 2/21)”(3)但し、K=R
T/n F・・・定数 PXt・・・除湿しない語定ガス中の酸素濃度[v01
%] PX2・・・除湿した測定ガス中の酸素濃度[v01%
] ところで、除湿しない測定ガスの体積V中に含まれる酸
素量及び水分量がVO及びVWであるとすると、上記の
各酸素濃度Px、及びPx2、並びに水分濃度H[vo
1%]の関係は(4)式乃至(6)式となる。
El = Kln(Px s'/21 >-(2) El
= Klri (PX 2/21)” (3) However, K=R
T/n F...Constant PXt...Oxygen concentration in non-dehumidified gas [v01
%] PX2...Oxygen concentration in the dehumidified measurement gas [v01%
] By the way, if the amount of oxygen and the amount of water contained in the volume V of the measurement gas that is not dehumidified are VO and VW, then each of the above oxygen concentrations Px and Px2 and the water concentration H [vo
1%] is expressed by equations (4) to (6).

px  1  =vo/V−(4) px  2  =VO/ V−vvt−(5)H= v
w/ V・・・ (6) 又、(4)式乃至(6)式から(7)式が求められる。
px 1 = vo/V-(4) px 2 = VO/V-vvt-(5) H= v
w/V... (6) Also, equation (7) can be obtained from equations (4) to (6).

H=1− (Px 1/Px 2 )−(7)このため
、演算部27は、(2)式及び(3)式に基づき信号E
r 、E2を直線化して、Pxl、PX2に比例した信
号E3.E4を出力すると共に、この直線化した信号E
3.E4を用いて、(7)式からHを求めこれに比例し
たf8号E5を出力する。従って、信号E3はウェット
ベース酸素濃度信号となり、信号E4はドライベース酸
素濃度信号とな″す、又、4is号E5は水分濃度信号
となる。
H=1−(Px 1/Px 2 )−(7) Therefore, the calculation unit 27 calculates the signal E based on equations (2) and (3).
r, E2 are linearized to form a signal E3. which is proportional to Pxl, PX2. In addition to outputting E4, this linearized signal E
3. Using E4, calculate H from equation (7) and output f8 No. E5 proportional to this. Therefore, the signal E3 becomes the wet base oxygen concentration signal, the signal E4 becomes the dry base oxygen concentration signal, and the 4is signal E5 becomes the water concentration signal.

尚、上記実施例における測定ガスの導入路の代わりに、
例えば、ジルコニア′11の内部A+に除湿しない測定
ガスを、ジルコニア12の内部Azに基準ガスを、ジル
コニア11.12とパイプ2で形成される空l1lBに
除湿した測定ガスをそれぞれ導くような導入路を構成し
てもよい。又、除湿しない測定ガスの導入路と除湿した
測定ガスの導入路が並列構成となるようにしてもよい。
Note that instead of the introduction path for the measurement gas in the above embodiment,
For example, an introduction path that leads a non-dehumidified measurement gas to the interior A+ of zirconia '11, a reference gas to the interior Az of zirconia 12, and a dehumidified measurement gas to the air 111B formed by the zirconia 11.12 and the pipe 2, respectively. may be configured. Alternatively, the introduction path for the non-dehumidified measurement gas and the introduction path for the dehumidified measurement gas may be arranged in parallel.

更に、恒温槽については、上記実施例のように1個であ
る必要もなく、各ジルコニア毎に設けてもよい。又、水
分部1iHを求める演算式を(7)式に限定する必要は
なく、次式に基づく演算を行ってもよい。
Furthermore, the constant temperature bath need not be one as in the above embodiment, but may be provided for each zirconia. Further, the calculation formula for determining the moisture content 1iH does not need to be limited to the formula (7), and calculations based on the following formula may be performed.

2−Et =K (lnPx z −In21−1nPx 1+l
n21 )=K (1npx 2−1nPx I )−
Kin(Px 2 /PX t ) 、’、  H”1−e  (Et  Ez /K)以上
説明したように、本発明による成分濃度測定装置は、第
iの隔壁に除湿しない測定ガスを導き、第2の隔壁に除
湿した測定ガスを導くように構成されているので、本発
明によれば、ドライベース酸素濃度信号、ウェットベー
ス酸素濃度信号及び水分濃度信号を同時に得ることがで
きる。
2-Et =K (lnPx z -In21-1nPx 1+l
n21 )=K (1npx 2-1nPx I)-
Kin(Px 2 /PX t ),', H"1-e (Et Ez /K) As explained above, the component concentration measuring device according to the present invention introduces a non-dehumidified measurement gas to the i-th partition wall, and According to the present invention, a dry base oxygen concentration signal, a wet base oxygen concentration signal, and a water concentration signal can be obtained at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のジルコニア酸素計の説明図、第2図は本
発明による成分濃度測定装置の一実施例を示す説明図で
ある。 2・・・金属製パイプ  3・・・ヒータ4・・・断熱
材 11・・・ジルコニア(第1の隔壁) 12・・・ジルコニア(第2の隔壁) 13.14.15.16・・・電極 17.19.21・・・管路
FIG. 1 is an explanatory diagram of a conventional zirconia oxygen meter, and FIG. 2 is an explanatory diagram showing an embodiment of a component concentration measuring device according to the present invention. 2... Metal pipe 3... Heater 4... Insulating material 11... Zirconia (first partition) 12... Zirconia (second partition) 13.14.15.16... Electrode 17.19.21...Pipe line

Claims (1)

【特許請求の範囲】[Claims] ジルコニア磁器の隔壁に該隔壁の両側の気体の酸素濃度
差に基づく起電がが生じることを利用した成分濃度測定
装置において、前記隔壁として第1及び第2の隔壁を設
け、−1記第1の隔壁の片側に除湿しない測定ガスを導
き、前記第2の隔壁の片側に除湿した測定ガスを導くよ
うに構成し、前記第1及び第2の隔壁での起電力から、
ドライベース酸素濃度信号、ウェットへ−ス酸素濃度信
号及び水分一度信号を求めるようにした成分濃度測定装
W0
In a component concentration measuring device that utilizes the fact that electromotive force occurs in a zirconia porcelain partition wall based on the difference in oxygen concentration of gas on both sides of the partition wall, first and second partition walls are provided as the partition wall, A measuring gas that is not dehumidified is guided to one side of the partition wall, and a dehumidified measurement gas is guided to one side of the second partition wall, and from the electromotive force at the first and second partition walls,
Component concentration measuring device W0 designed to obtain a dry base oxygen concentration signal, a wet base oxygen concentration signal, and a moisture signal.
JP57049270A 1982-03-26 1982-03-26 Device for measuring concentration of component Pending JPS58166253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57049270A JPS58166253A (en) 1982-03-26 1982-03-26 Device for measuring concentration of component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57049270A JPS58166253A (en) 1982-03-26 1982-03-26 Device for measuring concentration of component

Publications (1)

Publication Number Publication Date
JPS58166253A true JPS58166253A (en) 1983-10-01

Family

ID=12826143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57049270A Pending JPS58166253A (en) 1982-03-26 1982-03-26 Device for measuring concentration of component

Country Status (1)

Country Link
JP (1) JPS58166253A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231149A (en) * 1986-04-01 1987-10-09 Ebara Res Co Ltd Method and instrument for measuring moisture concentration in exhaust gas
JPS63292058A (en) * 1987-05-25 1988-11-29 Mitaka Kogyo Kk Continuous measuring of oxygen and moisture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231149A (en) * 1986-04-01 1987-10-09 Ebara Res Co Ltd Method and instrument for measuring moisture concentration in exhaust gas
JPS63292058A (en) * 1987-05-25 1988-11-29 Mitaka Kogyo Kk Continuous measuring of oxygen and moisture

Similar Documents

Publication Publication Date Title
US5034112A (en) Device for measuring concentration of nitrogen oxide in combustion gas
ATE198935T1 (en) METHOD AND DEVICE FOR MEASURING THE DIFFERENTIAL OXYGEN CONTENT BETWEEN TWO GAS STREAMS
CA1236531A (en) Linear hall effect oxygen sensor
ATE3690T1 (en) DEVICE FOR LUNG FUNCTION ANALYSIS.
US3442773A (en) Electrochemical gas measuring systems
JPS58166253A (en) Device for measuring concentration of component
JP3024904B2 (en) Optical gas analyzer
CN116296620B (en) Gas path acquisition system, device and method of flue gas analyzer
JP2003510589A (en) Method of operating a mixed potential exhaust gas probe and apparatus for performing the method
JPS58166254A (en) Device for measuring concentration of component
FR2272395A1 (en) Measurement of anhydride gases in air - using solid state detector element
JPH08254523A (en) Measuring device and method for measuring oxygen permeability of sample
JPH032844Y2 (en)
JPH02290550A (en) Magnetic pressure type oxygen analyzer
JPH0933429A (en) Ozone densitometer
JP3345510B2 (en) Signal processing method for simultaneous and continuous measurement of moisture and oxygen
SU798530A1 (en) System for sampling and analysis of flue gases
JPS62133336A (en) Air-fuel ratio measuring instrument
SU586372A1 (en) Device for determining porous material gas permeability
SU773486A1 (en) Thermomagnetic gas analyzer
JPS63238458A (en) Zirconia type analyser
SU787960A1 (en) Method of analysis of moisture traces in gases
JPH05223735A (en) Differential amount gas analysis
JPS6346841Y2 (en)
SU873057A1 (en) Fluorescent gas analyzer