JPS58165105A - Process controller - Google Patents

Process controller

Info

Publication number
JPS58165105A
JPS58165105A JP4734982A JP4734982A JPS58165105A JP S58165105 A JPS58165105 A JP S58165105A JP 4734982 A JP4734982 A JP 4734982A JP 4734982 A JP4734982 A JP 4734982A JP S58165105 A JPS58165105 A JP S58165105A
Authority
JP
Japan
Prior art keywords
signal
control
disturbance
feedforward
incomplete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4734982A
Other languages
Japanese (ja)
Other versions
JPH0245201B2 (en
Inventor
Kazuo Hiroi
広井 和男
Kojiro Ito
伊藤 光二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP4734982A priority Critical patent/JPS58165105A/en
Priority to US06/477,384 priority patent/US4563735A/en
Priority to FR8304921A priority patent/FR2524169B1/en
Priority to DE19833311048 priority patent/DE3311048A1/en
Publication of JPS58165105A publication Critical patent/JPS58165105A/en
Priority to US06/698,791 priority patent/US4714988A/en
Publication of JPH0245201B2 publication Critical patent/JPH0245201B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B5/00Anti-hunting arrangements
    • G05B5/01Anti-hunting arrangements electric

Abstract

PURPOSE:To suppress the control quantity due to a disturbance and to stabilize the operation, by separating a disturbance compensation transfer function of feedforward components to a proportional part and an incomplete differentiating part and using the feedforward mainly in a region where a disturbance signal passing through the incomplete differentiating part exceeds a prescribed range. CONSTITUTION:A disturbance signal 11 is inputted to a coefficient equipment 12 and is multiplied by a delay/advance transfer function K, and the disturbance transfer function is separated to the proportional part and the incomplete differentiating part inputted to a differential operating part 13 and an incomplete differentiating part 14. The difference between a set value 1 and a control quantity 2 is taken out by an adder 3, and this difference 4 is applied to an control operating part 5 where an integration I and a differentiation D are combined. The speed output from the operating part 5 is applied to a speed position signal converting part 7 through a switch 16 and is converted to a position signal, and this position signal is applied to an adder 8 to which the feedforward signal of the differentiating part 14 is inputted. The feedback control output from a high/low setting part 15 is set to zero in the region where the signal passing through the differentiating part 14 exceeds a prescribed range, thus suppressing the control quantity due to the disturbance.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、フィードバック制御系にフィードフォワー
ド制御を付加したプロセス制御装置における、フィード
バック制御とフィードフォワード制御0組み合せ制−に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to zero combination control of feedback control and feedforward control in a process control device in which feedforward control is added to a feedback control system.

〔発明の技術的背景〕[Technical background of the invention]

第1図には従来のフィードフォワード制御装置を示す。 FIG. 1 shows a conventional feedforward control device.

設定値lと制御量2との差を加算器3で取り、偏差4を
取り出す。この偏差信号を調節演算部6が入力し、PI
D演算して得られた調節信号を加算器21 K出力する
The difference between the set value l and the control amount 2 is taken by an adder 3, and a deviation 4 is taken out. This deviation signal is input to the adjustment calculation section 6, and the PI
The adjustment signal obtained by the D calculation is outputted to the adder 21K.

外乱信号11は係数器12で係数Kが剰じられたのち、
進み/遥れ伝−関数22を経て、外乱補償用として前記
加算器21に加えられる。
After the disturbance signal 11 is multiplied by the coefficient K in the coefficient unit 12,
After passing through a lead/deviate function 22, it is added to the adder 21 for disturbance compensation.

加算器21から得られる外電補償信号の加わった調節信
号を操作信号9としてプロセス10に印加してプロセス
を制御して制御量2を得る@ このようにしてフィードバック制御系に外1補償信号を
フィードフォワードして、外乱による影響を抑制するも
のである。
The adjustment signal to which the external power compensation signal obtained from the adder 21 is added is applied to the process 10 as the operation signal 9 to control the process and obtain the control amount 2. In this way, the external power compensation signal is fed to the feedback control system. This is to forward and suppress the effects of external disturbances.

〔背景接衝の問題点〕[Problems with background contact]

制御Vステムにおける外1補償の伝達関数は、操作量→
制御量間の伝達関数をKp/1+6−b 1、外乱→制
御量間の伝′違関数を /1+TD−8とす但しにニゲ
イン、T:時定数、8ニラプラス演算子となる。
The transfer function of outer 1 compensation in the control V-stem is the manipulated variable→
The transfer function between the controlled variables is Kp/1+6-b1, and the transfer function between the disturbance and the controlled variable is /1+TD-8, where nigain, T: time constant, and 8nira plus operator.

従来、このフィードフォワード制御とフィードバック制
御を組み合せる場合は、フィードバック制御系に、その
ままツイードフォワード制御信号を加算をしているのみ
である。
Conventionally, when this feedforward control and feedback control are combined, the tweed forward control signal is simply added to the feedback control system.

フィードバック制御系に、そのままフィードフォワード
制御信号!加算するプロセス制御装置にあっては、理論
、的に見ても、おかし1 い。フィードフォワードl制御は、フィードバック制御
系で、定常制御□中に、外乱が急変した場合、フィード
バック!御系が応答する前に外乱の変化をとらえて、外
乱による影響を予測して先まわりして、制御量が外tK
よって変動しないように抑制するものである。
Feedforward control signal directly to the feedback control system! Regarding process control equipment that adds, this is strange even from a theoretical and logical point of view. Feedforward l control is a feedback control system, and if a disturbance suddenly changes during steady control □, feedback! By catching changes in the disturbance before the control system responds, and anticipating the influence of the disturbance, the control amount can be adjusted to
Therefore, it is suppressed so that it does not fluctuate.

従って、ツイードフォワード制−によって、最適な予調
補償を行なっている関に、フィードバック制御系のP(
比例)、■(積分)、D(微分)調節演算量が加算され
て、折角のフィードフォワード制御の最適補正が乱され
ることになる。
Therefore, the feedback control system P(
(proportional), (integral), and D (differential) adjustment calculation amounts are added, and the optimum correction of the long-awaited feedforward control is disturbed.

つまり、従来の、フィードバック制御ループに、単純に
フィードフォワード制御を加算するプロセス制御装置で
は、折角のフィードフォワード制御の効果を大きく滅す
るという飲会的欠陥があった。
In other words, a conventional process control device that simply adds feedforward control to a feedback control loop has the disadvantage that the effect of the long-awaited feedforward control is greatly diminished.

〔発明の目的〕[Purpose of the invention]

この発明は従来O欠点を除去したフィードバック制御ル
ープとツイードフォワード制御ループの組着、せからな
ゐプロセス制御装置を提供するとε:″・にある。
The present invention provides a process control device that combines a feedback control loop and a tweed forward control loop that eliminates the drawbacks of the conventional method.

!・。!・.

〔発明の概要〕−・、 この発明は、フィードフォワードO進み/遅れ伝達関数
を比例部と、応答速度の補正を行なう不完全微分部に分
離し、各区信号が、この不完全微分部を通過した信号の
大きさが、所定範囲を越えた領域では一フィードバック
制御を休止して、フィードフォワード制御のみを生かし
て制御するようにして、従来の欠陥をすべて解消したプ
ロセス制御装置を提供することを目的としている。
[Summary of the invention] - This invention separates the feedforward O lead/lag transfer function into a proportional part and an imperfect differentiation part that corrects the response speed, and each section signal passes through this imperfect differentiation part. In a region where the magnitude of the signal exceeds a predetermined range, feedback control is stopped and control is performed using only feedforward control, thereby eliminating all of the conventional defects. The purpose is

以下と4の発明の実施例を図面に基づいて詳細に説明す
る。      。
Embodiments of the invention described below and 4 will be described in detail based on the drawings. .

〔発明の実施例〕[Embodiments of the invention]

第3図はこの発明の一実施例を示す構成図である。 FIG. 3 is a configuration diagram showing an embodiment of the present invention.

なお以下0図i1においては第1図に示したと同様の構
成部分は同一符号を用いて示してあゐ。
Note that in FIG. 0 i1 below, the same components as shown in FIG. 1 are indicated using the same reference numerals.

本発明の詳細な説明する1pJKJI!図によっとを証
明する。
1pJKJI for a detailed explanation of the invention! Let's prove it with a diagram.

第2図(a)と′s2図伽)が等価となるためにはTx
は 左右両辺が等しくなるためには TP=TD+T1 、°、−Tx = (TP、−TD )つまり:比例部
と速度補正を行なう不完全できることを踏まえて、本発
明の実施例は第3図のような構成となる。
In order for Figure 2 (a) and 's2 Figure 佽) to be equivalent, Tx
In order for both the left and right sides to be equal, TP=TD+T1,°, -Tx = (TP, -TD) That is: Considering that the proportional part and speed correction can be incomplete, the embodiment of the present invention is as shown in FIG. The configuration is as follows.

設定値1と制御量2との差を加算器3で取り出し、この
差、つまり偏差4をP(比例)。
The difference between the set value 1 and the control amount 2 is taken out by the adder 3, and this difference, that is, the deviation 4, is calculated as P (proportional).

I(積分)、D(微分)の組み合せKよる調節演算部l
sK導入して、速度形出力を取り出す。この調節演算部
5の速度形出力はスイッチ16を経て、加算器6を通っ
たのち、速度形→位置形(ぎ号変換部7で、位置形信号
化され、のち不完全微分部14の出力、つまり速度補正
を行なうフィードフォワード信号を入力する、加算器8
に加えられる。そしてこの加算器8の出力は操作信号9
となりプロセスlOに加えて、制amを調節する。
Adjustment calculation unit l based on combination K of I (integral) and D (differentiation)
Introduce sK and take out the velocity type output. The speed type output of the adjustment calculation unit 5 passes through the switch 16 and the adder 6, and then is converted into a position type signal by the gear conversion unit 7, and then is output from the incomplete differentiator 14. , that is, an adder 8 which inputs a feedforward signal for speed correction.
added to. The output of this adder 8 is the operation signal 9
Then, in addition to the process lO, adjust the limit am.

一方、外乱信号11は、係数器12で、係数Kを乗じた
のち、過み/遅れ伝達関数の比例部および不完全微分部
にその一方の比例部となる、差分演算部13は、与えら
れた入力信号を速度影信号にしたのち、加算器6で前記
調節演算部5の出力を入力す゛・:る加算器6に出力す
る。         ・ 算器8に出力する。また不完全微分部14  の出力は
ハイ/ロー設定部15に与えられる。
On the other hand, the disturbance signal 11 is multiplied by a coefficient K in a coefficient multiplier 12, and then the difference calculation unit 13 converts the signal into a proportional part and an incomplete differential part of the error/delay transfer function. After converting the input signal into a velocity shadow signal, an adder 6 outputs the output of the adjustment calculation section 5 to an adder 6 which receives the input signal.・Output to calculator 8. Further, the output of the incomplete differentiator 14 is given to a high/low setting section 15.

このハイ/ロー設定部15は上限(ハイ)、下@(ロー
)の値を越えた領域ではスイッチ16を非導通として、
前記調節演算部5の出力を零として、フィードフォワー
ド制御(以下F−Pと称す。)のみとし、上下限範囲内
に入ったときはスイッチ16を導通として、前記調節演
算部5の出力を生かして、フィードバック制御(以下F
−Bと称す。)とフィードフォワード制御(F−1i’
)の組み合せで制御する。
This high/low setting section 15 makes the switch 16 non-conductive in a region exceeding the upper limit (high) and lower @ (low) values.
The output of the adjustment calculation section 5 is set to zero, and only feedforward control (hereinafter referred to as F-P) is performed, and when the upper and lower limits are within the range, the switch 16 is turned on to make use of the output of the adjustment calculation section 5. , feedback control (hereinafter referred to as F
-Referred to as B. ) and feedforward control (F-1i'
) is controlled by a combination of

次に第4図を参照しながら第3図の本発明のプロセス制
御装置の作動を説明する。
Next, the operation of the process control apparatus of the present invention shown in FIG. 3 will be explained with reference to FIG.

外乱信号11が単位量だけ変化したときの不完全做分部
140出力信号Enの応答波′形と、出力信号E膳O上
・下限レベルに対する スイツf16の開閉状態表フィ
ードバック制御系およびフィードフォワード制御系の動
作はそれぞれ1114allK示讐゛−き通りとなる。
The response waveform of the output signal En of the incomplete divider 140 when the disturbance signal 11 changes by a unit amount, and the open/close state table feedback control system and feedforward control of the switch f16 for the upper and lower limit levels of the output signal EzenO The operation of the system is as indicated by each of the 1114allK's.

□外乱信号11が、第4図のように単位量だ号Knの波
形は第4に示す通り、零を中心とした波形となる。
□As shown in FIG. 4, the waveform of the unit quantity Kn of the disturbance signal 11 is centered around zero, as shown in the fourth figure.

この信号Enをハイ/ロー設定部15 に導びき、En
がh(ハイ)より大きいか、−1<ロー)より小さい場
合にはスイッチ16を非導通(第4図)とし、フィード
バック制御FBは休止して、フィードフォワード制御F
 Fのみとし、Enが−j≦En(hのときには第4図
に示すようにスイッチ16を導通として、FBとFFを
共に生かして制御する。
This signal En is guided to the high/low setting section 15, and En
is larger than h (high) or smaller than -1<low), the switch 16 is made non-conductive (Fig. 4), the feedback control FB is stopped, and the feedforward control F
When En is −j≦En (h, the switch 16 is turned on as shown in FIG. 4, and control is performed by utilizing both FB and FF.

つまり、速度補償が効いているときは、フィードフォワ
ード制御のみとし、速度補償が効かない領域では、フィ
ードバック制御とフィードフォワード制御を併用する。
That is, when speed compensation is effective, only feedforward control is performed, and in areas where speed compensation is not effective, feedback control and feedforward control are used together.

次に第5図を参照しながら本願発明の他のプロセス制御
装置の実施例を説明する。
Next, an embodiment of another process control apparatus according to the present invention will be described with reference to FIG.

他の実施例のプロセス制御装置と第4図のプロセス制御
装置との異いは%H/L設定部の出力となる接点をもう
1個追加し、とのH/L設定部15の入力端と位置影信
号変換部70出力側の加算器8との間の不完全微分部1
4の出力信号を追加した接点によって断続するようにし
てもよい。この場合、不完全微分部14の出力信号En
の大きさが、所定範囲内になると、スイッチ16を導通
させて、フィードバック制御を生かすとともに、スイッ
チ17を非導通とし、 フィードフォワードの速度補償
分の信号を零とするものである。
The difference between the process control device of other embodiments and the process control device of FIG. and the adder 8 on the output side of the position shadow signal converter 70.
The output signals of No. 4 may be switched on and off by additional contacts. In this case, the output signal En of the incomplete differentiator 14
When the magnitude falls within a predetermined range, the switch 16 is made conductive to take advantage of feedback control, and the switch 17 is made non-conductive to make the signal for feedforward speed compensation zero.

この他の本願の実施例によるプロセス制御装置における
効果は、外乱の変動が小さい場合はフィードバック制御
とフィードフォワード制御の比例部のみで充分高制御性
が得られ、不完全微分部の無駄な便化をプロセスに与え
ない特徴がある。
Another advantage of the process control device according to the embodiment of the present application is that when the disturbance fluctuation is small, sufficient controllability can be obtained with only the proportional section of feedback control and feedforward control, and the incomplete differential section is unnecessary. It has the characteristic that it does not give any effect to the process.

なおスイッチ11は不感帯域をもつ関数発生器に置き換
えてもよい。この関数発生器の特性は、スイッチ17が
非導通状態のとき零出力信号とし、スイッチ17が導通
状態のとき不完全微分部の出力を生ずるような特性とす
る。
Note that the switch 11 may be replaced with a function generator having a dead band. The characteristics of this function generator are such that when the switch 17 is in a non-conducting state, a zero output signal is produced, and when the switch 17 is in a conducting state, an output of the incomplete differentiator is produced.

〔発明の効果〕〔Effect of the invention〕

この発明はフィードフォワード制御O伝達に分解し、比
例部と不完全微分による速縦袖償部に完全に分離して定
性的、定皺的意味を明確にし、1siI!贅をしやすく
するとともに、フィードフォワード制御に不感帯を持た
せたり、方向性を持たせたりすることが容易となり、汎
用性の制卸装置となっている。
This invention is decomposed into feedforward control O transmission, completely separated into a proportional part and a fast longitudinal compensation part by incomplete differentiation, and the qualitative and fixed meaning is clarified, and 1siI! In addition to making it easier to control the feedforward control, it also makes it easier to provide dead zones and directionality to the feedforward control, making it a versatile control device.

また分離した信号のうち、不完全微分部を通過した信号
の大きさが、所定の範囲を越えた!域では、フィートノ
でツク制御を伸圧して、フィードフォワード劃−のみを
生かして制御するようにしたことにジノ、外弊信啼が急
変して、フイードフオワ寸、、ド制御によって最適fx
+@jrfa*tnfz°z、、y+、、、、、b n
s <・7(−IF′<ツク制御の、P(比例)、I(
積分)、D@分)の組み合せによる調節演算量が加算今
れて、折角のフィードフォワード制御の最適補正が糺さ
れることを完全に除去した高い制御性のプロセス制御装
置を提供できる。
Also, among the separated signals, the magnitude of the signal that passed through the incomplete differentiation section exceeded the predetermined range! In the field, we expanded the tsuku control with fx and made it possible to control by making use of only the feedforward gusset, and our beliefs suddenly changed, and we were able to achieve the optimum fx by controlling the feed forward pitch.
+@jrfa*tnfz°z,,y+,,,,b n
s <・7(-IF′<Tsuku control, P (proportional), I(
It is possible to provide a process control device with high controllability that completely eliminates the need for optimum correction of the feedforward control due to the addition of the adjustment calculation amount due to the combination of the integral) and the D@min.

【図面の簡単な説明】[Brief explanation of the drawing]

ns1図は従来のフィードフォワード制御装置の構成を
ブロック構成にして示す図、第2図はフィードフォワー
ド成分を比例部と不完全微分部に分離するための説明図
、第3図は本願発明のプロセス制御装置の構成をブロッ
ク構成にして示す図、第49は第3図の作動を説明する
ための図、95図は、本願発明の他Oプロセス制御装置
O構虞をブロック構成にして示す図であゐ0 5・・・調節演算部 7・・・遭II廖→位置形信号変換部 10・・プa傘ス 、1 12・・・係数口 13・・・差分諌濃部 14・・・不完全微分部 15・・・へイ/ロー設定部 16・・・スイッチ 第1図 第2図  □ 第3図 第4図
ns1 diagram is a block diagram showing the configuration of a conventional feedforward control device, FIG. 2 is an explanatory diagram for separating the feedforward component into a proportional part and an incomplete differential part, and FIG. 3 is a diagram showing the process of the present invention. FIG. 49 is a diagram for explaining the operation of FIG. 3, and FIG. 95 is a diagram showing the configuration of the O process control device according to the present invention in a block configuration. Ai 0 5...Adjustment calculation unit 7...Ex II →Position signal conversion unit 10...Pu a umbrella, 1 12...Coefficient port 13...Difference control unit 14... Incomplete differentiation section 15...Hi/Low setting section 16...Switch Fig. 1 Fig. 2 □ Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 設定値と制御量との偏差値を速度形調節演算部で調節演
算した結果を位置形信号化し、この位置形信号を操作信
号として出力するフィードバック−節装置に、外乱補償
信号を加算してフィードフォワード制御、を付加したプ
ロセス制御装置において、フィードフォワード成分の外
乱補償伝達関数を比例部と不完金黴分部と、に分離し、
不完全、倣夛部を通事した外1信号が所定範囲を越えた
領域で前記フィードバック調節装置のi変形調節出力信
号を零としてツイードフオワ、、−ド制御を主体・とし
たことを特徴とするプロセス制御装置。
The deviation value between the set value and the control amount is adjusted and calculated by the speed type adjustment calculation unit, and the result is converted into a position type signal, and the disturbance compensation signal is added and fed to the feedback node which outputs this position type signal as an operation signal. In a process control device with forward control, the disturbance compensation transfer function of the feedforward component is separated into a proportional part and an incomplete mold part,
The i-deformation adjustment output signal of the feedback adjustment device is set to zero in a region where the outside signal passing through the copying part exceeds a predetermined range due to incompleteness, and the main body is tweed fow control. Process control equipment.
JP4734982A 1982-03-26 1982-03-26 Process controller Granted JPS58165105A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4734982A JPS58165105A (en) 1982-03-26 1982-03-26 Process controller
US06/477,384 US4563735A (en) 1982-03-26 1983-03-21 Process controlling method and system involving separate determination of static and dynamic compensation components
FR8304921A FR2524169B1 (en) 1982-03-26 1983-03-25 PROCESS AND SYSTEM FOR CONDUCTING PROCESSES
DE19833311048 DE3311048A1 (en) 1982-03-26 1983-03-25 CONTROL PROCEDURE AND SETUP
US06/698,791 US4714988A (en) 1982-03-26 1985-02-06 Feedforward feedback control having predictive disturbance compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4734982A JPS58165105A (en) 1982-03-26 1982-03-26 Process controller

Publications (2)

Publication Number Publication Date
JPS58165105A true JPS58165105A (en) 1983-09-30
JPH0245201B2 JPH0245201B2 (en) 1990-10-08

Family

ID=12772667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4734982A Granted JPS58165105A (en) 1982-03-26 1982-03-26 Process controller

Country Status (1)

Country Link
JP (1) JPS58165105A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0996011A (en) * 1995-09-30 1997-04-08 Shigeo Nakao Earthquake-proof pedestal for support

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124906A (en) * 1980-03-07 1981-09-30 Showa Denko Kk Digital type automatic control method and its equipment
JPS5750024A (en) * 1980-09-10 1982-03-24 Hitachi Ltd Advance water-level controller for hygroscopic moisture separator drain tank

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124906A (en) * 1980-03-07 1981-09-30 Showa Denko Kk Digital type automatic control method and its equipment
JPS5750024A (en) * 1980-09-10 1982-03-24 Hitachi Ltd Advance water-level controller for hygroscopic moisture separator drain tank

Also Published As

Publication number Publication date
JPH0245201B2 (en) 1990-10-08

Similar Documents

Publication Publication Date Title
US3968422A (en) Method and apparatus for the static compensation of reactive power
US3864554A (en) Time delay compensation in a closed-loop process control system
JPS58165105A (en) Process controller
JPH03934A (en) Propeller speed governor control device
US4243922A (en) Aircraft control system
JPS59149505A (en) Process controller
JPH06233530A (en) Variable-gain voltage control system of dc/dc converter using detection of load current
JPS63140301A (en) Electric final control element controller
GB2393051A (en) A stand-alone process controller changeover switch which operates smoothly by use of feedback
SU1758260A1 (en) Power plant control method
JPS6346503A (en) Pid controller
JPS61190602A (en) Regulator
JPS59188701A (en) Boiler master controlling device
JPS5957303A (en) Process controller
JPS63239502A (en) Control device
JPH0398402A (en) Power converter for vehicle
JPH05313704A (en) Adaptive controller
JPS59149506A (en) Process controller
JPS59128602A (en) Process control device
SU440740A1 (en) Method for automatic control of power flows through communication between power systems
Silveira et al. A stable adaptive control scheme for a single-input, single-output linear system
SU1562479A1 (en) System for automatic control of output power of power unit
JPH0372884B2 (en)
JP2766395B2 (en) Control device
SU1297166A1 (en) Method of automatic control of power system parameters