JPS58165008A - Measurement of particle diameter distribution of micro particle - Google Patents

Measurement of particle diameter distribution of micro particle

Info

Publication number
JPS58165008A
JPS58165008A JP57046416A JP4641682A JPS58165008A JP S58165008 A JPS58165008 A JP S58165008A JP 57046416 A JP57046416 A JP 57046416A JP 4641682 A JP4641682 A JP 4641682A JP S58165008 A JPS58165008 A JP S58165008A
Authority
JP
Japan
Prior art keywords
microparticles
laser beam
scattered light
fluid
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57046416A
Other languages
Japanese (ja)
Inventor
Fumio Inaba
稲場 文男
Takashi Takishima
滝島 任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiesuto Kk
Chest Corp
Original Assignee
Chiesuto Kk
Chest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiesuto Kk, Chest Corp filed Critical Chiesuto Kk
Priority to JP57046416A priority Critical patent/JPS58165008A/en
Publication of JPS58165008A publication Critical patent/JPS58165008A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging

Abstract

PURPOSE:To measure the distribution of particle diameter by the analysis of it with a pulse height analyser, by a method wherein laser beam is focused in the micro particles travelling during floating in fluid from the direction meeting at a right angle to the travelling direction. CONSTITUTION:The laser beam 4 from a laser beam source 3 is focused in a fluid with a cylindrical lens 5, and the scattered light within a range of 40 deg.- 50 deg. in the direction oblique to the beam 4 among the scattered light due to a micro particle 2 in fluid is focused with a condenser 7. This light is passed through an iris 8, and sent to an optical detector 10 via an optical fiber 9. The detected change of pulse signal is compressed with logarithmic amplifier 12, and the distribution of diameter of micro particle passing through a focusing part 6 is measured by analysing it with the pulse height analyser 13 every pulse height. Therefore, the distribution of diameter of micro particle travelling during floating in fluid can be continuously measured in real time without disturbing the travelling of micro particle.

Description

【発明の詳細な説明】 本発明は液体または気体中に浮遊して移動する微小粒子
の粒径分布を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the particle size distribution of microparticles floating and moving in a liquid or gas.

流体中に浮遊する微小粒子を移動させて目的に供するひ
とつの具体的な例として医学分野で喘息などの呼吸器疾
患の治療や診断で行なわれる薬剤エアロゾルの吸入投与
がある。この場合実際に吸入投与される薬剤エアロゾル
の量を知ることが治療及び診断上必要であり、同時に吸
入した薬剤エアロゾルの粒子のうち粒径の大きな粒子は
上部気管支に沈着し、比較的小さな粒子は末梢気管支に
沈着し、更に小さい粒子は呼気とともに吐き出される傾
向があるため、薬剤エアロゾルの粒径分布を知ることが
必要である。従って吸入投与する薬剤エアロゾルの粒径
分布を投与中に測定することが吸入量及び薬剤エアロゾ
ルの吸入後の勤行を知る上で重要である。
One specific example of moving microparticles suspended in a fluid to serve a purpose is the inhalation administration of drug aerosols used in the treatment and diagnosis of respiratory diseases such as asthma in the medical field. In this case, it is necessary for treatment and diagnosis to know the amount of drug aerosol that is actually inhaled.At the same time, among the particles of drug aerosol inhaled, large particles are deposited in the upper bronchi, while relatively small particles are deposited in the upper bronchi. It is necessary to know the particle size distribution of drug aerosols, as smaller particles tend to be deposited in the distal bronchi and exhaled with exhalation. Therefore, it is important to measure the particle size distribution of a drug aerosol administered by inhalation during administration in order to know the amount of inhalation and the performance after inhalation of the drug aerosol.

気体や液体などの流体中に浮遊する微小粒子の粒径分布
を測定する方法としては、従来からサンプリング法、パ
ーティクルカウンター法、オフエローメーター法などが
知られている。しかし、すンプリング法は浮遊微小粒子
をMgO等の粉末の薄膜や油膜に付着させて、その痕跡
やドラッグされた粒子を顕微鏡下で、または写真に撮っ
てその数を数えるもので、時間と労力を要するばがり゛
でなく、薬剤エアロゾルを吸入中に測定するなど移動す
る微小粒子を連続して実時間で測定することは不可能で
ある。またパーティクルカウンター法はレーザービーム
中に、粒子をジェット流に乗せて噴き出さなければなら
ず、また、このため水滴のような揮発性粒子の場合には
、蒸発により小さくなった粒子を測定してしまうなどの
欠点がある。
BACKGROUND ART As methods for measuring the particle size distribution of microparticles suspended in fluids such as gases and liquids, sampling methods, particle counter methods, off-ellow meter methods, and the like are conventionally known. However, the sampling method involves attaching floating microparticles to a thin film of powder such as MgO or an oil film, and counting the number of traces and dragged particles under a microscope or by taking photographs, which takes time and effort. Furthermore, continuous real-time measurements of moving microparticles, such as measuring drug aerosols during inhalation, are not possible. In addition, the particle counter method requires particles to be ejected into a laser beam in a jet stream, and for this reason, in the case of volatile particles such as water droplets, particles that have become smaller due to evaporation are measured. There are drawbacks such as clutter.

またネフエローメータ一方式は、チェンバー内に入れた
測定粒子を電界によってレーザービーム中の一点に固定
させて測定するので、移動中の多数の粒子を連続的に測
定するのには不適当である。
In addition, the one-type nephelometer measures particles placed in a chamber by fixing them at one point in the laser beam using an electric field, so it is not suitable for continuously measuring a large number of moving particles. .

本発明はこれら従来の測定方法に対して気体や液体など
の流体中に浮遊して移動するf微小粒子の・    1 粒径分布を微小粒子の移動を損うことなく連続して実時
間で測定することができる測定方法を提供することを目
的とする。
In contrast to these conventional measurement methods, the present invention continuously measures the particle size distribution of f-microparticles floating and moving in a fluid such as gas or liquid in real time without impairing the movement of microparticles. The purpose is to provide a measurement method that can

即ち、本発明は流路管内を流体中に浮遊して移動する微
小粒子中に、この移動方向とほぼ直交する方向からレー
ザービームをレンズを介して集光させ、この集光部を通
過する前記微小粒子によるレーザービームの散乱光のう
チ、レーザービームに対して一定の斜め方向のある角度
範囲内の散乱光のみを集光レンズにより集光して微小粒
子の像を結像させるとともに、この像面にアイリスを設
けて前記集光部の中央部を通る微小粒子の散乱光のみを
通過させて、この散乱光を光検出器で検出し、更にこの
検出した電気信号をパルス増幅器で増幅してからパルス
波高分析器により順次パルス波高ごとに分析して、前記
集光部を通過する微小粒子0粒径分布さ測定するもの1
ある・以下本発明にしいて図に従って説明する。
That is, the present invention focuses a laser beam through a lens on microparticles floating in a fluid and moving in a flow pipe from a direction substantially perpendicular to the direction of movement of the microparticles. Only the scattered light of the laser beam caused by the microparticles, the scattered light within a certain angle range in a certain diagonal direction with respect to the laser beam, is focused by a condenser lens to form an image of the microparticles. An iris is provided on the image plane to allow only the scattered light from the microparticles passing through the center of the light collecting section to pass through, this scattered light is detected by a photodetector, and the detected electrical signal is further amplified by a pulse amplifier. After that, each pulse height is sequentially analyzed by a pulse height analyzer to measure the particle size distribution of microparticles passing through the light condensing part 1
・Hereinafter, the present invention will be explained according to the drawings.

第1図は本発”萌の一実施例を示すブロック図で・;、
・・ ある。1はガラス:、製の流路管で、内部には気体また
は液体などの流体が矢印の方向に流れている。
Figure 1 is a block diagram showing one embodiment of the present invention.
·· be. Reference numeral 1 denotes a flow path tube made of glass, in which fluid such as gas or liquid flows in the direction of the arrow.

2は流体中に浮遊した微小粒子、3は流体の流れ方向に
対してほぼ直交する方向に例えばHe −Neレーザー
光線を発するレーザー光源、4はレーザー光源3から発
せられたレーザービーム、5はレーザービーム4を微小
粒子の移動方向に対しては′ぼ直交する方向に帯状に集
光させる円筒形レンズ、6は円筒形レンズ5により流体
中に集光したレーザービーム4の集光部、7は集光部6
を通過する微小粒子2による散乱光のうちレーザービー
ム4に対して斜めの方向好ましくは前方40°〜500
の範囲の散乱光を集光する集光レンズ、8は集光レンズ
7により微小粒子2を結像した像面に設けて帯状の集光
部6の中央部を通過する微小粒子2の散乱光のみを通過
させるアイリス、9はアイリス8を通過した散乱光を導
く光ファイバー、10は光ファイバー9により導かれた
散乱光の強度を検出し、電気信号に変換する光検出器、
11は光検出器10で検出した散乱光によるパルス電気
信号の変化を圧縮し、測定粒径範囲を広くするための対
数増幅器、12は対数増幅器11からの信号を増幅する
パルス増幅器、13はパルス増幅器12からのパルス信
号の波高を分析するパルス波高分析器、14はパルス波
高分析器13により分析した結果を表示記録する例えば
オツシロスコープやレコーダーなどのディスプレー装置
である。
2 is a microparticle suspended in a fluid; 3 is a laser light source that emits, for example, a He-Ne laser beam in a direction substantially perpendicular to the flow direction of the fluid; 4 is a laser beam emitted from the laser light source 3; 5 is a laser beam 4 is a cylindrical lens that focuses light into a strip in a direction approximately perpendicular to the direction of movement of the microparticles; 6 is a condenser for the laser beam 4 focused into the fluid by the cylindrical lens 5; and 7 is a condenser. Light part 6
Of the light scattered by the microparticles 2 passing through the laser beam 4, the direction is diagonal to the laser beam 4, preferably 40° to 500° forward.
A condensing lens 8 is provided on the image plane of the microparticles 2 formed by the condensing lens 7 to collect the scattered light in the range of . 9 is an optical fiber that guides the scattered light that has passed through the iris 8; 10 is a photodetector that detects the intensity of the scattered light guided by the optical fiber 9 and converts it into an electrical signal;
11 is a logarithmic amplifier for compressing the change in the pulse electric signal caused by the scattered light detected by the photodetector 10 and widening the measurement particle size range; 12 is a pulse amplifier for amplifying the signal from the logarithmic amplifier 11; 13 is a pulse A pulse height analyzer analyzes the pulse height of the pulse signal from the amplifier 12, and 14 is a display device such as an oscilloscope or a recorder that displays and records the results of the analysis by the pulse height analyzer 13.

以上のように本装置は集光部6を通過する微小粒子2の
散乱光を検出するものであるが、微小粒子′2が円筒形
レンズ5により極めて薄い帯状に集光した集光部6を直
交する方向に通過するようになっており、更にこの集光
部6の帯状中央部を通過する微小粒子2の散乱光のみを
アイリス8を通して検出するので、例えばガウス型強度
分布をもつレーザービーム4による測定波高値のバラツ
キを軽減し、より高精度に散乱光を検出することが出来
る。
As described above, this device detects the scattered light of the microparticles 2 passing through the light condensing section 6. Since only the scattered light of the microparticles 2 passing through the strip-shaped central part of the light condensing section 6 is detected through the iris 8, the laser beam 4 having a Gaussian intensity distribution, for example, is detected. It is possible to reduce the variation in the measured wave height value due to the scattering and detect the scattered light with higher accuracy.

次にこの散乱光の強度を光検出器10で検出したパルス
信号の変化を対数増幅器12で圧縮するが、これは散乱
パルス光強度が大きく変化している場aに、測定粒径範
囲をそれに対応してよシ広くすること及び粒径分布の分
析を容易にすることを目的としている。
Next, the intensity of the scattered light is detected by the photodetector 10, and the change in the pulse signal is compressed by the logarithmic amplifier 12. The purpose is to provide a correspondingly wider range and to facilitate the analysis of the particle size distribution.

第2図は波長が0.6328μmのHe−Neレーザ−
ビームによる、屈折率1.337の水滴微小粒子の散乱
光のうちレーザービームに対して斜め前方40°から5
0 の範囲の散乱光についての散乱断面積の粒径依存性
を計算した結果である。
Figure 2 shows a He-Ne laser with a wavelength of 0.6328 μm.
Among the scattered light of the water droplet microparticles with a refractive index of 1.337 caused by the beam, the light is scattered from 40 degrees diagonally forward to the laser beam.
This is the result of calculating the particle size dependence of the scattering cross section for scattered light in the range of 0.

これからレーザービームに対して、例えば斜め前方40
°から50 の範囲では全体的に見ると散乱断面積は粒
径に対してほぼ2乗の関係にあることがわかる。また散
乱光検出角度範囲を変えた場合も同様に散乱断面積は粒
径に対してほぼ一定の関係にある。
From now on, for example, 40 degrees diagonally in front of the laser beam.
It can be seen that in the range from 50° to 50° overall, the scattering cross section has a nearly square relationship with the particle size. Similarly, even when the scattered light detection angle range is changed, the scattering cross section has a substantially constant relationship with the particle size.

従って集光部6を通過する微小粒子2によるパルス光信
号強度は微小粒子2の粒径のほぼ2乗に比例することに
なり、光検出器10により得られたパルス電気信号をパ
ルス波高分析器13により、例えば100チヤンネルに
わたって分析すれば、その粒径の分布が測定され条。
Therefore, the intensity of the pulsed light signal from the microparticles 2 passing through the condensing section 6 is approximately proportional to the square of the particle size of the microparticles 2, and the pulsed electrical signal obtained by the photodetector 10 is transmitted to the pulse height analyzer. 13, the particle size distribution can be measured by analyzing, for example, 100 channels.

第3図は小型コンプレッサー駆切によりネブライザーで
噴霧した水滴微小粒子の粒径分布の測定結果を示すグラ
フで、よこ軸は測定した粒子のパルス信号をパルス波高
分析器で分析した際のパルス波高を100チヤンネルに
わたって表示しており、たて軸は測定した粒子の個数を
示す。
Figure 3 is a graph showing the measurement results of the particle size distribution of water droplet microparticles sprayed by a nebulizer with a small compressor completely turned off.The horizontal axis shows the pulse height when the pulse signal of the measured particles was analyzed with a pulse height analyzer. 100 channels are displayed, and the vertical axis indicates the number of particles measured.

第4図は、第3図におけると同じ噴霧水滴微小粒子をサ
ンプリング法(液浸法)により測定した場合の測定結果
を示すグラフである。
FIG. 4 is a graph showing the measurement results when the same sprayed water droplet microparticles as in FIG. 3 were measured by the sampling method (immersion method).

これら第3図及び第4図から、第3図における50チヤ
ンネル付近にあるピークはおよそ直径2μmに相当する
ことが分る。従って、予め粒径の分った微小粒子につい
てのこのようなパルス波高を測定しておけば、パルス波
高分析器により得られたパルス波高から直ちに実際の粒
径分布を知ることが出来る。
From these FIGS. 3 and 4, it can be seen that the peak near channel 50 in FIG. 3 corresponds to a diameter of approximately 2 μm. Therefore, by measuring the pulse height of microparticles whose particle size is known in advance, the actual particle size distribution can be immediately determined from the pulse height obtained by the pulse height analyzer.

第5図は小型コンプレッサー駆動によりネブライザーか
ら生理食塩水を噴霧してこの噴霧気を患者に吸入投与し
た吟、に患者の口もとで実時間で測定した粒径分布測定
結果を示すグラフで、第5図□° ”□( (A)は吸気時、第5図(B)は呼気時でそれぞれ吸気
又は呼気を20回ずつ測定し吸入又は呼出した噴暢粒子
分布量を積算したものである。また第5図(C)は第5
図(A)と(B)との差で吸入された噴霧微小粒子のう
ち呼吸器系に沈着した分に相当する粒径分布を示す。こ
れにより極めて微小な粒子は呼気時に再び吐き出され、
比較的大きな粒子は呼吸器系に沈着するという従来から
の推測を初めて実測により確認することができた。
Figure 5 is a graph showing the results of particle size distribution measurements taken in real time at the patient's mouth after spraying physiological saline from a nebulizer driven by a small compressor and administering the atomized air to the patient by inhalation. Figure □° ”□ ((A) is during inhalation, and Fig. 5 (B) is during expiration. Inhalation or exhalation was measured 20 times each, and the amount of blown particle distribution inhaled or exhaled was integrated. Figure 5 (C) is the fifth
The difference between Figures (A) and (B) shows the particle size distribution corresponding to the amount of inhaled atomized microparticles that are deposited in the respiratory system. This causes extremely small particles to be exhaled again during exhalation.
For the first time, actual measurements confirmed the conventional assumption that relatively large particles are deposited in the respiratory system.

以上本発明による測定方法は、レーザービームの集光部
における被測定空間がレーザービームと受光光学系視野
との重なりで決まるため、−流体の流れや微小粒子の移
動を損うことなく連続して微小粒子の粒径分布を実時間
で測定又はモニターすることができるので、流体中の微
小粒子の粒径分布及びその量を管理することも容易に行
ない得る。
As described above, in the measurement method according to the present invention, the space to be measured in the condensing part of the laser beam is determined by the overlap between the laser beam and the field of view of the receiving optical system. Since the particle size distribution of microparticles can be measured or monitored in real time, the particle size distribution and amount of microparticles in a fluid can be easily controlled.

また被測定空間と微′小粒子が移動する流路管の断面積
をあらかじめ求めておけば、粒径分布の測定結果から流
路管内を移動した微小粒子の総容積又は総重量を算出す
ることも容易にかつ実時間で行ない得るなど従来にない
特徴がある。
In addition, if the cross-sectional area of the measurement space and the flow pipe through which the microparticles move is determined in advance, the total volume or total weight of the microparticles that have moved within the flow pipe can be calculated from the measurement results of the particle size distribution. It has unprecedented features such as being able to easily and in real time.

以上本発明について実施例に従って説明したが、本発明
はこれに限定するものではなく、例えばレーザービーム
は適当な波長と出力のものでよく1、またレーザービー
ムを集光するレンズは必要に応じて円筒形レンズ以外の
他の形状のレンズを用いてもよく、また測定すべき微小
粒子は液体、固体又は気泡のような気体でもよく、塘た
測定すべき微小粒子が移動する流体とは気体、液体の他
に真空でもよく、また微小粒子による散乱光のうちの検
出する散乱光はレーザービームに対して斜め前方40°
〜50 の範囲の散乱光に限定するものではなく、他の
適当な角度範囲の散乱光を検出してもよい。また説明中
ヤは触れていないが測定時に、測定すべき微小粒子以外
の他の浮遊粒子や流体中の気泡などによりノイズが生ず
る場合は、測定すべき微小粒子のみを除去した状態でブ
ランク測定を行ないこの粒径分布をノイズとして、実測
した粒径分布測定結果から差し引いて所望する微小粒子
の実際の粒径分布を求めてもよく、また他の電気回路的
な方法によりノイズを除去してもよい。
Although the present invention has been described above according to the embodiments, the present invention is not limited thereto. For example, the laser beam may have an appropriate wavelength and output1, and the lens for condensing the laser beam may be used as necessary. Lenses of other shapes than cylindrical lenses may be used, and the microparticles to be measured may be liquids, solids, or gases such as bubbles, and the fluid in which the microparticles to be measured move may be gas, In addition to liquids, vacuum may also be used, and the scattered light to be detected among the scattered light by microparticles is at an angle of 40 degrees in front of the laser beam.
The present invention is not limited to scattered light in the range of ~50°, but scattered light in other suitable angle ranges may be detected. Also, although not mentioned in the explanation, if noise is generated during measurement due to other floating particles or air bubbles in the fluid other than the microparticles to be measured, perform a blank measurement with only the microparticles to be measured removed. The actual particle size distribution of the desired microparticles may be obtained by subtracting this particle size distribution as noise from the actually measured particle size distribution measurement results, or the noise may be removed using other electrical circuit methods. good.

また、流体が流れる流路管はガラス製の他の金属製でも
よいが、その場合、レーザービームまたは散乱光を通過
させる窓などを設けてこの窓を通して測定するようにす
ればよい。
Further, the channel tube through which the fluid flows may be made of glass or other metal, but in that case, a window or the like that allows laser beams or scattered light to pass through may be provided and measurements may be made through this window.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
水滴粒子の散乱角変化による斜め45゜方向散乱断面積
の粒径依存性を示すグラフ、第3図は水滴粒子の粒径分
布の測定結果を示すグラフ、第4図はサンプリング法(
液浸法)による水滴粒子の粒径分布の測定結果を示すグ
ラフ、第5図(A)。 (B)、(ロ)は小型コンプレッサー駆動によりネブラ
イザーから生理食塩水を噴霧してこの噴霧気を患者に吸
入投与した際に患者の口もとで実時間で測定した粒径分
布測定結果を示すグラフである。 1・・・流路管 2・・・微小粒子 3・・・レーザー
光源5・・・円筒形・・ズ 6・・]集光部 T・・・
集光・・ズ890.アイ+7 、C9、、、え、゛アイ
2’−1010,えよ□。 、J 4”l。 器、11・・・対数増幅器 12・・・パルス増幅器 
13・・・パルス波高分析器 特許出願人  チェスト株式会社 代理人弁理士  金 倉 喬 二 躍20 粒n、  fノアmノ 曜3= パ疋::・:□゛採波高 1・1゜ パルス波高 (C) パルス波高 (b) パルス波高 :1 11゜ 1、:゛
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a graph showing the particle size dependence of the scattering cross section in the diagonal 45° direction due to changes in the scattering angle of water droplets, and Fig. 3 is a graph showing the particle size A graph showing the measurement results of the diameter distribution, Figure 4 shows the sampling method (
FIG. 5(A) is a graph showing the measurement results of the particle size distribution of water droplet particles by the liquid immersion method. (B) and (B) are graphs showing the particle size distribution measurement results measured in real time at the patient's mouth when physiological saline was sprayed from a nebulizer driven by a small compressor and the atomized air was inhaled and administered to the patient. be. 1... Channel pipe 2... Microparticles 3... Laser light source 5... Cylindrical shape... 6...] Light condensing part T...
Focusing...Z890. Eye+7, C9,,, ゛eye 2'-1010, yeah□. , J 4"l. device, 11...logarithmic amplifier 12...pulse amplifier
13...Pulse Wave Height Analyzer Patent Applicant Chest Co., Ltd. Representative Patent Attorney Takashi Kanakura Niyaku 20 Grain n, f Noa m no Yo 3= Pahi::・:□゛Sampling Height 1.1゜Pulse Wave Height (C) Pulse height (b) Pulse height: 1 11゜1,:゛

Claims (1)

【特許請求の範囲】[Claims] 流路管内を流体に浮遊して移動する微小粒子群に、この
移動方向とほぼ直交する方向からレーザービームを、レ
ンズを介して集光させ、この集光部及びその付近を通過
する前記微小粒子によるレーザービームの散乱光のうち
、レーザービームに対して一定の斜め方向の散乱光のみ
を集光レンズにより集光して微小粒子の像を結像させる
とともに、この像面にアイリスを設けて前記集光部を通
る微小粒子の散乱光のみを通過させて、この散乱光を光
検出器で検出し、更にこの検出した電気信号をパルス増
幅器で増幅してからパルス波高分析器によシ順次パルス
波高ごとに分析して、前記集光部を通過する微小粒子の
粒径分布を実時間で測定することを特徴とする微小粒子
の粒径分布測定方法。
A laser beam is focused via a lens on a group of microparticles floating in a fluid in a flow channel pipe from a direction substantially perpendicular to the direction of movement, and the microparticles passing through this converging section and its vicinity. Among the scattered light of the laser beam, only the scattered light in a certain oblique direction with respect to the laser beam is focused by a condensing lens to form an image of the microparticle, and an iris is provided on this image plane to form an image of the microparticle. Only the scattered light of the microparticles passing through the condenser is passed through, and this scattered light is detected by a photodetector.The detected electrical signal is further amplified by a pulse amplifier, and then sequentially pulsed by a pulse height analyzer. A method for measuring particle size distribution of microparticles, characterized in that the particle size distribution of microparticles passing through the light collecting section is measured in real time by analyzing each wave height.
JP57046416A 1982-03-25 1982-03-25 Measurement of particle diameter distribution of micro particle Pending JPS58165008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57046416A JPS58165008A (en) 1982-03-25 1982-03-25 Measurement of particle diameter distribution of micro particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57046416A JPS58165008A (en) 1982-03-25 1982-03-25 Measurement of particle diameter distribution of micro particle

Publications (1)

Publication Number Publication Date
JPS58165008A true JPS58165008A (en) 1983-09-30

Family

ID=12746539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57046416A Pending JPS58165008A (en) 1982-03-25 1982-03-25 Measurement of particle diameter distribution of micro particle

Country Status (1)

Country Link
JP (1) JPS58165008A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173886A (en) * 1983-03-11 1984-10-02 イ−・アイ・デユポン・ド・ネモア−ス・アンド・コンパニ− Particle counter
JPS60214238A (en) * 1984-04-11 1985-10-26 Hitachi Ltd Fine particle detector
JPS61265550A (en) * 1985-05-20 1986-11-25 Rion Co Ltd Light scattering type fine particle measuring apparatus
JPS6337236A (en) * 1986-07-31 1988-02-17 Hitachi Electronics Eng Co Ltd Method for excluding stray light of apparatus for detecting fine particle in liquid
JP2016075674A (en) * 2014-10-07 2016-05-12 日本特殊陶業株式会社 Fine particle measurement system
JP2020176841A (en) * 2019-04-15 2020-10-29 三菱重工業株式会社 Particle size acquisition device, particle size acquisition system, and particle size acquisition method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146180A (en) * 1974-08-23 1976-04-20 Bayer Ag Reezaakosanrannyoru tabunsankeino ryudobunsekihoho oyobisochi
JPS5658637A (en) * 1979-10-19 1981-05-21 Matsushita Electric Works Ltd Measuring method for diameter of particle
JPS5658636A (en) * 1979-10-19 1981-05-21 Matsushita Electric Works Ltd Measuring method for diameter of particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146180A (en) * 1974-08-23 1976-04-20 Bayer Ag Reezaakosanrannyoru tabunsankeino ryudobunsekihoho oyobisochi
JPS5658637A (en) * 1979-10-19 1981-05-21 Matsushita Electric Works Ltd Measuring method for diameter of particle
JPS5658636A (en) * 1979-10-19 1981-05-21 Matsushita Electric Works Ltd Measuring method for diameter of particle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173886A (en) * 1983-03-11 1984-10-02 イ−・アイ・デユポン・ド・ネモア−ス・アンド・コンパニ− Particle counter
JPS60214238A (en) * 1984-04-11 1985-10-26 Hitachi Ltd Fine particle detector
JPS61265550A (en) * 1985-05-20 1986-11-25 Rion Co Ltd Light scattering type fine particle measuring apparatus
JPS6337236A (en) * 1986-07-31 1988-02-17 Hitachi Electronics Eng Co Ltd Method for excluding stray light of apparatus for detecting fine particle in liquid
JP2016075674A (en) * 2014-10-07 2016-05-12 日本特殊陶業株式会社 Fine particle measurement system
JP2020176841A (en) * 2019-04-15 2020-10-29 三菱重工業株式会社 Particle size acquisition device, particle size acquisition system, and particle size acquisition method

Similar Documents

Publication Publication Date Title
US7414720B2 (en) Measuring particle size distribution in pharmaceutical aerosols
US6431014B1 (en) High accuracy aerosol impactor and monitor
Schwarz et al. Characterization of exhaled particles from the healthy human lung—a systematic analysis in relation to pulmonary function variables
De Boer et al. Characterization of inhalation aerosols: a critical evaluation of cascade impactor analysis and laser diffraction technique
Muir et al. The Deposition of 0· 5 µ Diameter Aerosols in the Lungs of Man
US6639671B1 (en) Wide-range particle counter
US20090039249A1 (en) Size segregated aerosol mass concentration measurement device
KWONG et al. Comparison of nebulized particle size distribution with Malvern laser diffraction analyzer versus Andersen cascade impactor and low-flow Marple personal cascade impactor
Liu et al. Evaluation of droplet velocity and size from nasal spray devices using phase Doppler anemometry (PDA)
US4370986A (en) Method and apparatus for determining the deposition of particles in the respiratory tract and/or for checking the function of the respiratory tract
HINDS Size characteristics of cigarette smoke
MITCHELL et al. Time-of-flight aerodynamic particle size analyzers: their use and limitations for the evaluation of medical aerosols
JPH04500858A (en) Multi-port parallel flow particle sensor
Gebhart et al. The use of light scattering photometry in aerosol medicine
Sorensen et al. Optical measurement techniques: fundamentals and applications
Hallworth et al. Size analysis of suspension inhalation aerosols by inertial separation methods
JPS58165008A (en) Measurement of particle diameter distribution of micro particle
Sangolkar et al. Particle size determination of nasal drug delivery system: A review
US20060246010A1 (en) Process for Determining the particle size distribution of an aerosol and apparatus for carrying out such a process
CN210051664U (en) Particle diameter and particle concentration on-line measuring device
Kuhli et al. A sampling and dilution system for droplet aerosols from medical nebulisers developed for use with an optical particle counter
Thornburg et al. Counting efficiency of the API Aerosizer
McCusker et al. Dilution of cigarette smoke for real time aerodynamic sizing with a SPART analyzer
JP4792611B2 (en) Particle measuring device
US6005662A (en) Apparatus and method for the measurement and separation of airborne fibers