JPS5816469A - Heat cell - Google Patents

Heat cell

Info

Publication number
JPS5816469A
JPS5816469A JP11390581A JP11390581A JPS5816469A JP S5816469 A JPS5816469 A JP S5816469A JP 11390581 A JP11390581 A JP 11390581A JP 11390581 A JP11390581 A JP 11390581A JP S5816469 A JPS5816469 A JP S5816469A
Authority
JP
Japan
Prior art keywords
ring
deb
battery
pellets
leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11390581A
Other languages
Japanese (ja)
Inventor
Kazunori Haraguchi
和典 原口
Takashi Miura
三浦 喬
Hirosuke Yamazaki
博資 山崎
Tatsuro Yasuda
安田 辰郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11390581A priority Critical patent/JPS5816469A/en
Publication of JPS5816469A publication Critical patent/JPS5816469A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To prevent the deterioration of the discharge characteristic at the high slewing, by arranging a leakage-proof ring made of inorganic substance between the pellet made of a plurality of electrolytic rings and the depolarization agent arranged concentrically. CONSTITUTION:The cell element of the thermo-cell is formed of a negative pole current collector 1, negative pole active substance 2, inner protective ring 3, outer protective ring 4, positive pole current collector 12 and a plurality of DEB pellets 5-8 integrated with ring-shaped EB layer 10 and DE layer 11, and the leak-proof ring 9 arranged between them. When forming the leak-proof ring 9 with an inorganic binder to be used for DEB pellets 5-8 and the asbestos paper using the inner and outer protective rings 3, 4, the leakage of the thermo- cell when using in a rocket and performing the high slewing can be reduced considerably resulting in the enlargement of the usage.

Description

【発明の詳細な説明】 本発明は、電解質層(EB層)と減極剤層(DE層)と
を一体化したペレット、もしくは電解質と減極剤との混
合物からなるベレット(以下これをDEBペレットとい
う)を有する熱電池に関するもので、その目的とすると
ころは、同心円的に配置した複数のベレット間に同心円
状に無機物質からなる漏液防止リングを配設することに
よシ、電池活性時における電解質の漏出を防ぎ、電池に
旋回運動が加わった際の電池性能を向上することにある
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pellet in which an electrolyte layer (EB layer) and a depolarizer layer (DE layer) are integrated, or a pellet (hereinafter referred to as DEB) consisting of a mixture of an electrolyte and a depolarizer. The purpose of this technology is to activate the battery by arranging a leakage prevention ring made of an inorganic material concentrically between a plurality of concentrically arranged pellets. The objective is to prevent leakage of electrolyte during operation and improve battery performance when rotational motion is applied to the battery.

熱電池は常温では電力を供給しえないが、高温に加熱さ
れ電解質が溶融すると電解質にイオン伝導性が生じ、電
力が供給可能となる性質の電池である。ここでの電解質
としてはKO2−Lice。
A thermal battery cannot supply electricity at room temperature, but when heated to a high temperature and the electrolyte melts, the electrolyte becomes ionic conductive and can supply electricity. The electrolyte here is KO2-Lice.

KBr−LiBr等の共融塩が用いられ、これらの溶融
塩は330″C〜360’Cで溶融し、水溶液系電解質
の約10倍というイオン伝導性を有する。この種の熱電
池には次のような特徴があることが知られている。すな
わち、貯蔵中の自己放電が実用上皆無で長期保存後も製
造直後と同様の放電特性を有する。電池内部に加熱剤を
組み込むことにより電池使用に際して加熱剤を作用させ
0.6秒以内の短時間で電池を活性化することができる
。水溶液系電解質では用いることのできない超低電位の
負極活物質が使用でき、素電池当りの出力電圧を高める
ことができる。低温から高温の幅広い温度領域で使用で
きる。小形軽量で大電流が供給可能である。このような
特徴を有することからロクットや緊急用の電源として実
用化されている。
Eutectic salts such as KBr-LiBr are used, and these molten salts melt at 330''C to 360'C and have an ionic conductivity about 10 times that of aqueous electrolytes.This type of thermal battery has the following: It is known that the battery has the following characteristics.In other words, there is practically no self-discharge during storage, and the discharge characteristics are the same as those immediately after manufacture even after long-term storage.By incorporating a heating agent inside the battery, the battery can be used easily. The battery can be activated in a short time of less than 0.6 seconds by applying a heating agent at the time of activation.Using an ultra-low potential negative electrode active material that cannot be used with aqueous electrolytes, the output voltage per unit cell can be reduced. It can be used in a wide temperature range from low to high temperatures. It is small and lightweight and can supply a large current. Because of these characteristics, it has been put into practical use as a power source for Rokut and emergency use.

しかしながら従来のベレット形熱電池の問題点として電
池が活性化した際に電解質が素電池外へ漏れ出すために
液絡を生じたり、DEBベレット内の電解質量の減少を
まねいて内部抵抗を増加させ電圧低下を引き起こすこと
があった。特に電池に対し強い旋回運動が加えられると
その現象が助長され、放電寿命も著しく低下することが
認められているっ第1図に従来のDEBベレットを用い
た熱電池の素電池断面を示す。該素電池は負極集電体1
.負極活物質2.内部保護リング3.外部保護リング4
.EB層10とDE層11とを1体化シたDEBペレッ
ト13および正極集電体12から構成されている。負極
活物質2としてはMq。
However, the problem with conventional pellet-type thermal batteries is that when the battery is activated, the electrolyte leaks out of the unit cell, resulting in a liquid junction, and the amount of electrolyte inside the DEB pellet decreases, increasing internal resistance. This could cause a voltage drop. In particular, it has been recognized that if a strong swirling motion is applied to the battery, this phenomenon is exacerbated and the discharge life is significantly reduced. Fig. 1 shows a cross section of a unit cell of a thermal battery using a conventional DEB pellet. The cell has a negative electrode current collector 1
.. Negative electrode active material 2. Internal protection ring 3. External protection ring 4
.. It is composed of a DEB pellet 13 in which an EB layer 10 and a DE layer 11 are integrated, and a positive electrode current collector 12. The negative electrode active material 2 is Mq.

Ca 、 Li等の超低電位物質が使用される。DEB
ペレット13は電解質粉末にシリカ、カオリン等の無機
質バインダーを加え電解質量を60〜80重量%に制限
した混合物よりなるEB層1oと、クロム酸カルシウム
粉末等の減極剤に20〜30重量%の電解質粉末が加え
られた混合物よりなるDE層11とを加圧一体化したペ
レットも(7<は電解質および減極剤の混合物を加圧成
形したベレットである。このような素電池において従来
はアスベストペーパやアルミナペーパまたはガラスペー
パ等の耐熱部材により構成される内部保護リング3およ
び外部保護リング4によって電池活性時に電解質が素電
池外部へ漏れ出すのを防止していた。しかし電池に強い
旋回運動が加えられると、これらの保護リングでは漏液
を十分に食い止めることができず、特に外部保護リング
4からの漏液が激しく認められた。従って高旋回時には
特にこのような漏液が激しく、素電池間の短絡や素電池
内の電解質不足による内部抵抗の増加が生じて電池の放
電容量が著しく低下した。次表に従来の電池における旋
回数とカットオフ電圧2oVまでの寿命の関係を示す。
Ultra-low potential substances such as Ca and Li are used. D.E.B.
The pellet 13 has an EB layer 1o made of a mixture of electrolyte powder and an inorganic binder such as silica or kaolin to limit the amount of electrolyte to 60 to 80% by weight, and a depolarizer such as calcium chromate powder containing 20 to 30% by weight. There are also pellets in which the DE layer 11 made of a mixture to which electrolyte powder is added are integrated under pressure (7< is a pellet formed by pressure molding a mixture of an electrolyte and a depolarizer. Conventionally, in such unit cells, asbestos The internal protection ring 3 and the external protection ring 4, which are made of heat-resistant materials such as paper, alumina paper, or glass paper, prevent the electrolyte from leaking out of the cell when the battery is activated. These protective rings were unable to sufficiently prevent liquid leakage, and severe liquid leakage was observed particularly from external protective ring 4. Therefore, such liquid leakage was especially severe during high turns, and the battery The discharge capacity of the battery significantly decreased due to an increase in internal resistance due to a short circuit between the batteries and a lack of electrolyte within the unit cell.The following table shows the relationship between the number of rotations and the lifespan up to a cut-off voltage of 2oV in conventional batteries.

(以下余白) この表から明らかなように旋回数が高くなると電池の放
電寿命は著しく短くなり、放電後の電池を解体してみる
と高旋回(I C)poo 〜12000rpm)が加
わった電池では激しい漏液が外部保護リング4側にみら
れ、素電池間の液絡が確認された。また、漏出によりベ
レット内の電解質量も減少し電池の内部抵抗が増加する
ことも認められた。
(Left below) As is clear from this table, as the number of rotations increases, the discharge life of the battery is significantly shortened, and when the battery is disassembled after discharge, it is found that the battery subjected to high rotation (IC) poo ~ 12,000 rpm) Severe liquid leakage was observed on the side of the external protection ring 4, and a liquid junction between the unit cells was confirmed. It was also observed that the amount of electrolyte in the pellet decreased due to leakage, increasing the internal resistance of the battery.

本発明はこのような欠点を改良したもので、リング状の
DEBベレット間にDEBペレットと同心円状に無機物
質よりなる漏液防止リングを配設して、高旋回時の耐漏
液性の向上を図ったものである。第2図Aに本発明の一
実施例である素電池の断面図を、第2図Bにその平面図
をそれぞれ示す。素電池は負極集電体1.負極活物質2
.内部保護リング3.外部保護リング4.EB層10と
DE層11とを一体化したDEBベレット6.6゜7.
8.漏液防止リング9.正極集電体12より構成されて
いる。本発明による漏液防止リング9はDEBペレット
5,6,7.8に用いられる無機質バインダー、例えば
カオリン、シリカ等かあるいは外部および内部保護リン
グ4,3に用いられるアスベストペーパ、アルミナペー
パ、ガラスペーパ等のみで形成されるか、またはそれら
の無機質リングにDEBペレット5,6,7.8よりも
少ない電解質を吸着させたもので形成される。
The present invention improves on these drawbacks by arranging a leakage prevention ring made of an inorganic material between ring-shaped DEB pellets concentrically with the DEB pellets to improve leakage resistance during high rotations. It was planned. FIG. 2A shows a cross-sectional view of a unit cell according to an embodiment of the present invention, and FIG. 2B shows a plan view thereof. The unit cell has a negative electrode current collector 1. Negative electrode active material 2
.. Internal protection ring 3. External protection ring 4. DEB pellet 6.6°7. EB layer 10 and DE layer 11 are integrated.
8. Leak prevention ring9. It is composed of a positive electrode current collector 12. The leak prevention ring 9 according to the present invention is made of an inorganic binder such as kaolin, silica, etc. used for the DEB pellets 5, 6, 7.8, or asbestos paper, alumina paper, glass paper used for the outer and inner protective rings 4, 3. DEB pellets 5, 6, and 7.8, or they are formed by adsorbing less electrolyte than DEB pellets 5, 6, and 7.8 on their inorganic rings.

これらのリング9は電解質を吸着する能力を有しており
、素電池外部への電解質の漏出を防ぐものである。この
漏液防止リング9の幅aは、素電池の大きさによって異
なるが、6W以下のものでDEBペレット5,6,7.
8の間に同心円状に配設される。本実施例ではバインダ
ーに数重量%の電解質を吸着させたものを幅21111
で使用し、3層設けた。また各DEBペレット5,6,
7.8は負極との接触面極を等しくし電流密度のバラッ
キを最少限度におさえた。すなわち、DEBペレ、ノド
は5(6(7(8と素電池外周に近いペレ・ソトはどそ
の半径が長いため、ペレットの幅すは8く了〈6(6と
いう順に広くして接触面積の均等化を図った。
These rings 9 have the ability to adsorb electrolyte and prevent leakage of electrolyte to the outside of the unit cell. The width a of this leakage prevention ring 9 varies depending on the size of the unit cell, but if it is 6W or less, DEB pellets 5, 6, 7.
They are arranged concentrically between 8. In this example, a binder with several weight percent of electrolyte adsorbed was used with a width of 21111 mm.
It was used in three layers. In addition, each DEB pellet 5, 6,
In No. 7.8, the contact surface with the negative electrode was made equal to minimize the variation in current density. In other words, the DEB pellet throat is 5 (6 (8) and the pellet near the outer periphery of the cell has a long throat radius, so the width of the pellet is 8. The aim was to equalize the

従来、例えば27 th Power 5ource 
3ymposiumにおいて、DEBベレットに溝を設
は電池反応により生成する合金が素電池外に漏れ出すの
を防ぐ技術が知られているが、本発明はDEBベレyト
に溝を設ける技術を含むものではなく、漏液防止リング
を組み込むことにより電解質を吸着し、漏液を防ぐもの
で全く異なる技術である。
Conventionally, for example, 27th Power 5source
In 3ymposium, a technique is known in which grooves are provided in the DEB beret to prevent the alloy produced by the battery reaction from leaking out of the unit cell, but the present invention does not include a technique to provide grooves in the DEB beret. It is a completely different technology that incorporates a leakage prevention ring to adsorb electrolyte and prevent leakage.

次に本発明による素電池を用いて従来例と同様の積層形
態電池を構成し、比較検討した結果について述べる。第
3図は積層形態電池の断面図で、正極端子141点火用
端子162点火器16.負極端子17.加熱剤18.素
電池19.外装缶20および保温層21で構成されてい
る。このように構成された本発明による積層形態電池に
対し、従来品と同様の旋回放電試験を行った結果を画表
に示した。従来品における結果と比較すると、無旋回お
よび低旋回時の放電寿命はあまり変わらないが、100
00 rpm を超す高旋回時の放電寿命は従来の約2
倍に伸びている。また放電後の電池を解体してみても外
部保護リング4側からの漏液が抑制されていることが確
認された。さらに漏液が抑制されたために電解質不足に
よる内部抵抗の増加もおさえられ、放電初期の電圧にも
平坦性が認められた。
Next, a stacked battery similar to the conventional example was constructed using the unit cell according to the present invention, and the results of a comparative study will be described. FIG. 3 is a sectional view of a stacked battery, showing a positive terminal 141, an ignition terminal 162, an igniter 16. Negative terminal 17. Heating agent 18. Unit battery 19. It is composed of an outer can 20 and a heat insulating layer 21. The laminated battery according to the present invention constructed as described above was subjected to a swirling discharge test similar to that of conventional products, and the results are shown in the chart. Compared to the results for conventional products, the discharge life during no-swivel and low-swivel conditions is not much different, but 100
The discharge life during high rotation exceeding 00 rpm is about 2
It has doubled in size. Furthermore, even when the battery was disassembled after discharge, it was confirmed that leakage from the external protection ring 4 side was suppressed. Furthermore, since leakage was suppressed, the increase in internal resistance due to electrolyte shortage was also suppressed, and the voltage at the initial stage of discharge was also found to be flat.

以上の様に、本発明を用いることは、従来の熱電池の欠
点であった高旋回時における放電特性の悪化を大幅に改
善することができ、熱電池の使用範囲の拡大に有益なも
のである。
As described above, the use of the present invention can significantly improve the deterioration of discharge characteristics during high rotation, which was a drawback of conventional thermal batteries, and is useful for expanding the range of use of thermal batteries. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のペレット形熱電池に使用される素電池の
縦断面図であり、第2図Aは本発明の一実施例による素
電池の縦断面図、第2図BI/′iその平面図、第3図
は第2図に示す前記の素電池を用いた積層形態電池の断
面図である。 2・・・・・・負極活物質、3・・・・−・内部保護リ
ング、4・・・・・・外部保護リング、5,6,7,8
,13・・・・・・DEBペレ・ノド、9・・・・・・
漏液防tl=’Jング。 代理人の氏名 弁理士 中 尾 敏 男 tlか1名第
1図 (11) 131!m
FIG. 1 is a longitudinal sectional view of a unit cell used in a conventional pellet-type thermal battery, FIG. 2A is a longitudinal sectional view of a unit cell according to an embodiment of the present invention, and FIG. The plan view and FIG. 3 are cross-sectional views of a stacked battery using the unit cell shown in FIG. 2. 2...Negative electrode active material, 3...-Inner protection ring, 4...Outer protection ring, 5, 6, 7, 8
, 13...DEB Pere Nodo, 9...
Leakage prevention tl='Jng. Name of agent: Patent attorney Toshi Nakao TL or one person Figure 1 (11) 131! m

Claims (2)

【特許請求の範囲】[Claims] (1)同心円的に配置した複数個のリング状の電解質と
減極剤とからなるベレット間に、無機物質からなる漏液
防止リングを配設したことを特徴とする熱電池。
(1) A thermal battery characterized in that a leakage prevention ring made of an inorganic substance is arranged between pellets made of a plurality of ring-shaped electrolytes and depolarizers arranged concentrically.
(2)゛前記漏液防止リングが前記ペレットよりも少な
い電解質を吸着している特許請求の範囲第1項に記載の
熱電池。
(2) The thermal battery according to claim 1, wherein the leakage prevention ring adsorbs less electrolyte than the pellets.
JP11390581A 1981-07-20 1981-07-20 Heat cell Pending JPS5816469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11390581A JPS5816469A (en) 1981-07-20 1981-07-20 Heat cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11390581A JPS5816469A (en) 1981-07-20 1981-07-20 Heat cell

Publications (1)

Publication Number Publication Date
JPS5816469A true JPS5816469A (en) 1983-01-31

Family

ID=14624102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11390581A Pending JPS5816469A (en) 1981-07-20 1981-07-20 Heat cell

Country Status (1)

Country Link
JP (1) JPS5816469A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214667U (en) * 1988-07-11 1990-01-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214667U (en) * 1988-07-11 1990-01-30

Similar Documents

Publication Publication Date Title
JP3586195B2 (en) Composite electrode containing PTC polymer
US3893870A (en) Hydrogen absorbing material for electrochemical cells
JPH0458455A (en) Lithium battery
US3573106A (en) Electric battery having a laminated semipermeable barrier/absorbent separator
JPS5816469A (en) Heat cell
JPH0562662A (en) Nonaqueous electrolyte secondary battery
CN102694135B (en) The cap assembly of a kind of battery and a kind of lithium battery
JPS61171065A (en) Thermal cell
JP3290604B2 (en) Thermal battery
US3154435A (en) Alkaline dry cell
US2816151A (en) Potential producing cell
US3719527A (en) Thermal battery
US3193414A (en) Process for manufacturing a gas-permeable and liquid-proof porous electrode
US2535742A (en) Primary cell with electrodes of magnesium and magnesium permanganate
JPS6057186B2 (en) molten salt battery
US3540937A (en) Thermal battery with thallium sesquioxide depolarizer
US3914133A (en) Thermal battery
JP3178222B2 (en) Thermal battery
JPS6121385B2 (en)
TW202414889A (en) Battery pack provided with fire-extinguishing film containing microcapsules for extinguishing fires
KR20240045819A (en) Thermal battery and manufacturing method thereof
JPS62119867A (en) Manufacture of active material for positive electrode of battery with organic electrolytic solution
JPS60246559A (en) Flat organic electrolyte cell
JPS5942422B2 (en) Thermal battery manufacturing method
JPH0554224B2 (en)