JPS58164907A - Boiler device - Google Patents

Boiler device

Info

Publication number
JPS58164907A
JPS58164907A JP4461082A JP4461082A JPS58164907A JP S58164907 A JPS58164907 A JP S58164907A JP 4461082 A JP4461082 A JP 4461082A JP 4461082 A JP4461082 A JP 4461082A JP S58164907 A JPS58164907 A JP S58164907A
Authority
JP
Japan
Prior art keywords
water supply
temperature
boiler
control valve
economizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4461082A
Other languages
Japanese (ja)
Other versions
JPH0232525B2 (en
Inventor
石井 求馬
浅葉 好男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP4461082A priority Critical patent/JPS58164907A/en
Publication of JPS58164907A publication Critical patent/JPS58164907A/en
Publication of JPH0232525B2 publication Critical patent/JPH0232525B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明はボイラ装置、特に節炭器の低温腐食を防止す
る手段を設けたボイラ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a boiler system, and more particularly to a boiler system provided with means for preventing low-temperature corrosion of an economizer.

ボイラを構成する部材については硫黄分を含有する燃料
を使用するときは排ガス中に亜硫酸ガス(SO3)を含
むこととなり、この排ガスが低温部材に接触するときそ
の含有する蒸気は露点に達し凝縮しこれにSO3が溶は
込み硫酸となりその部材を腐食し、事故に発展するもの
である。このような部材としては空気予熱器、節炭器、
ダクトを形成する鋼板等が該当するものであることは知
られている。このうち圧力をもつ給水を加熱する節炭器
の伝熱管に腐食により漏水を生ずるときは運転停止をし
て体缶し節炭器の補修または交換させねばならぬという
問題がある。
When using fuel containing sulfur in the boiler components, the exhaust gas contains sulfur dioxide gas (SO3), and when this exhaust gas comes into contact with low-temperature components, the steam it contains reaches its dew point and condenses. SO3 dissolves into this and turns into sulfuric acid, corroding the parts and causing an accident. Such components include air preheaters, energy savers,
It is known that steel plates and the like that form ducts fall under this category. Among these problems, when water leaks due to corrosion in the heat exchanger tubes of the energy saver that heats the pressurized water supply, there is a problem in that the operation must be shut down, and the energy saver must be repaired or replaced.

この発明はこのような低温腐食を生ずることなくかつ既
設のボイラにも適用でき、また管路等の増設により容易
にボイラ装置の改造でき、しかも新設ボイラにおいては
給水加熱器、加熱形脱気器等を不用にする節炭器の腐食
防止をしたボイラの構造を提案することを目的とする。
This invention can be applied to existing boilers without causing such low-temperature corrosion, and the boiler equipment can be easily modified by adding pipes, etc. Moreover, in new boilers, the feed water heater and heating type deaerator can be easily modified. The purpose of this study is to propose a boiler structure that prevents corrosion of the economizer and eliminates the need for such devices.

要するにこの発明は給水“□の一部を節炭器入日□ 前でバイパスしドラムの給水入口管路に供給すること及
び節炭器出口の昇温した給水を再循環1 して節炭器入口に供給し、これらの流量制御を、:′、
、:: 節炭器出口の給水温度及び節炭器入口の給水温度を信号
として自動制御するようにしたことを特徴とする。
In short, this invention bypasses a portion of the water supply □ before entering the economizer and supplies it to the water supply inlet pipe of the drum, and recirculates the heated feed water at the outlet of the economizer. Supply the inlet and control these flow rates: ′,
, :: The present invention is characterized in that the temperature of the water supply at the outlet of the economizer and the temperature of the water supply at the inlet of the economizer are automatically controlled using signals.

第1図は炭素鋼チューブで内部に給水が流れている場合
において、重油燃料中の硫黄含有量(銹を横軸とし縦軸
に腐食防止最低チューブメタル湿度をとったときの線図
である。チューブメタル温度は伝熱管内にスケールのな
い場合はほぼ管内流体の温度と考えてよい。曲線(イ)
は重油燃焼ボイラの場合で燃料中にバナジウムを含まぬ
場合の腐食防止最低チューブメタル湿度を示し、曲線(
ロ)は燃焼残渣(灰分)中に含有するバナジウムが約3
.5%の場合を示す。
FIG. 1 is a diagram showing the sulfur content in heavy oil fuel (the horizontal axis is rust, and the vertical axis is the minimum corrosion-preventing tube metal humidity) when water is flowing inside a carbon steel tube. If there is no scale inside the heat transfer tube, the tube metal temperature can be considered to be approximately the temperature of the fluid inside the tube.Curve (A)
shows the minimum tube metal humidity for preventing corrosion when the fuel does not contain vanadium in the case of a heavy oil-fired boiler, and the curve (
b) Vanadium contained in the combustion residue (ash) is approximately 3
.. The case of 5% is shown.

この第1図よりも明かなごとく、流体(給水)の温度を
この曲線より高い処にする必要がある。
As is clearer from FIG. 1, the temperature of the fluid (supply water) needs to be higher than this curve.

従来のボイラにおいてはこのような低温腐食を防止する
ため給水温度を上昇させる手段として給水加熱器又1ま
加熱形脱気器を設けるなどしていたが設備費が大きいも
のとなるという問題があ6o    、゛ :′ この発明は簡単な給水のバイパス管路と再循環管路を主
給水管路につき設けてこの問題を解決するものである。
In conventional boilers, a feed water heater or a heated deaerator was installed as a means of raising the feed water temperature to prevent such low-temperature corrosion, but this resulted in a problem of high equipment costs. 6o, ゛:' The present invention solves this problem by providing a simple feedwater bypass line and recirculation line for the main water supply line.

第2図はこの発明の一実施例を示す管系統図、である。FIG. 2 is a pipe system diagram showing one embodiment of the present invention.

この場合において、ボイラ1への給水は給水タンク2よ
り各部材を接続して主給水系を形成する主給水管路3に
順に設けたボイラ給水ポンプ4、主給水流量制御弁5、
主給水流量計6、節炭器7を経由しボイラの上胴1aに
供給される。主給水管路3は節炭器7の入口と給水タン
ク2を接続する管路3aと節炭器出口と上胴1aを接続
する管路3bとよりなる。給水バイパス管路8にはバイ
パス量調節弁(自動湿度調節弁)9を設け、給水バイパ
ス管路8の一端は管路3aと接続部8aで接続し、他の
一端は管路3bがドラム(上胴)入口と接続する附近の
接続部8bで接続する。
In this case, water is supplied to the boiler 1 from a water supply tank 2 through a boiler water supply pump 4, a main water flow rate control valve 5, and a main water supply pipe 3 which connects each member to form a main water supply system.
The water is supplied to the upper shell 1a of the boiler via the main water supply flow meter 6 and the energy saver 7. The main water supply conduit 3 consists of a conduit 3a that connects the inlet of the economizer 7 and the water supply tank 2, and a conduit 3b that connects the outlet of the economizer and the upper body 1a. The water supply bypass pipe 8 is provided with a bypass amount adjustment valve (automatic humidity control valve) 9, one end of the water supply bypass pipe 8 is connected to the pipe 3a at a connecting part 8a, and the other end is connected to the drum ( (Upper body) Connect at the nearby connecting part 8b that connects to the inlet.

また給水再循環管路10は一端を給水流れについて接続
部8aの下流で管路3aと接続部10aで接続し、他の
一端は接続部8bの管路3bについての上流の接続部1
0bで接続する。この給水再循環管路10には再循環ポ
ンプ11と再循環量調節弁(自動湿度調節弁)12とが
設けられる。
The feed water recirculation line 10 also connects at one end with the line 3a downstream of the connection 8a for the feed water flow at a connection 10a and at the other end at the connection 1 upstream of the line 3b at the connection 8b.
Connect with 0b. This water supply recirculation line 10 is provided with a recirculation pump 11 and a recirculation amount control valve (automatic humidity control valve) 12.

燃焼ガスGはボイラ1から煙道13経由節炭器7、に流
れ、給水と熱交換しついで煙道14.煙突15を経由し
て排出される。
The combustion gas G flows from the boiler 1 to the economizer 7 via the flue 13, exchanges heat with the feed water, and then flows through the flue 14. It is discharged via the chimney 15.

このような装置において給水タンク2内の給水はほぼ外
気温度であり、仮りに15℃とすれば燃料中の硫黄含有
%に関係なく第1図から明かな如く節炭器の給水入口近
傍伝熱管に低温腐食を起すこととなる。
In such a device, the water supply in the water supply tank 2 is at almost the outside temperature, and if the temperature is 15°C, the heat exchanger tube near the water supply inlet of the economizer will be heated as shown in Fig. 1, regardless of the sulfur content percentage in the fuel. This will cause low-temperature corrosion.

この場合に接続部8aから給水バイパス管路8、バイパ
ス量調節弁(自動温度調節弁)9を経由してバイパス給
水量を制御するとともに給水再循環管路10により節炭
器7の出口接続部10bより抽出する昇温した給水の一
部を再循環ポンプ11により昇圧し、その流量を再循環
流量調節弁(自動温度調節弁)12で制御して管路3a
に供給すればそれが給水タンクからの給水と混合し節炭
器入口の給水湿度を上昇させ低温腐食を起さないものと
することができる。
In this case, the bypass water supply amount is controlled from the connection part 8a via the water supply bypass pipe line 8 and the bypass amount control valve (automatic temperature control valve) 9, and the feed water recirculation pipe line 10 is connected to the outlet connection part of the energy saver 7. A part of the heated feed water extracted from 10b is pressurized by a recirculation pump 11, and its flow rate is controlled by a recirculation flow rate control valve (automatic temperature control valve) 12, and the flow rate is controlled by a recirculation flow rate control valve (automatic temperature control valve) 12.
If the water is supplied to the water tank, it mixes with the water supplied from the water supply tank, increases the humidity of the water supply at the inlet of the economizer, and prevents low-temperature corrosion.

さらに節炭器出口給水湿度も制御されるため節炭器出口
給水温度がボイラの圧力に対する飽和温度以下とするこ
とができるため節炭器を含む主給水管路に水槌現象(ウ
ォータハンマ現象)の生ずることを防ぐことができる。
In addition, since the water economizer outlet water supply humidity is controlled, the water economizer outlet water temperature can be kept below the saturation temperature for the boiler pressure, causing a water hammer phenomenon in the main water supply pipe including the economizer. This can prevent the occurrence of

再循環量調節弁12からの再循環給水量は、接続部10
aの下流に設けた温度発信器16の給水温度信号を節炭
器入口温度調節器17に送り、その節炭器入口温度調節
器17の指令信号より作動する再循環量調節弁(自動温
度調節弁)12により制御される。同様にして節炭器7
の出口の管路 。
The recirculation water supply amount from the recirculation amount control valve 12 is determined by the connection part 10.
A feed water temperature signal from a temperature transmitter 16 installed downstream of the temperature transmitter 16 is sent to the economizer inlet temperature regulator 17, and a recirculation amount control valve (automatic temperature control (valve) 12. Similarly, economizer 7
outlet conduit.

3bに設けた温度発信器18の信号は節炭器出口温度調
節器18に送られその指令信号によりバイパス量調節弁
(自動湿度調節弁)9は制御される。
The signal from the temperature transmitter 18 provided at 3b is sent to the economizer outlet temperature regulator 18, and the bypass amount control valve (automatic humidity control valve) 9 is controlled by the command signal.

第3図は排ガス湿度計21からの信号と、温度発信器1
6.18からの湿度信号を記憶と指令信号を出すボイラ
の主制御箱20に送る場合を示すものである。この主制
御箱20には負荷信号りが送られており、また主給呆流
量計6からの給水流量信号も送られている。これらの信
号を主制御箱でその記憶数値と対比し主給水流量制御弁
5、バイパス量調節弁9、再循環量調節弁12にt’7
1 指令信号が送られそれぞれの流量調節がされる。
Figure 3 shows the signal from the exhaust gas hygrometer 21 and the temperature transmitter 1.
6.18 is sent to the main control box 20 of the boiler which stores and issues command signals. A load signal is sent to this main control box 20, and a water supply flow rate signal from the main feed water flow meter 6 is also sent. These signals are compared with the stored values in the main control box, and the main water flow rate control valve 5, bypass amount control valve 9, and recirculation amount control valve 12 are sent to t'7.
1 Command signals are sent and each flow rate is adjusted.

この発明を実施することにより給水のバイパス量、再循
環量が制御され節炭器入口給水の湿度が低温腐食メタル
温度以上の適当な温度に制御され節炭器の低温腐食を防
止しかつウォータハンマ現象を防止したボイラ装置とす
ることができるという効果を奏する。
By implementing this invention, the amount of bypass and recirculation of the water supply is controlled, and the humidity of the water supply at the inlet of the economizer is controlled to an appropriate temperature higher than the temperature of the low-temperature corrosion metal, thereby preventing low-temperature corrosion of the economizer and preventing water hammer. This has the effect that it is possible to provide a boiler device that prevents the phenomenon from occurring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は低温腐食を起さないための鋼管のメタル温度と
燃料中の硫黄含有量との関係を示す線図、第2図は本発
明にかかるボイラ装置の管系読図、第3図は主制御箱に
より各給水流量制御弁を制御する場合の制御系統を示す
図面である。 1・・・・・・ボイラ 3・・・・・・主給水管路 :。 3a、3b1・:・・・管路 8・・・・・・給水バイパス管路 9・・・・・・バイパス量調節弁(自動温度調節弁)1
0・・・・・・給水再循環管路 (8) 11・・・・・・再循環ポンプ 12・・・・・・再循環量調節弁(自動温度調節弁)2
0・・・・・・主制御箱 第1図 瀝料甲綺貫舎肩1C%)
Fig. 1 is a diagram showing the relationship between the metal temperature of steel pipes and the sulfur content in the fuel to prevent low-temperature corrosion, Fig. 2 is a pipe system reading diagram of the boiler equipment according to the present invention, and Fig. 3 is It is a drawing showing a control system when each water supply flow rate control valve is controlled by a main control box. 1...Boiler 3...Main water supply pipe:. 3a, 3b1: Pipe line 8... Water supply bypass pipe line 9... Bypass amount control valve (automatic temperature control valve) 1
0... Water supply recirculation pipe (8) 11... Recirculation pump 12... Recirculation amount control valve (automatic temperature control valve) 2
0...Main control box Fig. 1 1C%)

Claims (1)

【特許請求の範囲】 1、 ボイラの主給水系を給水タンク、ボイラ給水ポン
プ、主給水流量制御弁、主給水流量計、節炭器の順に管
路で接続して形成し、主給水流量計の下流給水管路とド
ラム入口給水管路とを接続しかつその管路にバイパス量
調節弁を有する給水バイパス管路を設け、この給水バイ
パス管路の主給水流量計側接続部と節炭器入口との間の
主給水管路と節炭器出口側主給水管路とを接続しかつそ
の管路に再循環ポンプと再循環量調節弁を有する給水再
循環管路を設けたことを特徴とするボイラ装置。 2、前記バイパス量調節弁を節炭器出口温度を信号とし
て給水のバイパス量を制御する自動温度調節弁とし、前
記再循環量調節弁を節炭器入口温度を信号として給水の
再循環量を制御する自動温度調節弁とすることを特徴と
する特許請求の範囲第1項記載のボイラ装置。 3゜ 記憶と指令信号を出すボイラの主制御箱に節炭器
入口排ガス温度、節炭器入口給水温度、節炭器出口給水
温度の信号を送り、かつボイラ負荷信号と給水流量信号
とを前記主制御箱に送り、バイパス量調節弁と再循環量
調節弁と主給水流量調節弁とを制御し節炭器伝熱管のメ
タル湿度を低温腐食を生ずる温度以上に保持可能に形成
したこ、とを特徴とする特許請求の範囲第1項記載のボ
イラ装置。
[Scope of Claims] 1. The main water supply system of the boiler is formed by connecting a water tank, a boiler water supply pump, a main water supply flow rate control valve, a main water supply flow meter, and a energy saver in this order through pipes, and the main water supply system is formed by connecting a water supply tank, a boiler water supply pump, a main water supply flow rate control valve, a main water supply flow meter, and a energy saver in this order. A water supply bypass pipe is provided that connects the downstream water supply pipe and the drum inlet water supply pipe and has a bypass amount adjustment valve in the pipe, and the connection part on the main water flow meter side of this water supply bypass pipe and the energy saver are connected. The main water supply pipe between the inlet and the main water supply pipe on the outlet side of the energy saver is connected, and the water supply recirculation pipe is provided with a recirculation pump and a recirculation amount control valve. boiler equipment. 2. The bypass amount control valve is an automatic temperature control valve that controls the bypass amount of the feed water using the outlet temperature of the economizer as a signal, and the recirculation amount control valve uses the inlet temperature of the economizer as a signal to control the recirculation amount of the feed water. The boiler apparatus according to claim 1, characterized in that it is an automatic temperature control valve that controls the temperature. 3゜ Send the signals of the exhaust gas temperature at the inlet of the economizer, the water supply temperature at the inlet of the economizer, and the water supply temperature at the outlet of the economizer to the main control box of the boiler that outputs memory and command signals, and also sends the boiler load signal and the water supply flow rate signal as described above. It is configured such that the metal humidity of the economizer heat transfer tube can be maintained at a temperature higher than the temperature that causes low-temperature corrosion by sending it to the main control box and controlling the bypass amount adjustment valve, recirculation amount adjustment valve, and main water supply flow rate adjustment valve. A boiler device according to claim 1, characterized in that:
JP4461082A 1982-03-23 1982-03-23 Boiler device Granted JPS58164907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4461082A JPS58164907A (en) 1982-03-23 1982-03-23 Boiler device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4461082A JPS58164907A (en) 1982-03-23 1982-03-23 Boiler device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP33097589A Division JPH02272205A (en) 1989-12-19 1989-12-19 Boiler device

Publications (2)

Publication Number Publication Date
JPS58164907A true JPS58164907A (en) 1983-09-29
JPH0232525B2 JPH0232525B2 (en) 1990-07-20

Family

ID=12696208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4461082A Granted JPS58164907A (en) 1982-03-23 1982-03-23 Boiler device

Country Status (1)

Country Link
JP (1) JPS58164907A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170502U (en) * 1984-04-20 1985-11-12 三菱鉱業セメント株式会社 Waste heat boiler equipment for cement firing equipment
US11420472B2 (en) 2017-04-05 2022-08-23 Nippon Steel Corporation Front axle beam and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888504U (en) * 1981-12-11 1983-06-15 株式会社日立製作所 Minimum flow control system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888504U (en) * 1981-12-11 1983-06-15 株式会社日立製作所 Minimum flow control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170502U (en) * 1984-04-20 1985-11-12 三菱鉱業セメント株式会社 Waste heat boiler equipment for cement firing equipment
US11420472B2 (en) 2017-04-05 2022-08-23 Nippon Steel Corporation Front axle beam and production method thereof

Also Published As

Publication number Publication date
JPH0232525B2 (en) 1990-07-20

Similar Documents

Publication Publication Date Title
CN201666565U (en) Complementary combustion type waste heat boiler of catalytic cracking unit
US9476583B2 (en) Recovery system of waste heat from flue gas
US4318366A (en) Economizer
CA2419656C (en) System for controlling flue gas exit temperature for optimal scr operations
WO2016129395A1 (en) Boiler feed-water system, boiler provided with said system, and boiler feed-water method
CN108489290A (en) A kind of high-temperature flue gas residual neat recovering system
US4173949A (en) Feedwater preheat corrosion control system
US3910236A (en) Economizer for steam boiler
CN206361703U (en) A kind of SCR inlet flue gas temperature raising system for meeting full load denitration
CN106765039B (en) A kind of SCR inlet flue gas water side temperature raising system and method
JPS58164907A (en) Boiler device
CN215808592U (en) Controllable double-phase heating medium forced circulation heat exchange system
CN102393024A (en) Composite phase change heat exchange device for boiler flue gas waste heat recovery
JPH0551801B2 (en)
CN201259210Y (en) Non-phase-change composite heat exchanger
US5361827A (en) Economizer system for vapor generation apparatus
CN217899822U (en) Steam control system of waste heat boiler
CN205065683U (en) Auxiliary boiler sewer heat recovery system
CN113606969B (en) Controllable double-phase heat medium forced circulation heat exchange system
CN219177759U (en) Furnace-entering wind temperature improving device
CN203810375U (en) Efficient zero-dew point corrosion coal economizer
CN212565841U (en) Sulfur recovery flue gas heat exchange system with front-mounted heating device
CN209295073U (en) A kind of small-sized low-temperature flue gas recovery waste heat steam boiler
JP2018077033A (en) boiler
JPH02223701A (en) Exhaust heat recovery boiler