JPS58164687A - Preparation of pitch with optical anisotropy - Google Patents

Preparation of pitch with optical anisotropy

Info

Publication number
JPS58164687A
JPS58164687A JP4790382A JP4790382A JPS58164687A JP S58164687 A JPS58164687 A JP S58164687A JP 4790382 A JP4790382 A JP 4790382A JP 4790382 A JP4790382 A JP 4790382A JP S58164687 A JPS58164687 A JP S58164687A
Authority
JP
Japan
Prior art keywords
pitch
temperature
quinoline
reaction
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4790382A
Other languages
Japanese (ja)
Inventor
Takayuki Izumi
泉 孝幸
Tsutomu Naito
勉 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP4790382A priority Critical patent/JPS58164687A/en
Priority to CA000423409A priority patent/CA1196596A/en
Priority to DE8383301552T priority patent/DE3380898D1/en
Priority to EP19830301552 priority patent/EP0089840B1/en
Priority to AU12755/83A priority patent/AU565830B2/en
Publication of JPS58164687A publication Critical patent/JPS58164687A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • D01F9/155Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from petroleum pitch
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C3/00Working-up pitch, asphalt, bitumen
    • C10C3/002Working-up pitch, asphalt, bitumen by thermal means
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • D01F9/15Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from coal pitch

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Working-Up Tar And Pitch (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To prepare the titled pitch producing carbonaceous material with high strength and high elastic modulus, by stopping thermal reaction of carbonaceous heavy oil used as raw material for pitch production in the early stage, removing heavy pitch segment by settling treatment and then performing thermal reaction. CONSTITUTION:Carbonaceous heavy oil used as raw material for pitch production is subjected to thermal reaction at 370-460 deg.C in a circulated inert gas. The reaction is suspended at a point where the resultant pitch contains 5-50% optically anisotropic phase (AP) in spherical for, 2-20wt% quinoline-insolubles and 5-40wt% substance insoluble in quinoline but soluble in benzene and has an overall softening point of below 200 deg.C. The pitch is then subjected to settling treatment at 200-400 deg.C and, after separation of segments containing a large amount of phases with high specific gravity, the remaining pitch is subjected to polycondensation reaction by thermal decomposition and removal of low-molecular substances at 300-420 deg.C until the isotropic phase (IP) content is reduced to 0-20%, to obtain a pitch having an AP content of 80% or higher, an IP content of 20% or lower, a quinoline-insoluble content of 70wt% or lower and a softening point of 230-350 deg.C.

Description

【発明の詳細な説明】 本発明は、高強度および高弾性率を有する炭単繊細およ
びt?他の縦素材料會含む畿素材を製造するために適し
九光学的異方性炭嵩質ピッチの製造法j/C8するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes charcoal monofine and T? The method for producing optically anisotropic carbon bulky pitch J/C8 is suitable for producing other longitudinal materials, including ridge materials.

今般の省エネルギー、1資miI代においては、航g!
慎、自動車その他に必畳な軽量かつ高強度で、^弾性の
複合材料の素材を構成する低フストの高性能脚素繊櫂、
もしくは加圧成形して樵々の用途に使用される高強度、
高密匿の成形炭素材料が強く要望されている。
In terms of energy saving and 1-segment miI costs, voyage g!
Shin, a lightweight, high-strength, low-fist, high-performance bare-legged paddle made of elastic composite material, which is essential for automobiles and other applications.
Or high strength, which is pressure molded and used for lumberjacks.
There is a strong demand for highly densified molded carbon materials.

従*、高性能炭素繊−の製造のために適した光学的異方
性ピッチの組成および構造について十分な開示はなく、
炭素質ピッチ物質の物性とその組成および構造との関係
については、従来不明瞭であって、この樵の十分に満足
し得る物性のものを工業的規模で安定に制御して得るこ
とのできる技1#Iは、禾た完成されていない。
However, there is no sufficient disclosure regarding the composition and structure of optically anisotropic pitch suitable for the production of high-performance carbon fibers.
The relationship between the physical properties of carbonaceous pitch materials and their composition and structure has so far been unclear, and this woodcutter has developed techniques that can stably control and obtain fully satisfactory physical properties on an industrial scale. 1#I has not yet been completed.

従来、−示されている光宇的與万性ピッチ、例えに臀−
紹ダ9−/91コク号、同so−gデ48号、同!;0
−//10コg号公報に記載されている光学的異方性ピ
ッチは等方性ピッチを熱分解重縮合反応で1質化する工
程だけで製造するが光学的異方性相(以下APと略称す
る)部分が、#1はキノリンネ溶分(またはビリジン不
溶分)に相当し、AP部分を100−に近づけると、軟
化点が着しく上昇し、紡糸温度がダ00℃近傍またはそ
れ以上となり、紡糸時にピッチの分解ブスの発生および
重合が惹起することから、これらの製造方法においては
、APiS分の含有量を90%以下、実態的にriSO
〜7091に抑えて紡糸温kを熱分解および熱重合がl
1ii11に生じない温度に抑える方法を採用している
Conventionally, the pitch of light that is shown, for example, the buttocks.
Shoda 9-/91 koku issue, same sog de 48 issue, same! ;0
-//The optically anisotropic pitch described in the No. The part #1 corresponds to the quinoline-soluble content (or the biridine-insoluble content), and when the AP part approaches 100-, the softening point increases significantly, and the spinning temperature reaches around 00℃ or higher. Therefore, in these production methods, the content of APiS is set to 90% or less, and riSO
The spinning temperature k is suppressed to ~7091 to prevent thermal decomposition and thermal polymerization.
A method of suppressing the temperature to a level that does not occur in 1ii11 is adopted.

しかしながら、このようなピッチ組成物a1^Pと相当
量の光学的等方性相べ以下、IPと略称する)との混合
物である良、め°不均質なピッチでTo9、紡糸時に糸
切れが多四、5と、繊細の太さが不均一になること、ま
喪は繊維の強kが低いという細点を包蔵するものである
However, a mixture of such a pitch composition a1^P and a considerable amount of optically isotropic fiber (hereinafter abbreviated as IP) has a non-uniform pitch of To9 and yarn breakage during spinning. Ta-4, 5-5, and delicate fibers have uneven thickness, and mamogi fibers have a low strength k.

また、物公紹ダ9−143q号公権妬−において開示さ
れているピッチ物質では、APが実質的にioo’sの
ようKも見うけられるが、これはピッチ分子の化学構造
を特定化し友特殊なピッチであって、クリ竜ン、7エナ
ンスレン、テトラペンゾフエナジ7等の高価な純物質の
単純な熱1合に↓9胸造され良もので69、構造分子量
が比較的整ったピッチであって、一般的な混合原料から
製造し次場合KFiやは、り軟化点が非常に高い。
In addition, in the pitch material disclosed in the article No. 9-143q, K can be seen where AP is essentially ioo's, but this is because the chemical structure of the pitch molecule has been specified. It is a special pitch, which is formed by simple heating of expensive pure substances such as Kuriron, 7-enanthrene, and tetrapenzophene-7, and has a good pitch of 69 and a relatively uniform structural molecular weight. However, KFi, which is produced from common mixed raw materials, has a very high softening point.

一方、脣分昭53−7jt3.3号公報に記載されてい
る嶽S*鹸製造用原料としてのピッチは、軟化点および
紡糸温kが像く、従って紡糸は容易であるが、^PO含
有率が不明であシ、また原料炭化水Xを塩化アル建ニウ
ム等のルイス績触媒を使用して重縮合しており、ピッチ
の組成と構造Fi特殊であり、そのピッチから製造され
た炭素繊維の強度および弾性率は小さい。ま友、触媒を
梵全に除去することが一―であるという間層をも包含し
1“6・   □            (さらに、
豐開陥Sダーjj6コS号公報において開示されている
ピッチ物質は、実買上/θ0−のAPから成る均質ピッ
チであるが、その製造方法は、やはり、等方性ピッチに
終始熱反応のみを加えて熱分解重勘合を注意深く制御し
て徴底的に行lう方法であり、その総合的結果として、
これら従来のピッチ物質の軟化点は、約330℃以上で
あり、紡糸温度は、370℃〜ダOO℃以上に達すると
とになp、この11度軛囲で灯、1栗的に安駕してピッ
チを紡糸することは依然として111−Aの如き困隷を
伴う鴨のである。
On the other hand, the pitch as a raw material for producing Gaku S* soap described in No. 53-7jt3.3 has a similar softening point and spinning temperature k, and is therefore easy to spin, but it contains ^PO. The ratio is unknown, and the raw material hydrocarbon X is polycondensed using a Lewis catalyst such as aluminum chloride, and the composition and structure of the pitch is special. The strength and modulus of elasticity are small. 1"6. □ (further,
The pitch material disclosed in the Patent Publication No. S is a homogeneous pitch consisting of AP of actual purchase/θ0-, but the manufacturing method is still an isotropic pitch that only undergoes a thermal reaction from beginning to end. It is a method that carefully controls and systematically performs pyrolysis and polymerization by adding
The softening point of these conventional pitch materials is about 330°C or higher, and when the spinning temperature reaches 370°C to 00°C or higher, it becomes difficult to light up at this 11°C range. It is still difficult to spin pitch like 111-A.

さらに、特開昭Sダーiboダコ7号−tiyss−s
gコざり号、IiiIss−i3ogoq号、同5s−
iダqOg7号、および同!; 6−!;7ざ11号公
報に開示されているピッチ物質は、等方性ピッチないし
微量の八Pttむピッチに対して泗剤抽出を行って、大
部分がAPを形成する成分t−抜き出し、これを溶融す
ることにより製造するものでるり、これによって分子量
分布の狭い、キノリンネ齢分含有率の小さい光学的異方
性ピッチが製造される。しかしながら、これらの−示し
ている製法およびデータからm足されるように、一般的
に軟化点の鳥いピッチが得られ、紡糸温度はqθ01I
C近籾となるので、このようなピッチを工業的に安建し
て紡糸することは依然鈎畠が伴うものと思われる。また
これらの製造方法は、港剤袖出工程を含むために1フイ
ルターによる濾過工程、脱溶剤、浴剤回収1機等の高価
かつ徴雑な操作が必畳でるるという欠点を有する。
In addition, Tokukai Sho S Da Ibo Dako No. 7-tiyss-s
g Kozari issue, IIIIss-i3ogoq issue, 5s-
idaqOg7, and the same! ; 6-! ; The pitch material disclosed in 7ZA No. 11 is obtained by extracting the component t-, which mostly forms AP, by performing a vegetative extraction on isotropic pitch or pitch containing a small amount of 8Ptt. Since it is produced by melting, an optically anisotropic pitch with a narrow molecular weight distribution and a small quinoline age content is produced. However, as shown in the manufacturing method and data shown above, in general, a narrow pitch with a softening point is obtained, and the spinning temperature is qθ01I.
Since it becomes C Kinpaddy, it is thought that Kagabata will still be involved in industrially spinning such pitch in a stable manner. Furthermore, these manufacturing methods have the disadvantage that they require expensive and complicated operations such as a filtration step using one filter, solvent removal, and one bath agent recovery machine because they include a port agent release step.

以上述べた如く、従来公知の製造による、ははiov’
sに肛いAPを含む均質な光学的異方性ピッチは高価で
あると同*に、一般的に軟化点が^く、その結果安定し
良紡糸が因離である。一方、軟化点の低いピッチであっ
て4、特殊なめ発原料から製造した%殊な組成、構造を
有するもの以外は不均質で69、同様に紡糸が因難であ
って、この結果品質の愉れた炭素繊維。を製造すること
は離畢である。
As mentioned above, the iov'
Homogeneous optically anisotropic pitch containing AP in the s is expensive and generally has a low softening point, resulting in stable and good spinning. On the other hand, pitches with a low softening point4 are non-uniform except those manufactured from special raw materials and have a special composition and structure69, and spinning is similarly problematic, resulting in poor quality. carbon fiber. It is a waste to manufacture.

季発明省らは、高性能炭素線維を製造する丸めに虐した
光学的異方性ピッチ組成物について樵々WilPft、
たところ、光学的^方性ピッチは、麹合多槙芳棄r横層
構造の′N=遍した分子配向性0良7ピッチであるが2
実際には種々のものが混在し。
WilPft et al. described a rounded optically anisotropic pitch composition for producing high-performance carbon fibers.
As a result, the optical lateral pitch is 7 pitches with uniform molecular orientation, but 2
In reality, there are a variety of things mixed together.

そのうち、軟化点が低く、均質な炭素繊維の製造に適し
たものは特定の化学構造と組成を有すること、すなわち
光学的異方性ピッチにおいて、0成分即ちn−ヘプタン
可溶成分、及び^成分即ちn−へブタン不溶かつペンぜ
ン可溶成分の組成、構造1分子量が極めて重畳であるこ
とを見出し、tた。そのような光学的異方性ピッチの製
造方法を完成し、既に特願昭5s−tb、2り7λ号と
して出願した。
Among them, those with low softening points and suitable for producing homogeneous carbon fibers have a specific chemical structure and composition, that is, in optically anisotropic pitch, 0 component, i.e., n-heptane soluble component, and ^ component. That is, it was discovered that the compositions and molecular weights of the components insoluble in n-hebutane and soluble in penzene were extremely overlapping. A method for producing such an optically anisotropic pitch has been completed and has already been filed as Japanese Patent Application No. 1985-11-27-7.

一般に石油工業および6辰化学工業から得られるピッチ
原料の重質炭化水嵩油またはいわゆるタール、ピッチを
310〜μ60℃で熱重質化反応に付し九場合、生成す
る^P一度の増大に伴って。
In general, when heavy hydrocarbon bulk oil or so-called tar, which is a pitch raw material obtained from the petroleum industry and six chemical industries, is subjected to a thermoheavy reaction at 310 to 60°C, the amount of produced ^P increases. hand.

ピッチ全体の軟化点および一定一度におりるピッチ全体
の粘度が大きくなシ1.λptoo%近傍ではぜツチの
軟化点、粘度が非常に大自〈、成形加工が困−になるこ
とが多い。
1. The softening point of the entire pitch and the viscosity of the entire pitch that decreases at one time are large. In the vicinity of λptoo%, the softening point and viscosity of the resin are extremely low, and molding is often difficult.

かかる現象を生ずる原因としては、−っKは熱反応の初
期に生成するAPが反応系内に長時間滞留する九めK、
重縮合が過度に進行するととであシ、またもう一つの原
因としては一般に熱反応初期に生成するAPが後に生成
するAPよシも着しく高い軟化点を有する物質によシ構
成畜れることにある仁とを見出しえ。
The causes of this phenomenon include -K, which is caused by AP generated at the beginning of the thermal reaction remaining in the reaction system for a long time;
This can occur if polycondensation progresses excessively, and another reason is that the AP produced at the beginning of the thermal reaction is generally composed of substances that have a much higher softening point than the AP produced later. Find the benevolence that lies in you.

このような知見に基き、本発明者らは熱重質化過程にお
いてAPが部分的に生成した時点で、ピッチをII拳状
態でセトリングし、AP部分のみを下層として分離し抜
出す工程を含む方法により、熱重質化を徹底して行う方
法におけるよりも、はるかに低軟化点を有し、十分に高
い^P濃度の光学的異方性ピッチが得られることを見出
し既に特願昭jj−??64cA号として出願し九。#
方法を更に説明すると、ピッチ製造用原料を熱分解重縮
合させ1重縮門物中のAPが特定の量となった時点で静
置し、着層に高書度のAPを集積させ、i。
Based on this knowledge, the present inventors included a step of settling the pitch in a second-fist state at the point when AP is partially generated during the thermal massification process, and separating and extracting only the AP portion as a lower layer. It has been discovered that this method can provide an optically anisotropic pitch with a much lower softening point and a sufficiently high ^P concentration than in a method that thoroughly heats the material, and has already filed a patent application. −? ? The application was filed as No. 64cA. #
To further explain the method, the raw material for pitch production is pyrolyzed and polycondensed, and when the AP in the polycondensate reaches a specific amount, it is left to stand, and a high degree of AP is accumulated in the deposited layer. .

上層の低密度のIPが大部分を占めるピッチ部分   
1から分離することを特徴とするものである・。
Pitch area where upper layer low density IP occupies most of the area
It is characterized by being separated from 1.

本発明者らは、引き続きこのような低い軟化点、高いA
P含有率並びに優れた均質性を併せ持つ光学的異方性ピ
ッチの製造方法についてさらに詳しく研究し、以下のよ
うないくつかの&&知見を得た。
The inventors continue to demonstrate that such low softening point, high A
We conducted further detailed research on the manufacturing method of optically anisotropic pitch that has both a high P content and excellent homogeneity, and obtained the following findings.

ます、ピッチの等温熱重質化*St、時間を変えて行い
、それぞれセトリングして、下層に分離したAP約10
0%のピッチの軟化点′に−べた。
Isothermal thermogravimetry of the pitch*St was carried out at different times, each settling, and approximately 10 AP separated into the lower layer.
Softening point of 0% pitch.

結果を院付図に示し友。添付図を見ると、符号0で示さ
れ九曲11Nは熱重質化反応時間と熱セトリング下層A
Pの軟化点との関係を示すものであり、軟化点は初め熱
M買化反応時°関の経過に伴い低下するが、一時間を境
KMひ上昇することがわかる。
Show the results on the hospital map. Looking at the attached diagram, nine tracks 11N, indicated by the code 0, indicate the thermal massing reaction time and the thermal settling lower layer A.
This shows the relationship between the softening point of P and the softening point, which initially decreases as time passes during the thermal reaction, but increases after one hour.

一方、符号ムで示されたim*は熱重質化反応時間と熱
セトリング下層APの収率との関係を示すものヤあり、
下層^Pの収率は熱]k質化反応時間の経過に伴い増加
することを示している。さらに、熱重質化反応を約2時
間30分以上行うと、セトリングによる分離が−Zin
cなることもわかった。
On the other hand, im* indicated by the symbol M indicates the relationship between the thermal massing reaction time and the yield of thermally settled lower layer AP.
It is shown that the yield of the lower layer ^P increases with the elapse of the thermal] k-forming reaction time. Furthermore, if the thermogravidation reaction is carried out for about 2 hours and 30 minutes or more, the separation due to settling will occur.
It was also found that c.

以上のような結果から、熱重質化反応時間時間行い、初
期OAPをセトリングによって分離除去し、上層を再熱
重質化すること、あるいはさらに再度熱セトリングする
ことによシ、初期の八Pを除去しない場合よりも一階低
い軟化点、為いAP含有峯を有する光学的異方性ピッチ
を得ることがでさる仁とを見出した。
From the above results, it was found that the initial 8P could be reduced by carrying out the thermal heavyization reaction time, separating and removing the initial OAP by settling, and reheating the upper layer, or by further thermal settling. It has been found that it is possible to obtain an optically anisotropic pitch having a softening point one order lower than that without removing AP.

また、上述の熱重質化反応の初期に生成するAPを除去
する方法は熱セトリングの他に溶剤抽出またに加熱加圧
濾過法なども考えられるが、これらにいずれも為価で冥
用上囚麹な同賭を有するので、本発明者等は加熱セトリ
ング法が最も優れている安価かつ111!IgLな方法
であると考えた。
In addition, in addition to thermal settling, methods for removing AP generated at the initial stage of the thermal deterioration reaction described above include solvent extraction and heating and pressure filtration, but these methods are both expensive and practical. The present inventors believe that the heating settling method is the most superior, inexpensive and 111! I thought it was an IgL method.

また、蕩重實化の初期の段階においては、ピッチ糸全体
の軟化点、およびセトリングtm*においての粘1が非
常に低い良めに、低いセトリング温皺および短いセ) 
IJソング間で容易に、熱1質化反工6の初期に住成し
喪沈鹸物を沈降させることができる。
In addition, at the early stage of becoming heavy, the softening point of the entire pitch yarn and the viscosity 1 at settling tm* are very low, low settling temperature wrinkles and short settling tm*.
During the IJ song, it is possible to easily settle the saponified material at the beginning of the heat-improving reaction process 6.

きらに、熱M′x化の初期の段階で、セトリングに1シ
、初期に生成する沈厳智を除去する方法により、ピッチ
製造用の原料中に、場合によって最初から混入している
固体粒子のJI物や^分子量の炭素質、また、初期に生
成しやすい非富に高分子量のキノリンネ溶成分などが除
去されるので、出始#科の特性の変動に対しても、結果
として得られる光学的異方性ピッチの品質がよシ安定し
たものになるという利点をも九らす。
In addition, during the initial stage of thermal M'x conversion, JI of solid particles that are mixed in the raw material for pitch manufacturing from the beginning in some cases can be removed by a method that removes the initially generated precipitation. Since carbonaceous materials, molecular weight carbonaceous materials, and non-rich high molecular weight quinolinous components that are likely to be formed in the initial stage are removed, the resulting optical It also has the advantage that the quality of the anisotropic pitch becomes more stable.

本発明は上記諸発見に基つくものであり、本発明の主た
る目的は、^9M皺、−弾性率の炭素材、特に、炭素繊
維を製造するのに遇した光学的異方性相ピッチであって
、かつ、低軟化点を有する光学的異方性炭素質ピッチの
製造方法を提供することでるる。
The present invention is based on the above-mentioned discoveries, and the main object of the present invention is to develop a carbon material with an optically anisotropic phase pitch suitable for producing carbon materials with ^9M wrinkles and -modulus of elasticity, particularly carbon fibers. Therefore, it is possible to provide a method for producing optically anisotropic carbonaceous pitch having a low softening point.

本発明の他の目的は、渦強*5iIIi弾性率の&木材
特に炭素繊維を製造するために運した光学的異方性ピッ
チであって、高配向性で均寅な光学的異方性炭素質ピッ
チの製造方法、を提供することである。       
     、。
Another object of the present invention is to produce highly oriented and uniform optically anisotropic carbon fibers with eddy strength*5iIIIi elastic modulus & wood especially for producing carbon fibers. The purpose of the present invention is to provide a method for producing quality pitch.
,.

本発明の他の目的龜、1Ilb強、鼠、為弾性率の炭素
げ− 轍に′に製造するために熱分解1細合の纏着な温度より
十分低い温度で紡糸することができる紡糸性の良好な光
字的異方性辰yII&賞ピッチの製造方法會提供するこ
とである。
Another object of the present invention is to provide spinnable fibers that can be spun at a temperature sufficiently lower than the temperature required for thermal decomposition in order to produce carbon fibers with a modulus of elasticity of more than 1 Ilb. It is an object of the present invention to provide a method for producing a good optically anisotropic YII & award pitch.

本発明の他の目的は、原料の特性がf動したときt1安
定した高品質の光学的異方性ピッチピッチを製造し、従
ってそれによって高品’1tio炭木材IF+を鮭揃的
に製造することのできる光学的異方性JR木實ピッチの
製造方法を提供することである。
Another object of the present invention is to produce a high-quality optically anisotropic pitch that is stable when the properties of the raw material change, thereby uniformly producing high quality charcoal wood IF+. It is an object of the present invention to provide a method for manufacturing optically anisotropic JR Mokami pitch that can be produced.

前記または他の本発明の目的は、ピンチ製造用の出兄物
實の熱ム實化を初期の段階で打切9、熱セトリング処理
に付して該ピッチを二虐に分−させ、−F膚のム貞ピッ
チ部分を沈毅−翻して取除き、上JwIτさらに熱直質
化工根會含む俊処珈工機に付すことt%會とする方法に
よシJa戚することかでIkる。
The above and other objects of the present invention are to abort at an early stage the thermal conversion of pitch material for pinch manufacturing, to divide the pitch into two parts by subjecting it to a thermal settling process, and to -F The thin pitch part of the skin is removed by precipitation, and then subjected to a suitable treatment machine including a heat direct chemical treatment. .

次VC本発明の説明に用いる用紐および−」矩分析方法
を説明する。
Next, the string and rectangle analysis method used to explain the present invention will be explained.

本用細會で使用されるピッチの「光学的異方性相(AP
)Jと′□いう用飴の意味は、必ずしも学界まfCは種
々の技術□文献において統一し1用いられ  pている
とは6い薙いわで、本川#1111★では、四町とは、
ピンチ構成成分の杉油り一つであり、富温近傍で固化し
たピッチ塊の断面を研犀し、反射型偏光−黴−で直交ニ
コル下で飯察したとき、K料または直交ニコルを回転し
て光輝が認められるもの、すなわち光学的異方性である
ピッチの部分を意味し、光輝が認められない、すなわち
光学的等方性である部分は[光学的等方性相(IP)J
と呼ぶ。APとIPの間には明瞭な境界が*祭され、ま
たAPでもIPでもない塵、気泡等のN物に明らかに識
別できる。
The “optically anisotropic phase (AP)” of the pitch used in this specification
) The meaning of the candy called J and '□ is not necessarily the same as that in academia, and fC is unified in various technical documents. ,
Cedar oil is one of the pinch constituents, and when a cross section of a pitch lump solidified in the vicinity of rich temperatures is polished and observed under crossed nicols with reflective polarized light, the K material or crossed nicols are rotated. The part where glitter is observed, that is, the pitch part that is optically anisotropic;
It is called. A clear boundary is established between AP and IP, and objects such as dust and air bubbles that are neither AP nor IP can be clearly identified.

APは、IPに比べて多壊芳査族の輪金の平l性がより
@達した化学構造の分子が主成分で、平面を積層したか
たちで凝集、会合しており、溶融温度では一櫨の液晶状
態であると考えられる。従って、これを細い口金から押
し田して紡糸するときは分子の平面が繊維軸の方向に平
行に近い配列をするために1この光学的異方性ピッチか
ら作った訳本繊維は高弾性を示すことKなる。又AP又
はIPの1量は偏光順歓蜆直交ニコル下で皺察、写真撮
影してAP又はIPO部分の占める向検本を制定して竹
うので、これは来貢的に体&11を表わす。
Compared to IP, AP is mainly composed of molecules with a chemical structure that is more flat than that of polyfractionated aromatic ring metal, and is aggregated and associated in the form of stacked planes. It is thought to be in a liquid crystal state. Therefore, when this is pressed through a thin spinneret and spun, the molecular planes are aligned nearly parallel to the fiber axis.1 The fiber made from this optically anisotropic pitch has high elasticity. It becomes K to show. Also, one amount of AP or IP is examined and photographed under polarized orthogonal nicols to establish the opposite specimen occupied by the AP or IPO portion, so this represents the body &11 in terms of contribution. .

しかし、APとIPとの比重差は、室温でo、vsie
4歇であるので、これらの鼠普値で、近似的には体横慢
と重量優とは、はy等しいと考えてよい。
However, the difference in specific gravity between AP and IP is o, vsie at room temperature.
Since there are 4 cycles, it can be considered that, approximately, arrogance and weight superiority are equal to y using these average values.

また、「光学的異方性ピッチ」とはAPが100−か、
または大部分を占め、IPがAP中に球状体または不定
形の島状に包含されているピッチを表すものとして本用
細薔では、足表する。
In addition, "optical anisotropic pitch" means that AP is 100- or
Or, in Honjo Hosobara, it is expressed as a pitch in which the IP occupies the majority and is included in the AP in the form of a spherical body or irregularly shaped islands.

ピッチの均質性に関して、本発明では上iのIP含有率
の制電結果が十分VC小さく、反射型膠倣−観察でピッ
チ断面に固形粒子(粒径lμ以上)を来實上慣出せず、
溶融紡糸一度で揮尭物による発泡が夷員上ないものか、
実際の溶融紡糸において艮好な均質性を示すので、この
ようなものを夾實上均實な光学的異方性ピッチと叶ぷ。
Regarding the homogeneity of the pitch, in the present invention, the antistatic result of the IP content in the above i is sufficiently small in VC, and solid particles (particle size of lμ or more) cannot be actually detected in the pitch cross section by reflective adhesive observation.
Is there really no foaming caused by volatile matter after melt spinning?
Since it shows excellent homogeneity in actual melt spinning, it is possible to use such a material with a practically uniform optical anisotropic pitch.

IP′f:20饅よp多く含有するピッチの場合または
、IPがコ0−以下であっても、AP中に分畝している
IPの寸法が大きい場合□は、高粘にのAPと低粘藏の
1Pとの明らかな二相の混合物であるため、粘度の者し
く真なるピッチ混合物を紡糸することになり、糸切れ類
度が高く、為速紡糸がし―く、十分細いSt細太さのも
のが得られず、また、繊維太さにもバラツキがあり、結
果として高性能の炭素繊維が得られない。又浴融紡糸の
とき、ピッチ中和不融性の固体微粒子や低分子量の揮尭
性物質を含有すると、紡糸性が阻害されることはいうま
てもなく、紡糸したピッチ繊維に気泡や固形異物を含有
し欠陥の原因となる。
IP'f: In the case of a pitch containing more than 20p, or even if the IP is less than 0- but the dimension of the IP furrowed in the AP is large, it is difficult to use a highly viscous AP. Since it is a clear two-phase mixture with 1P of low viscosity, it is possible to spin a true pitch mixture with a high viscosity, a high degree of yarn breakage, high speed spinning, and a sufficiently thin St. Carbon fibers with a thin thickness cannot be obtained, and the fiber thickness also varies, resulting in a failure to obtain high-performance carbon fibers. Furthermore, during bath melt spinning, if pitch neutralizes infusible solid particles or low molecular weight volatile substances, it goes without saying that spinnability will be inhibited, and the spun pitch fibers will contain air bubbles and solid foreign matter. Contains and causes defects.

本尭明でいう、ピッチの軟化点とは、ピッチの固−液転
移温lft−いうが、差動走査型熱量針を用いてピッチ
のIII解又は畿−する潜熱O吸放出のピーク温度とし
て測定される。この温良はピッチ試料について他のリン
グアンドー−ル法、微量融点法などで測定したものと士
10℃の乾−で−欽する。本尭明でいう低軟化点ど′は
、λ30〜320゜5゛・ Co範囲の軟化点を意味する一軟化点はピッチのS融勅
糸温駄(必らずしも紡糸口の温度ではなく、紡糸機中の
ピッチの敵もlII楓部分の温k)と密秦な関係があり
、ピッチによる違いFiあるがfi冨の紡糸性で紡糸す
る場合、一般に軟化点よシロ0〜/θ0℃^い温度が紡
糸に遇し九粘度を示すml[でおる。従って、3コ0℃
より高い軟化点の場合、熱分解mat合が起る3gθ℃
より^い温−となるため、分解ガスの発生および不融物
の生成により幼承性が阻害されることはいうまでもなく
、紡糸したピッチM、緒に気泡や崩形異物を含有し欠陥
の原因となる。一方230℃以下の低い軟化点の場合、
不鹸化処理工程において低温で長時間処理が必要になる
とか徴雑て^価な処理が必要となシ好ましくない。
In this book, the softening point of pitch refers to the solid-liquid transition temperature of pitch lft-, but it can be calculated as the peak temperature of the latent heat O absorption and release of pitch III using a differential scanning calorimeter needle. be measured. This temperature is different from that measured by other methods such as the ring-and-all method and the micro-melting point method for pitch samples when dried at 10°C. The term "low softening point" in this book refers to a softening point in the range of λ30 to 320°5. In addition, there is a close relationship between the pitch of the spinning machine and the temperature of the maple part (Fi), and there are differences depending on the pitch, but when spinning with a fi-rich spinnability, the softening point is generally between 0 and /θ0. When spinning is carried out at temperatures as low as ℃, it exhibits a viscosity of 9 ml. Therefore, 30℃
For higher softening points, thermal decomposition occurs at 3gθ℃
Needless to say, since the temperature is higher than that, the generation of decomposition gas and the formation of infusible materials impairs the susceptibility, and the spun pitch M also contains air bubbles and deformed foreign matter, causing defects. It causes On the other hand, in the case of a low softening point of 230℃ or less,
It is undesirable that the unsaponification process requires long-term treatment at low temperatures or complicated and expensive treatment.

本鈍明でいうピッチの溶剤抽出分析の方法および分別さ
れた構成々分の呼び名について説明すると、粉末ピッチ
を7μの平均孔径含有する円筒フィルターに入れ―ソッ
クスレー抽出器を用いてn−へ!メンで20時間熱抽出
して得られるn−へ、′、、。
To explain the method of solvent extraction analysis of pitch and the names of the separated components in this book, powdered pitch is put into a cylindrical filter containing an average pore size of 7 μm - using a Soxhlet extractor to transfer it to n-! To n- obtained by hot extraction for 20 hours with men,',,.

ブタン勧]溶分′frO成分、ひきつづきベンゼンでユ
。、#、、ゎ、ヵ1.46□4n−−2,23□、  
1つベンゼン可沿分を^成分、ペンゼ/不溶分をキノリ
ン可溶分として瀘心分1111@(JIS K−,1e
2S)により分離して得られるベンゼン不溶かつキノリ
ン可溶分、いわゆるβ−レジンを8成分、キノリンネ浴
分をC成分と呼ぶ。このような構成成分の分別は例えば
石油学会誌−0巻(1)、纂ダ5頁(/q7り年)K記
載の方法により行うことかできる。
The soluble component of butane is then dissolved with benzene. ,#,,ゎ,Ka1.46□4n--2,23□,
1111@ (JIS K-, 1e
The benzene-insoluble and quinoline-soluble components obtained by separation using 2S), so-called β-resin, are referred to as 8 components, and the quinoline bath component is referred to as component C. Such separation of constituent components can be carried out, for example, by the method described in Journal of the Japan Petroleum Institute, Vol. 0 (1), p. 5 (/q7) K.

C成分の抽出分析方法については、この他にASTM、
D−コ3/ざ一76@<7!i℃で抽出p遇する方法)
、沸とうキノリ/法(沸とうキノリンで抽出P遇する方
法)、沸とうビリジ/汰(ピリジンを用い友ソックスレ
ー抽出)などがあるが、不発明者らが櫨々のピッチ試料
について比IIR検討した結果、JISモノリン法、A
STM法および佛とうピリジ7法はほとんど等しいデー
タを与えるが、沸とうキノリン法は、これらに比べ丁か
ら−という低い不溶分データを与えることがわかりてい
る。
Regarding the extraction analysis method of C component, in addition to this, ASTM,
D-co 3/Zaichi 76 @<7! Method of extracting at i℃)
There are methods such as , boiling quinoline/method (method of extracting with boiling quinoline), boiling viridi/ta (Soxhlet extraction using pyridine), etc., but the inventors have conducted a comparative IIR study on pitch samples of pitch. As a result, JIS monoline method, A
It has been found that the STM method and the Butto-pyridi method give almost equal data, but the boiling quinoline method gives lower insoluble data of 1 to 10% compared to these.

本@明でいう「熱セトリング」とは、ピッチを浴融状態
に保ち、その中の比重の大きい相である、八Pまたはそ
の他の不融物を引力方向に沈降叙楽するのに必要十分な
温度かつ乱流の少ない状態で、引力方向により比重の大
叢い相を多く峯めることをいう。従って流れの小さい静
置、熱遠心分離、液体サイクロン法なども含む。
``Thermal settling'' as used in this book is sufficient to maintain the pitch in a bath-molten state and cause the 8P or other infusible substances, which are the phases with high specific gravity, to settle in the direction of gravity. At a certain temperature and with little turbulence, it is said that a large number of dense phases with a large specific gravity are piled up in the direction of attraction. Therefore, methods such as standing still with a small flow, thermal centrifugation, and hydrocyclone methods are also included.

\、 次に1本発明の光学的異方性ピッチの製造方法管さらに
詳しく説明する。
Next, a method for producing an optically anisotropic pitch according to the present invention will be explained in more detail.

本発明の方法の特徴は、ピッチ出発物質含熱1質化して
、^P81′に形成する成分全生成または増大濃縮して
いく過程で、 a)  まだ熱重質化のあまり進んでい
ない初期の段階のある特性資性を満すピッチvsb) 
 熱セトリングという簡便で低コストの工程によって、
熱Ng!化の初期の段階のピッチ中に比重の大きい相と
して包含さnており、製品ピッチ中に混入することが望
ましくない欣分倉下層九沈澱沈翻してS C)  この
下層部分管除去しd)上階の比重の小さい相を多く含む
ピッチ1r次の出発物質として使用し、これにさらに熱
重質化などの後処理を加えることにある。
The feature of the method of the present invention is that in the process of heat-containing homogenization of pitch starting materials and total production or increased concentration of the components forming ^P81', a) Pitch that satisfies certain characteristics (vsb)
Through a simple and low-cost process called thermal settling,
No heat! C) This lower layer portion is removed by sedimentation, which is included as a phase with a high specific gravity in the pitch in the early stage of conversion, and is not desirable to be mixed into the product pitch. ) It is used as a starting material for the 1r-order pitch containing a large amount of the upper phase with low specific gravity, and is further subjected to post-treatments such as thermogravimetry.

すなわち、ピッチ出発原料として石油工業または石炭工
業から得られる楕々の炭素’Jim質油、ま1間 九はいわゆるタール奄しくに1ピツチr用いること1 
゛ぞ・ ができるが、より好ましい原料とし”(は、先vC本発
明者らが出細し喪轡m昭5b−iii−ダ号、56−/
3!;296号等に%定した吃のである。
That is, one pitch of carbonaceous oil obtained from the petroleum or coal industry as a starting material for pitch is used for one pitch of so-called tar.
However, it is possible to use a more preferable raw material.
3! 296, etc.

即ち一1主成分の沸点が一5O−、tダO℃の範超内に
多・る炭素6111油であって%n−へブタン可mW分
の芳香族油分およびレジン分i々の芳香族炭素分率が0
.6以上で、数平均分子量が/、000以下の油状物ま
たは沸点!ftto℃以上の厭分を生成分として含有す
るタール状物質であって、芳香族油分およびレジン分各
々の芳香族炭素分率か0.7以上であり、数平均分子量
がi、ooo以下の本のである。
In other words, it is a carbon-6111 oil whose main components have boiling points in the range of 15O-, t0oC, and has an aromatic oil content of %n-hebutane (mW) and an aromatic content of the resin content. Carbon fraction is 0
.. Oil or boiling point with a number average molecular weight of 6 or more and a number average molecular weight of /, 000 or less! A tar-like substance containing undesirable components as produced components of ftto℃ or higher, with an aromatic oil component and a resin component each having an aromatic carbon fraction of 0.7 or more, and a number average molecular weight of i, ooo or less. It is.

と才1らのピッチ出発原料に370”C〜SOO℃好ま
しくは3gO℃〜ダ30℃の1iiIWLで熱l實化す
なわち熱分解と熱重縮合を生体とする熱反応會(rわせ
分解物を脱揮すると^P相が生成、増大し最終的e(光
学的異方性ピッチが祷られるが、より品質のよい、安建
した品質のピッチ會得るためのT・ 改良された光学的異方性ピッチの製造方法として1′ の本発明の方法7C″ri、との熱mIM化反応工程ゲ
まず初期の段階で71″切り、熱セ) IJソングいう
特徴的な王権へ停す。               
   Iこの熱セトリングにかけるべき時期は、ピッチ
がキノリンネ溶分およびベンゼン不溶分ケ、小部分とし
て含有し、まだピッチの軟化点はあまり高くなっておら
ず、その溶融状態で比重の異なる二つの相を含有する状
態になっているときである。
The pitch starting material of Tosai et al. is subjected to thermal reaction (rotation and decomposition products) at 370''C to SOO℃, preferably 3gO℃ to 30℃. When it devolatilizes, the ^P phase is generated and increases, resulting in the final e (optically anisotropic pitch is desired, but in order to obtain a pitch of better quality and stable quality, T. improved optical anisotropy. As a method for producing sexual pitch, the method 1' of the present invention involves a thermal mIMization reaction step with 7C''ri, which is first cut to 71'' at an early stage, resulting in a characteristic kingship called IJ song.
I The timing for thermal settling is such that the pitch contains a small portion of quinoline-soluble matter and benzene-insoluble matter, the softening point of the pitch has not yet reached a high level, and two phases with different specific gravities are present in the molten state. This is when the state is such that it contains

さらに、具体的に説明すれば、キノリンネ溶分が約コ〜
2Q wt%、キノリン可溶かつベンゼン不溶の成分が
約!; −U OwtlG含有され、軟化点が200℃
以下であつ【、その軟化点より約100℃高いm度の溶
融状態で、ピッチ中に相対的に比重?大きい相が!; 
−!; Owt’lk包含されるような特性のビツナ會
熱セトリングにかけるべきである。
Furthermore, to be more specific, the quinolinoleic content is approximately
2Q wt%, quinoline-soluble and benzene-insoluble components are approximately! -Contains U OwtlG and has a softening point of 200℃
Below is the relative specific gravity in the pitch in the molten state at about 100 degrees Celsius higher than its softening point? A big phase! ;
-! ; should be subjected to vitunaic thermal settling of properties such as Owt'lk included.

この段階のピッチは、その特性を上述のように。The pitch at this stage has its characteristics as described above.

狭い範Hに厳格に制御する必IIF′Xなく、1ItI
述した。
It is not necessary to strictly control within a narrow range H, but 1ItI
mentioned.

出発腺科ケ、広範な条件で、軽度に熱1質化すれば得ら
れ、またこのようなピッチケ他の工程から直m得ること
も一■症である。
Starting glands can be obtained under a wide range of conditions with mild heat conversion, and it is also possible to obtain them directly from other processes.

この熱セトリングにかけるべきビッツは、あまりに過度
にI[/N化されており、キノリンネ溶分。
The bits that should be subjected to this heat settling are too excessively I[/Nized and contain quinoline.

またはベンゼン不溶分が上述の範囲よりも過度に大きい
場合は熱セトリングにおいて捨て去る下層ピッチが多く
最終的に製品の収y$を小さくするので好ましくなく、
また軟化点が約−00℃よりも^〈なった場合は、熱セ
) リングで高いi!夏と長い滞笥時間ケ会するので好
ましくない。
Alternatively, if the benzene insoluble content is excessively larger than the above range, it is undesirable because a lot of lower layer pitch is discarded during thermal settling, which ultimately reduces the yield of the product.
Also, if the softening point is lower than about -00℃, use heat selling. It is not desirable because it involves summer and long waiting times.

また塾一方十分重質化されておらず、キノリンネ溶分、
またはベンゼン不溶分が上述の範囲よりも小孕<、ピッ
チ中のより比1の大きい相の生成がiまりに4少ない場
合は、熱セトリングにおいて下層の分離除去が不十分と
なるか、下層に随伴して情て去る上階が多くなり、本発
明の目的を十分VC連成できないことが多い。
In addition, on the other hand, the cram school is not made heavy enough, and the
Or, if the benzene insoluble matter is smaller than the above range, and the formation of a phase with a larger ratio of 1 in the pitch is too small, the separation and removal of the lower layer during thermal settling may be insufficient, or the lower layer may be As a result, the object of the present invention cannot be sufficiently coupled with VC in many cases.

次K、上述のような炭tiirピッチ出発qIIJ質i
―製し、tfctx人手して、熱セトリング工程Kかけ
るが%該熱セ) IJングエ相は、熱分解および熱i合
などや熱反応が十分ゆるやかな温度領域で、かつピッチ
系が十分な流動性含有する溶融状態にあり編f領域で行
われる。さらに具体的に述べれ汀、該王権にかけるピッ
チの軟化点と粘性に奄よるが、−00℃からダOO℃の
11FK領域會用いる。また鯖工根では%俗剤または麟
加愉を加えて吃よいが。
Next K, charcoal tiir pitch starting qIIJ quality i as mentioned above
The IJ phase is produced in a temperature range where thermal reactions such as thermal decomposition and thermal combination are sufficiently gradual, and where the pitch system has sufficient fluidity. It is in a molten state containing properties, and the editing takes place in the f region. More specifically, although it depends on the softening point and viscosity of the pitch to be applied, a 11FK range of -00°C to 00°C is used. Also, mackerel root can be eaten with the addition of % zhuji or linkayu.

特にその必喪がなく1i接ピツチその本の1jr溶融状
態で車力沈降作用ケ利用してセトリングすることが%1
ilktある。
There is no particular need for this, and it is possible to settle using the car force settling effect in the molten state of the 1i contact pitch and the 1jr.
There is ilkt.

該工程で<100℃以上のfIAf管用いることに熱分
解物による発泡蒸発によって糸が乱されることがあり、
また該工程は液相の流動か#シとんどないか、または小
さい状態で行われるために、あまり高い塩度では、セト
リング@梅の金鵬表(2)のコーキングが生ずるおそれ
があり好ましくない。また。
When using an fIAf tube at <100°C or higher in this process, the yarn may be disturbed by foaming and evaporation due to thermal decomposition products.
In addition, since this process is carried out with little or no fluidity of the liquid phase, if the salinity is too high, there is a risk of caulking (settling @ Ume no Kinho table (2)), which is not preferable. . Also.

コθ0℃よりも低いm度では、該セトリング工程に使用
されるピッチの軟化点が、200℃よりかなり低い場合
にふ・いても、十分な流動性が得られす、セトリングの
目的金運するために長いs′111時間會帯するか、ま
たは全く相分離が起こらない。
At a temperature lower than θ0°C, sufficient fluidity can be obtained even if the softening point of the pitch used in the settling process is considerably lower than 200°C. Therefore, either a long s'111 time period or no phase separation occurs at all.

下層の抜出しが困録であるなどの間I@r生する。I@r is generated when it is difficult to extract the lower layer.

該セトリング工程でに、全粂情袢r行わない状態で上述
の温度で、−に時間雪ツチwhm状−に保持することで
目的が遅せ4aるが、4続的に分離を行う目的で、ある
いに系全体のfIAm分布を均一にするなどの目的で、
沈吟相のtX、1klIr助けない波動があってもよい
ことはいうまでもない。
In the settling step, the purpose is to be delayed by maintaining the temperature at the above-mentioned temperature for a period of time without performing full-scale separation, but for the purpose of performing quadruple separation. , or for the purpose of making the fIAm distribution uniform throughout the system,
It goes without saying that there may be waves that do not help the tX and 1klIr of the sinking phase.

また該熱セトリング工程の中で、より比重の重い相の分
離抜出しに、ピッチ中のより比重の隼い相紮大乱分S細
し″″CC除去ことが目的であって。
In addition, in the thermal settling step, the purpose is to separate and extract the phase with a higher specific gravity, and to remove the large turbulence of the phase with a higher specific gravity in the pitch.

それ會完全[/θO−下層とする必要も壜く、ま斤−ト
鳩ケ完全に100−除去する必要もない。
There is no need to completely remove the lower layer, and there is no need to completely remove the lower layer.

すなわち、一般には、該熱セトリングの後、下鳩會w、
いた上層のピッチにも、小部分のより比重の大きい相が
残存するが、それは元来ピッチ栴成敗分の−すでと、り
鐘終製品に大きな影◆を与えない。除熱セ) IJソン
グおいて、下層でのより比1の大きい相の一縮屓は大き
いほど好ましいが70〜90 wtfb権度で十分であ
り、−万分離した彼の上−中ILふ・けるより比重の大
きい相の残存率は小自。
That is, generally after the thermal settling, the lower pigeon meeting w,
Even in the upper layer of pitch, a small portion of a heavier phase remains, but it does not have a big impact on the final product of the original pitch. In the IJ song, the larger the contraction of the phase with a larger ratio in the lower layer, the better, but 70 to 90 wtfb power is sufficient, and - above him - middle IL fu. The survival rate of phases with a higher specific gravity than that of the filtrate is small.

さい#lと好ましいが、セトリング前の5%〜301 チで身、れば目的1stttすることかできる。preferably 5% to 301 before settling. If you can do it yourself, you can accomplish your goal 1sttt.

上述の熱セトリング工程にかけるべきピッチの   1
−軽力法についてに1本発明は特に制限されないが、ピ
ッチ製造用原料である石油工業または石辰工業から製造
される種々の炭素質1質油またはいわゆるタールもしく
にピッチケ次に述べるような@腋の熱1に質化処理ケ加
えて111℃整する2糧類の方法か好ましいものである
1 of the pitches to be subjected to the thermal settling process described above.
- Regarding the light weight method: 1. Although the present invention is not particularly limited, various carbonaceous monomer oils or so-called tars or pitches manufactured by Petroleum Industries or Sekishin Industries, which are raw materials for pitch production, may be used as raw materials for pitch production. @A preferable method is to add heat treatment to the armpit heat 1 and heat it to 111°C.

すなわち、ひとつに、ピッチ製造用JIfi料ケ約37
θ℃〜ダ60℃、好ましくはダOO℃〜1730℃の範
囲の11(加熱し、この間小清性ガス會ピッチ液面上に
a通し、まfcはピッチ敵相中にバブリングさせて低分
子量物質の脱揮?促進しつつ、熱反応せしめ、その結果
&残ピッチ中にAPの球状体ケS%〜SO%、キノリン
ネ浴分を、2wt%〜コθWt僑の範囲で含有するよう
になり。
That is, for one thing, JIfi materials for pitch manufacturing are approximately 37
11 (heating in the range of θ°C to 60°C, preferably 00°C to 1730°C, during which time a small gas is passed over the pitch liquid surface, and a low molecular weight gas is bubbled into the pitch phase). While promoting the devolatilization of the substance, it causes a thermal reaction, and as a result, the remaining pitch contains AP spherical bodies S% to SO% and quinoline bath in the range of 2wt% to θWt. .

同F1# Kピッチ全体の軟化点がまだ200℃以下で
あるような時点↑、vl熱菖實化反応rやめ、戊応槽よ
り出して次の熱セ) IJソング程へ林す方法である。
At the point when the softening point of the entire F1# K pitch is still below 200°C, the vl thermal iris conversion reaction is stopped, and it is removed from the boiling tank and heated to the next thermal stage). .

ζV場合、懐のセトリング工程にコSO〜ダθ0℃の範
Hの温良下で行うことか好ましい。
In the case of ζV, it is preferable that the settling step be carried out at a temperature in the range H of SO to θ0°C.

熱セ) IJソングかけ0ためのピッチの製造方法とし
てさらに改良さt′L、fcもうひとつの方法はピッチ
製造用原料倉、370℃〜ダ60″C1好ましくはq0
0℃〜ダ30℃の範囲の塩度に加熱し熱反応せしめるが
、この間不活性ガスの流通はせず。
Another improved method for producing pitch for IJ song application is to use a raw material warehouse for pitch production, from 370°C to 60"C1, preferably q0
It is heated to a salinity in the range of 0°C to 30°C to cause a thermal reaction, but no inert gas is passed during this time.

むしろ密封系で行うかまたに高圧で多1つても蒸貿脱憚
ケ強制的に行わず、IN料や分解油σ)還流會促遵させ
て行う。さらに具体的に説明すると、そnに耐圧性の熱
反応容器の中に原料ケ鮒大またに流通しつつ上述の塩度
に加熱すると、低分子量の熱分解/4:酸物などのため
に昇圧するが、圧力!1III1節をし−〕つ反応會持
続して、生成ピッチのキノリンネ給分が、l wt%〜
/ Q wt−の範囲、かつベンゼン可溶分が6o w
ts以上となり、かつ軟化点が6まだ750℃以上とな
らないような滞留時間で熱反応工柵ケやめ、ピンチ會反
応檜より出して次の熱セトリング工程・\移す方法であ
る。また類位の方法とし℃、常圧で&、lあるか、脱揮
t41に促進せず。
Rather, it is carried out in a sealed system or under high pressure, without forcing the steamer to be removed, but by encouraging the reflux of the IN fuel and cracked oil (σ). To explain more specifically, when the raw carp is passed through a pressure-resistant thermal reaction vessel and heated to the above-mentioned salinity, thermal decomposition of low molecular weight/4: due to acid compounds, etc. Pressure increases, but pressure! Continuing the reaction meeting, the quinoline content of the produced pitch is l wt% ~
/ Q wt- range and benzene soluble content is 6o w
This is a method in which the thermal reaction process is stopped at a residence time such that the temperature reaches ts or higher and the softening point does not reach 750°C or higher, and the material is removed from the pinch reaction chamber and transferred to the next thermal settling process. In addition, a similar method is used at °C and normal pressure, or does not promote devolatilization.

むしろ着出する原料または低分子量物質の大部分ケ、釜
底反応系へ還流しつつ上述の反応温度で熱反応せしめ、
生成ピッチのキノリンネ浴分、2wt%〜/ Q wt
チ、ペンぜン可溶分6Q wtチ以上、軟イし点750
℃以下K11lll費する方法であるO上述の密封系で
行う方法における圧力についていえば、圧力は反応促進
に直接効果がある本のではなく1分解生成物、または、
未反応原料の系外への脱揮i抑制する目的で結果とし【
昇圧してもよいが圧力の大きさは極力小さいことが好ま
しいので反応mfが’130℃前後の場合ハ、リークノ
4ルプにより/ Q 76mb”〜j; (7K9 /
 ex、、2にIIII圧−1ルコトが好ましい。
Rather, most of the raw materials or low molecular weight substances that arrive are refluxed to the reaction system at the bottom of the kettle and subjected to a thermal reaction at the above-mentioned reaction temperature.
Quinoline bath content of generated pitch, 2wt%~/Q wt
H, penzen soluble content 6Q wt H or higher, soft point 750
Regarding the pressure in the above-mentioned closed system method, which is a method that costs less than K11llll, pressure does not have a direct effect on promoting the reaction, but is a decomposition product, or
In order to suppress the devolatilization of unreacted raw materials out of the system, [
Although the pressure may be increased, it is preferable that the pressure is as small as possible, so if the reaction mf is around 130℃,
It is preferable to use III pressure -1 for ex, 2.

これらの熱セトリングへかける前のピッチの陶製方法に
おいては、その工程中に生成してくる二相か明らかに分
離しないように%また反応中の温度分布が偏らないよう
に液相を十分攪拌もしくは流動させることはいうまでも
ない。
In the pitch pottery making process before undergoing thermal settling, the liquid phase must be thoroughly stirred or stirred so that the two phases generated during the process do not clearly separate, and the temperature distribution during the reaction is not uneven. Needless to say, it must be made to flow.

上述の踏射系または脱揮會促過しない冨圧糸で行われる
熱重質化工程によつセ、熱セ) IJソングべきピッチ
′4r製造する方法の特徴は、そのピッチ1、Q 中に低分子量物質ケ多く包含しているために、熱・雪 セトリング工程をより低い一度で竹うことができること
である。丁なわち、/!;0℃〜ダOO℃。
The characteristics of the method for producing IJ songs with pitches of 4r and 4r are the pitches 1, Q, and 4r of IJ songs. Because it contains more low molecular weight substances, the heat and snow settling process can be completed at a lower rate. Ding, that is, /! ;0℃~DaOO℃.

さらに好ましくは一〇θ℃〜33O℃の一駄ケ用いるこ
とによって、熱反応も伴なわず、操作しやすい条件で目
的を達することができる。
More preferably, by using a temperature of 100° C. to 330° C., the purpose can be achieved under easy-to-operate conditions without any thermal reaction.

次に、上述の熱セトリング工程後の結果とし℃得られる
「より比重の小さい相を多く含むピッチ部分」の後処理
工程について詳しく説明する。
Next, the post-processing process of "the pitch portion containing many phases with lower specific gravity" obtained as a result of the above-mentioned thermal settling process will be explained in detail.

該後処理工程はピッチ中の^P#!度會増大し、かつ、
軟化Atあまり上昇させないような方法であnば、%V
cllj1足するもので框ないが、本発明省らの研究に
よれば1次に述べるコ種類の方法が特に好ましいことが
わかった。
The post-processing process is in the pitch ^P#! The frequency increases, and
If the softening At is not increased too much, %V
Although adding 1 cllj is not enough, according to research by the Ministry of the Invention and others, it has been found that the method described in the first section is particularly preferable.

その年7の方法は、前述の熱セ) IJング処理後の「
より比1の小さい相re<含むピッチ部分」ヶ300℃
〜q−0℃の範囲内の一度で、熱]IIjill化のみ
ケ行って、!I留ピッチ中のIPが20%以下となるま
で熱菖質化工程′klll続する方法である。
The method for year 7 is the above-mentioned heat treatment.
phase with a smaller ratio of 1 than 300°C
Once within the range of ~q-0℃, only the heat] IIjillization is performed,! This is a method in which the thermal atomization step is continued until the IP in the I-retention pitch becomes 20% or less.

、1 すなわち該車室化工程は、熱セ) IJングエ糧の恢)
・ の「Jり比重の小さい相會多く含むピッチ部分」の中V
C既に含ま誤いる。^P′に形成するための   1ピ
ッチ成分のII1繻が主体であり、加えて部分的には。
, 1 In other words, the process of making the cabin is heated
・Medium V of "pitch part that includes many encounters with small Jri specific gravity"
C is already included incorrectly. The main part is the II1 stitch of the 1 pitch component to form ^P', and in addition there are some parts.

Iv11シ字反応によって衝しく^P1r形成するため
のピッチ成分の生成ケ行うものであるので、そのひとつ
の方法は、3SO℃〜ダ一〇℃、好ましくは370℃〜
g20℃の温度で、熱セトリング後のより軽質のピッチ
會熱分解と熱重縮合反応を主体とする熱反応に供し、そ
の間不活性ガスケ反応系VcfIL通せしめるか、減圧
下で行うことによって軽質ピッチ成分ケ一部は11質故
分に転化させ、一部に反応糸外に着出させて、次第に1
1I化することにより、AP影形成分1km輪し、つい
にはA2部分がgθ−以上となり、軟化点が230℃〜
320℃の範囲に入り、キノリンネ治分が70wt96
以下、好ましくはj Owtfb以下、ネらに好ましく
はII Owt16以下の状態のピッチが傅られたとき
Since the pitch component for strongly forming ^P1r is generated by Iv11 C-shaped reaction, one method is 3SO℃~10℃, preferably 370℃~
At a temperature of 20°C, the lighter pitch after thermal settling is subjected to a thermal reaction mainly consisting of pyrolysis and thermal polycondensation reaction, during which time an inert gasket reaction system VcfIL is passed through, or the lighter pitch is processed under reduced pressure. A part of the components is converted into 11-substance fractions, and some of them are deposited outside the reaction yarn, gradually becoming 1-1
By converting to 1I, the AP shadow forming part becomes 1 km long, and finally the A2 part becomes more than gθ-, and the softening point becomes 230℃ ~
Entering the range of 320℃, quinoline cure is 70wt96
When the pitch is below, preferably less than J Owtfb, preferably less than II Owt16.

該熱重懺化工lIMIL−終えピッチ製品とするもので
あるO もうひとつの熱m*化方法は、反応工程を熱化学反応工
程と熱反応の少ない蒸着工程と16分ける方法である。
Another thermal m* conversion method is a method in which the reaction process is divided into a thermochemical reaction process and a vapor deposition process with less thermal reaction.

すなわち、 *vlに、熱セトリング後のより軽質のピ
ッチ部分に3’lO℃〜ダコ0℃。
That is, *vl, 3'lO<0>C to 0<0>C in the lighter pitch part after thermal settling.

好ましくは390℃〜qθ0℃の一度で、智到糸または
特に脱揮を促進しないような還流条件下で熱分解と、熱
重縮合と會主体とする熱化学反応に供しその後、祷られ
たピッチt−,300℃〜370℃、好ましくは3−0
℃〜350℃の温度域におけるゆるやかな熱分解重縮合
反応と減圧または不活性ガスの流通による低分子量物の
除去操作に付して、APs分がgOs以上、軟化点が、
230℃〜3コθ℃の範囲に入り、キノリンネ浴分が7
θwt%以下、好ましくはs o wt%以下、さらに
好ましくはltQwt−以下の状態のピッチに仕上ける
方法である。
Preferably, at a temperature of 390°C to qθ0°C, the desired pitch is subjected to thermal decomposition, thermal polycondensation, and a thermochemical reaction mainly under reflux conditions that do not promote devolatilization. t-, 300°C to 370°C, preferably 3-0
By subjecting it to a slow thermal decomposition polycondensation reaction in the temperature range of ℃ to 350℃ and removal of low molecular weight substances by reduced pressure or inert gas flow, the APs content is gOs or more and the softening point is
It falls within the range of 230℃ to 3℃, and the quinoline bath content is 7
This is a method of achieving a pitch of θwt% or less, preferably sowt% or less, and more preferably ltQwt- or less.

とQ)方法によれば、熱化学反応工程の温度と滞一時間
および脱揮操作の条件と滞留時間1組合せろことにより
種々の特性のピッチ全作ることができるが、脱揮促進を
同時に行う方法に比べて十分広い範囲の条件で、安定し
た工程の操作が可能であり、連続工程又は手遅絖工程に
よる処理が可能でとることおよび製品収率が高いことが
特徴である。
According to the method, pitches with various characteristics can be made by combining the temperature and residence time of the thermochemical reaction process and the conditions and residence time of the devolatilization operation, but devolatilization is promoted at the same time. It is characterized by the fact that it is possible to operate the process stably under a sufficiently wide range of conditions compared to conventional methods, that it can be processed in a continuous process or a slow process, and that it has a high product yield.

さらKsこの方法の改良のひとつとして。As one of the improvements to this method.

370℃〜e20℃での熱反応工程含金く省略し。Thermal reaction steps at 370°C to 20°C are omitted.

熱化学反応會極力抑え低温領域での減圧下又は不活性ガ
ス流通下での低温熱処理のみで、ビツナ中のAPを濃縮
増大する方法も、可能て°ある。すなわち熱セトリング
後の軽質ピッチ會3θO℃〜J70℃、より好ましくは
300℃〜330℃の温度で、減圧下又は不活性ガスの
流通下に長時間涌餉させ、既に含まれている3に質の^
P形成成分會ゆっくり熱分解X縮合しつつ、過剰に含ま
れる低分子音成分ケ大福分留出せしめることVCよって
It is also possible to condense and increase the AP in vituna by suppressing thermochemical reactions as much as possible and performing only low-temperature heat treatment under reduced pressure or inert gas flow in a low-temperature region. That is, after thermal settling, the light pitch is boiled for a long time at a temperature of 3θ0°C to J70°C, more preferably 300°C to 330°C, under reduced pressure or under a flow of inert gas, so that the already contained 3 is dissolved. Of^
By VC, the P-forming components are slowly thermally decomposed and X-condensed, while the excess low molecular weight components are distilled out.

^p1rgO%以上含有し、軟化点が230℃〜320
℃の範囲で左、す、そしてキノリンネ溶分tII Q 
wt%以上含有しないピッチケ珈造することができる。
Contains ^p1rgO% or more, and has a softening point of 230°C to 320°C
℃ range left, S, and quinoline solubility tII Q
It is possible to produce a pitch coat containing no more than wt%.

この方法は、処理工程11C長時間11−賛するが、工
′1・・□ 種操作が(資)単であるという特徴がある。
This method has the advantage that the processing steps 11C and 11-C take a long time, but are characterized in that the operations are simple.

ト11 これらの熱11貴化工程の際に、ビツナの温嵐ケ均一に
憚ち、または相分*’tnけるために必要十分な攪拌ま
たに液相の流1lIll會与えることが好ましいことは
いうまでもない。
(11) During these heat enrichment steps, it is preferable to provide necessary and sufficient stirring or liquid phase flow to uniformly heat the vituna or to separate the phases. Needless to say.

上述の説明で用いられた不活性ガスとは、400℃1r
II後のii度でピッチ@質と顕著な化学反応分しない
ガスであつCh N2 * Ar @スチームなど(h
 /’2か、低分子量の炭化水素が実用的である。
The inert gas used in the above explanation is 400℃ 1r
Ch N2 * Ar @ steam, etc., which is a gas that does not have a significant chemical reaction with the pitch @ quality at II degree after II (h
/'2 or low molecular weight hydrocarbons are practical.

熱セトリング工程で得られるより軽質のピッチ部分の第
一〇後処理方法に、前述の熱セトリング工程で得られる
より軽質のピッチ部分ケ、上述の熱j1質化工程に力・
けるが、中途で熱重質化工程を切り上げ、そのピッチk
nび熱ヤ) IJソング供し。
In the 10th post-treatment method for the lighter pitch portion obtained in the thermal settling step, the lighter pitch portion obtained in the thermal settling step described above, and in the thermal refining step described above.
However, the heat-heavy process was cut off midway through, and the pitch k
nbitsuya) IJ song offering.

この場合は下;―の「より比重の大きい相?多く含むピ
ッチ部分」倉取り出して製品とする方法である。
In this case, the method below is to take out the "phase with higher specific gravity? The pitch part that contains a lot" and make it into a product.

すなわち、熱重質化工程は上述の方法、渥坂範囲が用い
られるが、それのみによって^Pkgθ%(A上、軟化
点會230℃〜3コO℃、キノリン□11− 不溶分t70□−以下とll1lIl11するのではな
くて、熱、十9 J!漬化工程の途中でピッチのAPが20%〜70.7
7.。1.1.ゆ。。、〜3Q%(Dゎ1.い 1す、
キノリンネ溶分がコjwt%以下、好ましくは20 w
t(lk以下であり、キノリン可崗紗ベンゼン不溶取分
が23 wts以上、好ましくは30 wts以上含ま
れ、またピッチ全体の軟化点が250℃以下である段階
で、該熱mm化工atやめ1次にそのピッチ’t、、3
30℃〜qθθ℃の範囲内の温度で。
That is, the above-mentioned method and Atsuzaka range are used in the thermograviding step, but only by doing so, ^Pkgθ% (A, softening point 230°C ~ 30°C, quinoline □11- insoluble content t70 □- Rather than ll1lIl11 with the following, heat, 19 J! In the middle of the pickling process, the AP of the pitch is 20% ~ 70.7
7. . 1.1. hot water. . ,~3Q%(Dゎ1.i 1su,
The quinoline solubility is less than 20 wt%, preferably 20 wt%.
t(lk or less), the quinoline resin contains 23 wts or more, preferably 30 wts or more of the benzene-insoluble fraction, and the softening point of the entire pitch is 250°C or less, and the thermal Next, that pitch't,,3
At a temperature within the range of 30°C to qθθ°C.

再び熱セ) IJング工程にかけ、下層により比10大
きいAP′4!r沈槓合体せしめ、この下層の#〕とん
どAPから放るピッチ抽分會上鳩のAPの含有率が少く
、大部分がIPから成るピッチ部分から分離して取出し
、とt″Lをそのまま、もしくは必要ならば、さらに仕
上げ工sk加えて、APがgOチ以上含有され、軟化点
が一30℃〜3コO℃の範囲にあり、キノリンネ溶分は
? Owt%以下の光学的異方性ピッチ1rIlII造
するものである。
AP'4 which is 10 larger than the lower layer! After combining the sedimentation and extracting the pitch from the bottom layer # of AP, the AP content of the pigeon is separated and extracted from the pitch part, which is mostly composed of IP, and t″L is extracted. As is, or if necessary, with further finishing, it contains AP of at least 100%, has a softening point in the range of 130°C to 300°C, and has an optical difference of less than 100% quinolinous solubles. It is designed to have a directional pitch of 1rIlII.

該方法によれF!、前述の熱m*化工相のみの後処理方
法に比べて、より高い^P含有率およびより低い軟化点
1有し、紡糸性に優れた、また物性のよい炭素繊維、黒
鉛IIII維を与える光学的異方性炭素質ピッチ會製造
することができる。
According to this method, F! , compared to the above-mentioned post-treatment method using only the thermal m* chemical phase, it has a higher ^P content and a lower softening point 1, and provides carbon fibers and graphite III fibers with excellent spinnability and good physical properties. Optically anisotropic carbonaceous pitch can be produced.

この方法における熱]k餉化工程に、通用−縦。[Heat in this method] Commonly used in the heating process - vertical.

反応粉、流過方式、攪拌など扛前述のものと全く−1じ
でよく、滞留時間のみが知い。
The reaction powder, flow method, stirring, etc. may be exactly the same as those mentioned above, and only the residence time is known.

f yr、 s この方法Vこおける再熱セトリングの
方法tま前述の初段の熱セトリングと全く同じでよく。
The reheat settling method in this method may be exactly the same as the first stage heat settling described above.

異るQノlコ、湛度憤域である。すなわち、この場合V
Crf 、 ピッチがかなり電質化してから熱セトリン
グVCかげるので、系全体の粘性會十分低くシ。
It's a different kind of Q, and it's full of anger. That is, in this case V
Crf, the viscosity of the entire system is kept sufficiently low because the pitch becomes quite electric and then the thermal settling VC decreases.

APh曾体熟成倉促進しつつ、下層へAPの球状kまi
tユ塊状体tvc降せしめるために、3.30℃〜μ0
0℃のm度’r用いるべきである。一般にこの段階で、
320℃以下のIIfケ使用した場合に6、APの下層
への合体沈積分離が峻しくなる。
The spherical kmai of AP goes to the lower layer while promoting the APh body maturation chamber.
3.30°C to μ0 in order to bring down the lumpy body
0°C m degrees'r should be used. Generally at this stage,
When IIf is used at a temperature of 320° C. or lower, 6, the coalescence and separation of AP to the lower layer becomes steep.

まfCダ70℃以上のgA度では、例えは数分−1とい
う短峙間でAPの分離が起こる場合本あるが、一般にに
そすし以上のmvit時間となり、激しい熱【賀化反応
會伴うM朱となるので、製品ピッチの軟化直会・上昇さ
せ好1しくない。
At gA degrees above 70°C, there are cases in which AP separation occurs in a short time of several minutes, but generally the mvit time is longer than that, and severe heat [accompanied by the reaction] occurs. Since it becomes M-red, the pitch of the product softens and rises, which is undesirable.

以下、実り例、比較例ケ示して本発明會さらに具体的r
(奴明する。
Below, we will show examples and comparative examples to further explain the present invention.
(Let me know.

東施例1 AP相倉、直径かfJ100μ以下の球状体で含有しそ
の含有率が約2096である軟化点ibg”cのピッチ
ケ出発物質とした。このピッチのキノリンネ溶分含有率
は/ ’I 、 9 wtsであり、キノリン可溶かつ
ベンゼン不溶分の含有率Fi(10,/wt−である。
East Example 1 A pitchke starting material containing AP Ainikura in the form of spherical bodies with a diameter or fJ of 100μ or less and having a softening point of about 2096 ibg''c was used.The quinoline solubility content of this pitch is 9 wts, and the content of quinoline-soluble and benzene-insoluble components is Fi (10,/wt-).

この出発物質ピッチkJOOgr  採取し、!; 0
0 mgの円筒形ガラスI11!容梅に入n1窒素雰囲
気のマツフル炉中で360℃で/時間静置し、1v却後
、ガラス容器ケ破謝して、下層の比較的もろく、光沢の
にぷいピッチ部分的36g「 と上層のピッチ約21,
0ttrk得た。
Collect this starting material pitch kJOOgr and! ; 0
0 mg cylindrical glass I11! The yongmei was placed in a Matsufuru furnace in a nitrogen atmosphere at 360°C for an hour, and after cooling for 1V, the glass container was broken, and the relatively brittle and glossy Nippi pitch in the lower layer (36 g) was partially removed from the upper layer. pitch of about 21,
I got 0ttrk.

下層のピッチは、代とんどioo*の^P相から成る光
学的異方性ピッチであったが、キノリンネ浴分ケg s
 、 6wt%含有し、軟化点は29g”Cでt)つた
。このピッチ1raピツチと叶ぷ。
The pitch of the lower layer was an optically anisotropic pitch consisting of the ^P phase of ioo*, but the pitch of the quinoline bath was
It contained 6 wt% and had a softening point of 29g''C.This pitch was 1ra pitch and leaf.

上層ピッチは、約lOμ以下のIIL径の球状体の^P
會約ios含有する大部分、、、がIPのビツナであっ
て、IF化点taisb℃でtキノリンネ溶分の含有率
はダwt%、キノリン可溶かつベンゼン不溶分の含肩率
はダg、l、wt囁であった。
The upper layer pitch is ^P of a spherical body with an IIL diameter of about 1Oμ or less.
The majority of the ios contained in the IP is vituna, and at the IF temperature temperature, the content of quinoline-soluble components is 2 wt %, and the shoulder percentage of quinoline-soluble and benzene-insoluble components is 25% by weight. , l, wt it was a whisper.

この上層ピッチ200tlrlr、内容積500 ml
のステンレス製反応容器中で、 4too℃でダ時間。
This upper layer pitch is 200tlrlr, internal volume is 500ml
in a stainless steel reaction vessel at 40°C for an hour.

VII!索ガスtコ4 / ml nの流量で反応容器
内ピッチ液面上に吹込みながら反応させたところ、約9
3優ノ^P含有率で、軟化点273℃で、キノリンネ溶
分J !; −7vtt’lk *キノリン可溶かつベ
ンゼン不溶分21A、0vtt%會含有する光学的異方
性ピッf / S b gr  が残留した。このピッ
チybピッチと叶ぷ。
VII! When the reaction was carried out while blowing the cable gas onto the pitch liquid level in the reaction vessel at a flow rate of 4 mL/ml, approximately 9
With a 3-P content, a softening point of 273°C, and a quinoline soluble J! -7vtt'lk *An optically anisotropic Pf/Sbgr containing 21A of quinoline-soluble and benzene-insoluble components and 0vtt% remained. This pitch yb pitch and Kanopu.

次に、上述の1ピツチとbピッチt、直径0.5■のノ
ズル分有する゛紡糸器に充填し、それぞt″LIPF価
したところ、−ピンチは、紡糸温度370℃以下では全
く紡糸できず%3gθ℃で窒木ガス圧200 mHgで
押出し−300m1mInの引織り速成で紡糸すること
ができた。糸切細fに70分間に7回以下で慶、つた。
Next, when the above-mentioned 1-pitch and b-pitch t and 0.5-inch diameter nozzles were filled into a spinning machine and t'' LIPF was evaluated, it was found that -pinch cannot be spun at all at a spinning temperature of 370°C or lower. It was possible to spin the yarn at a rapid rate of extrusion of 300 ml and 1 ml at 200 mHg gas pressure at a temperature of 3 g θ°C.

bピッチは幼糸温r)県 FjLJS!;”Cで一累一、、ス圧約ioo■Hgで
押出し50(1) m / rnl nの引取り速度で
紡糸することかで番 き、糸切れM鍵に30分間に1回以下であった。
b pitch is Yoitoon r) Prefecture FjLJS! ``C, extrude at a pressure of about 1000 m/rnl, spin at a take-up speed of 50(1) m/rnln, and press the M key for yarn breakage not more than once every 30 minutes. Ta.

次に上dじのコ檜のピッチから侍たピッチ繊維を200
℃の酸素気泥中で2時間、そしてその後コダO℃の融素
気流中で30分蘭保持し、次いでアルゴンガム中で50
℃/ mlnの昇縣速成で/ S00”c迄加熱して、
すぐ放冷してklt:繊維を得た。この2種の炭素繊維
のそj、そt′L/6試料の直径音測定し引張’i!i
&、す1張弾性率會側足して平均ケ求め、評価すると、
aピッチから得た炭素繊維に平均直径が/llμ、平均
強皺は/ A GPa 、平均弾性牟は/、1IX10
GPaであり、bピッチから得たものは平均直径が1g
、7μ、平均強度がコl、QPa%平均弾性率コ、3x
102GPaであった。
Next, 200 pieces of pitch fibers were prepared from the pitch of the Japanese cypress in the upper part.
2 hours in an oxygen stream at 0°C and then 30 minutes in a molten stream at 0°C, then 50 minutes in argon gum.
℃/mln heating up to /S00''c,
It was immediately left to cool to obtain klt: fiber. The diameter sound of these two kinds of carbon fiber samples was measured and the tensile strength was measured. i
&, Sum 1 tensile modulus of elasticity, calculate the average value, and evaluate.
The average diameter of the carbon fiber obtained from a pitch is /llμ, the average stiffness is /A GPa, and the average elasticity is /, 1IX10
GPa, and the one obtained from b pitch has an average diameter of 1 g
, 7μ, average strength is ko 1, QPa% average elastic modulus ko, 3x
It was 102GPa.

比較例1 実施例1と同じ出発原料コ00gr、を、内容積5oo
uのステンレス製反応容器で、1700℃でダ時間、窒
素ガスをコl / ml n t)tIl量で反応容器
内のピッチ液面に吹き込みながら反応させたところ、約
9S慢の^P含有率を有する光学的異方性ピッチが得ら
れた。このピッチはキノリンネ溶分がA / −/ w
ts s碩ンゼン不溶かつキノリン可溶分が23 、 
Owt慢であり、軟化点は330℃に達し、実施例1と
同じ紡糸装置で紡糸することが不可能であった。
Comparative Example 1 The same starting material as in Example 1, 00g, with an internal volume of 5oo
When the reaction was carried out in a stainless steel reaction vessel at 1,700°C for an hour while blowing nitrogen gas into the pitch liquid level in the reaction vessel at an amount of 1/ml, the ^P content was approximately 9S. An optically anisotropic pitch with . This pitch has a quinoline solubility of A/-/w
The amount of tss insoluble in quinoline and soluble in quinoline is 23,
The softening point reached 330° C., making it impossible to spin with the same spinning device as in Example 1.

実施例コ 実施例/と同じ出発原料300gr、を実施例/と同様
にセトリングし、上層ピツチコ00 gr  を、内容
積5oouのステンレス製反応容器で、aoo”Cで一
時間、窒素ガスをコl / mlnで流通しつつ、熱重
質化し、/Af、4(gr  の中間ピッチを得、た。
Example 300 gr of the same starting material as in Example/ was settled in the same manner as in Example/, and the upper layer Pitzchiko 00 gr was heated in a stainless steel reaction vessel with an internal volume of 5 oou at AOO"C for 1 hour, and nitrogen gas was added to it. While circulating at /mln, it was subjected to thermogravimetry to obtain an intermediate pitch of /Af, 4(gr).

このピッチは軟化点がコl二℃で、キノリンネ111分
i)L q 、 5 wt9Gペンヤン°不溶かつキノ
リンネ溶分がs s 、 ;t wt−含まれ、^P球
体を約ダ5−含有するものであった。次にこのピッチを
200紅のガラス円筒容器に/ 00 gr  充填し
、3gθ℃で2時間再びセトリング処理すると、ピッチ
は上・下二階に分離することが認められ、この下層ピッ
チは約22g「 得られ、その性状を調べると99−が
APであって、キノリンネ溶分33.3豐を繋で、軟化
点はJII4T:を示した、このピッチは、実施例1の
紡糸装置で紡糸温度320℃で糸切れなく、長時間紡糸
することができた。
This pitch has a softening point of 111 min i) L q , 5 wt 9G Pennyang ° insoluble and quinoline soluble matter s s , ;t wt-, and contains about 5 P spheres. It was something. Next, this pitch was filled into a 200g glass cylindrical container and subjected to settling treatment again at 3gθ°C for 2 hours, and it was observed that the pitch was separated into an upper layer and a lower layer, and this lower layer pitch was about 22g. When its properties were examined, it was found that 99- was AP, had a quinoline solubility of 33.3 mm, and had a softening point of JII 4T. It was possible to spin for a long time without yarn breakage.

比較例コ 実施例1と同じ出発原料200gr、を、最初のセトリ
ングを省き内容積soowのステンレス反応容器でtI
oo℃にて一時藺、窒素ガスをコ一/mlnで流通しつ
つ、熱重質化し、/ざ/、31;1rの中間ピッチを得
た。この中間ピッチは軟化点が22′ダ℃で、APの微
小球体゛を約ダS悌含み、キ)  1 ノリン不溶分23.0vtt*、□キノリン可溶かつベ
ンゼン不溶成分を30 、 / wt%含有するもので
あった。
Comparative Example: 200 gr of the same starting material as in Example 1 was subjected to tI in a stainless steel reaction vessel with an inner volume of
Temporarily at 0.degree. C., the mixture was thermally agglomerated while flowing nitrogen gas at a rate of 1/ml to obtain an intermediate pitch of 31;1r. This intermediate pitch has a softening point of 22 degrees Celsius, contains approximately 100% of AP microspheres, and has: 1. 23.0 vtt* of quinoline-insoluble components; 30%/wt% of quinoline-soluble and benzene-insoluble components. It contained.

この中間ピッチを/ 00 gr、採取し、−〇〇uの
ガラス円筒容器に充填して、3gθ℃で2時間セ) +
37グ処理し喪ところ、ピッチは上・下二層に分離する
ことが認められ、この場合の下層ピッチは約2ggr 
 得られ、その性状を調べると、はとんど1oosがA
Pであり、軟化点コgi、℃を示し、キノリンネ溶分+
) ? # 、 U wt%、キノリン可溶かつベンゼ
ン不溶分を/ 、 II wt’$含有するものであっ
た。このピッチを実施例/と同じ紡糸方法で紡糸したと
ころ、最適紡糸温度Fi3り0℃であったが、や−系切
れが多かった。
/00 gr of this intermediate pitch was collected, filled into a -〇〇u glass cylindrical container, and heated at 3gθ℃ for 2 hours) +
After 37gr treatment, it was observed that the pitch was separated into upper and lower two layers, and in this case, the lower layer pitch was about 2gr.
obtained, and when its properties are investigated, 1oos is mostly A.
P, has a softening point kogi, °C, and has a quinoline soluble content +
)? It contained #, U wt%, quinoline-soluble and benzene-insoluble matter of /, II wt'$. When this pitch was spun using the same spinning method as in Example, the optimum spinning temperature Fi3 was 0°C, but there were a lot of breakages.

参考例 石油の接触分解工程より得られるタール状物質を減圧無
滴し常圧に換算した沸点が1ISO℃以上のピック状物
を1出発原料とし、これを20e採取し、内容積5グl
のステンレス製反応釜で、窒素ガス301 / rri
’inの流通下で、ダ30℃でコ時間□、5 熱処理して、実施例1の出発物質を製造した。   1
実施例3 参考例と同じ出発原料タール400gr、を内容積/e
のステンレス製オートクレーブに充填し、窒素ガスで置
換後昇温し1I30℃で3時間熱処理した。この際、圧
力はリークパルプより分解ガスを抜きつつ約S ’Qp
 / tvm2に制御した。反応後コ5O0C迄冷却し
、降圧し、230℃で攪拌をやめ30分間その11靜置
し、その後冷却して開蓋して750℃で内容物をデカン
テーション流出させた。
Reference Example A pick-shaped material obtained from a petroleum catalytic cracking process is subjected to drop-free distillation under reduced pressure and has a boiling point of 1 ISO °C or higher converted to normal pressure as a starting material. 20e of this is collected and the internal volume is 5 g
Nitrogen gas 301/rri in a stainless steel reaction vessel.
The starting material of Example 1 was prepared by heat treatment at 30° C. for 5 hours under continuous flow. 1
Example 3 Same starting material tar as in the reference example, 400g, internal volume/e
The mixture was filled into a stainless steel autoclave, and after purging with nitrogen gas, the temperature was raised and heat-treated at 30° C. for 3 hours. At this time, the pressure is approximately S'Qp while removing cracked gas from the leak pulp.
/ tvm2. After the reaction, the reactor was cooled to 500C, the pressure was lowered, stirring was stopped at 230°C, and the reactor was allowed to stand for 30 minutes, after which it was cooled, the lid was opened, and the contents were decanted out at 750°C.

壁面等や底部にはスラリー状のピッチが残留し、流出ピ
ッチは、約Sコ2gr  得られその軟化点は700℃
以下、キノリンネ溶分ケ約コ、lIwtl、ベンゼン可
溶分をg A wt91含有するものであった。
A slurry-like pitch remains on the walls, etc. and the bottom, and the outflow pitch is approximately S 2 gr, and its softening point is 700°C.
The following contained quinoline solubles, lIwtl, and benzene solubles g A wt91.

この1700 gr  を、s o o vのステンレ
ス反応器へ移し、360℃で、窒素ガスを6e/min
流通しつづ、約S時間処理し残留ピッチを752厘「得
た。このピッチは、軟化点22/℃でAPを約tio悌
含有し、キノリンネ溶分をg、りwt9G、キノリン可
溶かつベンゼン不溶分をダニ、IIwt−含有するもの
であった。次にこのピッチ/ 00 gr。
This 1700 gr was transferred to a stainless steel reactor at 360°C and nitrogen gas was introduced at 6e/min.
After being distributed, the remaining pitch was treated for about S hours to obtain 752 liters of residual pitch. This pitch had a softening point of 22/℃, contained about 100 grams of AP, had a quinoline-soluble content of 9 g, and was soluble in quinoline and benzene. It contained insoluble matter, IIwt.Next, this pitch/00 gr.

を200mのガラス円筒容器に充填し3gO℃でコ時間
セトリングしたところ、上下コ層の明瞭な分離が認めら
れ、下層として211gr  のピッチが得うれた。こ
のピッチは軟化点が241”C,、^P30 、 g 
wt%のピッチであった2、またこのピッチは、実施例
1と同じ紡糸方法によって、350℃の紡糸f!度で、
容易に30分以上糸切れなく紡糸することができた。
When the mixture was filled into a 200 m glass cylindrical container and allowed to settle at 3 g O°C for 1 hour, clear separation of upper and lower layers was observed, and a pitch of 211 gr was obtained as the lower layer. This pitch has a softening point of 241"C, ^P30, g
The pitch was wt%2, and this pitch was spun at 350°C f! using the same spinning method as in Example 1. degree,
It was possible to easily spin the yarn for more than 30 minutes without yarn breakage.

実施例ダ 参考例と同じ出発原料タールをlIoogr、採取し、
!;00gのステンレス製反応器に還流管をつけ、窒素
ガス流通を行わず、ダSO℃で3時間熱反応な行ったと
ころ、233gr  の残留ピッチを得た。このピッチ
#′iコSO℃で龜スラリー状の固形物をわずか含む不
均質なピッチであり、軟化点が92℃で、キノリンネ溶
分4’ * 2 wt5! sキノリン可溶かつベンゼ
ン不溶分が30.2wt−であった1次にこのピッチを
コSO℃で30分間靜装置、デカンテーションで上澄層
を/ f b gr  採り、これを5ooWuステン
レス製反応器で、還流管をはずして窒素ガス6#/mi
nの流通下で、330℃にて10時間熱処理した。残留
ピッチを調べると^Pが約9716であり、キノリンネ
溶分がコS、9wt%であり、キノリン可溶かつベンゼ
ン不溶分が’IO,7wt%であり、軟化点コ″7 /
 ’C,のピッチであった、
The same starting material tar as in Example and Reference Example was collected,
! A reflux tube was attached to a 00g stainless steel reactor, and a thermal reaction was carried out at SO 0 C for 3 hours without nitrogen gas flow, and 233g of residual pitch was obtained. This pitch #'i is a heterogeneous pitch that contains a small amount of slurry-like solid matter at SO℃, has a softening point of 92℃, and has a quinoline solubility of 4'*2 wt5! This pitch, which had a quinoline-soluble content and a benzene-insoluble content of 30.2 wt-, was heated in a cold apparatus for 30 minutes at SO℃, and the supernatant layer was collected by decantation, and this was transferred to a 5ooWu stainless steel reaction chamber. In the chamber, remove the reflux tube and add nitrogen gas 6#/mi.
Heat treatment was performed at 330° C. for 10 hours under a flow of n. Examining the residual pitch, ^P is about 9716, the quinoline-soluble content is 9 wt%, the quinoline-soluble and benzene-insoluble content is 'IO, 7 wt%, and the softening point is 7 wt%.
It was a pitch of 'C,

【図面の簡単な説明】[Brief explanation of the drawing]

添付図は、熱重質化反応時間の経過に伴う熱セトリング
下層APの収率の変化^並びに軟化点の変化■を示すグ
ラフである。 α・・・セトリング分離可能領域、β・・・セトリング
分離不能領域。 熱!買化反応哨間旧r) →
The attached figure is a graph showing the change in the yield of the thermally settled lower layer AP and the change in the softening point (■) with the elapse of the heat-settling reaction time. α...Settling separable region, β...Settling non-separable region. heat! Buying reaction time old r) →

Claims (1)

【特許請求の範囲】 (1)  ピッチ製造用の縦素質重質油原料を熱重質化
処理する工程を含む光学的異方性炭素質ピッチの製造方
法において、該熱重質化を初期の段階で打切シ、該ピッ
チ原料をコOO〜参〇〇℃の範囲の温[K加熱して溶融
状態で保持するセトリング処理に付し、分離生成するよ
夕比lの大きな相を多く含有するピッチ部分を除去し、
ピッチ残部を熱重質化工程を含む俊処1iK付すことt
IVi黴とする、前記光学的異方性R木質ピッチの製造
方法。 (2)  前記ピッチ製造用原料を約、370−ダ60
℃り範囲の温に下で不活性ガスを流通させつつ熱反応さ
せ、生成するピッチが光学的異方性相、AP球状体5−
soss、キノリンネ溶分コ〜Xwt% 、キノリンネ
溶かつベンゼン可溶分、1〜90wt−を含有し、かつ
生成ピッチ全体の軟化lが一1OO℃以下である時点で
Il!l[熱反応を打切り、セトリングMllK$すこ
とを特徴とする特許請求の範囲第(1)11記載の方法
。 +31 1m記ピッチ製造用N科を約、370−ダ60
℃の範囲の温度下で熱反応させ、生成するピッチがキノ
リ/不溶分−〜/ OwtlG 、ペンぜン不溶分A 
Owtl1以上を含有し、かつ生成ピッチ全体の軟化点
が750℃以下である時点において奴熱反応を打切9、
セトリング処理に移すことを特徴とする特許#11求の
範@l第(1)項記載の方法。 (4)  前記熱反応を参〇〇−ダJ(7’COk曲の
温度下で行う、特許請求の範囲第e)または(8)項記
載の方法。 +51  @紀ピンチ製造用鳳科が石油または石炭工業
において副生する重質炭化水素油、タールまたはピッチ
であることを特徴とする特許請求の範8纂(2)〜(4
1Jjlのいずれか/積に記載の方法。 +61  III記セトリ/ダニ楊をコSO〜q00℃
の範囲内の温1下で行う、特許請求の軛TI!A絽(2
)またrユ(4)項記載の方法。 (71@記セトリングニーtコ00〜aso℃の跪凹円
の温度下で行う、特許請求の範11fi @ (3)ま
友は(4)項記載の方法。 (8)  前記後処理が、300−ダコ0℃の範囲内の
一度下で行う熱重質化工程を含み、該工程が、光学的等
方性相、IP含有率が0〜20畳のms内の値となるま
で継続される、特許請求の範囲第(1)、(2)、〜(
51、(7)IJのいずれか/現に記載の方法。 (9)  前記後処理が300−ダ20℃の範囲内の温
度下で行われ、生成ピッチのAPが20−’10−、キ
ノリンネ溶分がコ!fwt% 、キノリン可溶かつベン
ゼン不溶分がコj wt%以上となり、かつ皺ピッチの
軟化点が25θ℃以下である時点まで続けられる熱重質
化工程、)30〜ダ000CC)N曲内の温度下で行わ
れる第一のセ) I)ング工程、および下層の大部分が
APからなるピッチ部分を抜出す工I!を含むこと七%
像とする、特許請求の軛−第(11〜(6)項のいずれ
か/礒に記載の方法。 a・ *配熱菖質化工根を、^P30〜SO−、キノリ
ンネ浴分コθwt11以下およびキノリン可溶かつベン
ぜン不椿分J Q wt−以上となるまで続ける、特許
請求の範8謝(9)積紀叡の方法。 aυ 前記熱重質化工程を減圧下もしくは不活性ガスの
R通下で、350〜ダ一θ℃の軛Hの温に下で行うこと
を特徴とする特許請求の範囲第(81、+91まえは一
項記載の方法。 a陽 前配後処塩における熱重質化工程が37O〜9.
20℃の範囲内の温に下で熱化学反応を促進させる工程
と、その後の熱化学反応のゆるやかな300〜.370
℃の範囲内の温度下で減圧下もしくは不活性ガスの流通
下で行う工程とを含む、111iFff#fl求の範囲
第(9)または+1(I項記載の方法。 al  all紀愉処理における熱重質化工程を熱化学
反応が十分緩慢な300〜370℃の範囲内の温健にて
、減圧下□または不活性ガスのtIt通下で行、:。 う、特許請求の範18厄(1)、(81、(9)または
−項記載の方法。                 
   1a41  前記光学的異方性炭素質ピッチが2
30〜320℃の範−内の軟化点を有し、go−以上の
AP、コoqb以下の易P1およびりQ wt−以下の
キノリンネ溶分を含有することを特徴とする特許請求の
範囲第(11〜錦項のいずれかに記載の方法i 鱈 前記キノリンネ溶分がjg Q wH1以下である
、特許請求の範囲島a4積記載の方法。 舖 前記キノリンネ溶分がII Owt’lk以下であ
る、特許請求の範!!11第(19項記載の方法。
[Scope of Claims] (1) A method for producing optically anisotropic carbonaceous pitch, which includes a step of thermally treating a vertical grain heavy oil feedstock for pitch production, in which the thermally heavyizing is performed at an initial stage. After discontinuing the process, the pitch raw material is subjected to a settling process in which it is heated at a temperature in the range of 00 to 300°C and kept in a molten state, so that it contains a large amount of phase with a large ratio of separation. Remove the pitch part,
The remaining part of the pitch is subjected to a flexible process including a heat-heavy process.
A method for producing the optically anisotropic R woody pitch using IVi mold. (2) The raw material for pitch production is approximately 370-60
A thermal reaction is carried out while passing an inert gas at a temperature in the range of 50 to 50°C, and the pitch produced is an optically anisotropic phase, an AP spherical body 5-
soss, quinoline soluble content ~Xwt%, quinoline soluble and benzene soluble content, 1 to 90 wt%, and when the softening l of the entire pitch produced is 100°C or less, Il! The method according to claim (1)11, characterized in that the thermal reaction is stopped and settling is performed. +31 Approximately 370-da60 N grade for 1m pitch manufacturing
A thermal reaction is carried out at a temperature in the range of °C, and the pitch produced is quinoli/insoluble matter-~/OwtlG, penzen insoluble matter A.
At the point when the pitch contains Owtl1 or more and the softening point of the entire pitch is 750°C or less, the thermothermal reaction is terminated9.
The method described in Section (1) of Patent No. 11, characterized in that the method is transferred to a settling process. (4) The method according to claim e) or (8), wherein the thermal reaction is carried out at a temperature of 7'COk. +51 @Claims 8 of claims (2) to (4) characterized in that the powder used for producing pinches is heavy hydrocarbon oil, tar, or pitch produced as a by-product in the petroleum or coal industry.
1. The method described in either/product of Jjl. +61 Set III/Ko SO~q00℃
The claimed yoke TI, which is carried out at a temperature of 1 within the range of ! A (2)
) Also, the method described in item (4). (71) The settling knee is carried out at a temperature of a concave circle of 00 to aso C. (3) The method according to (4). (8) The post-treatment is 300 - 0 ° C. The process is continued until the optically isotropic phase and the IP content are within the range of 0 to 20 ms. Claims Nos. (1), (2), ~(
51, (7) IJ/method currently described. (9) The above-mentioned post-treatment is carried out at a temperature within the range of 300°C to 20°C, the AP of the produced pitch is 20-'10-, and the quinoline soluble content is 0. fwt%, a thermograviding process that is continued until the quinoline-soluble and benzene-insoluble content is at least cojwt% and the softening point of the wrinkle pitch is 25θ°C or less, )30~da000CC)N in the song The first process is carried out under high temperature. containing 7%
The method according to any one of clauses 11 to (6) of the patent claim, in which the heat distributing irises are treated as an image. and quinoline-soluble and benzene-free J Q wt- or more, the method of claim 8 Xie (9) Kiei Seki. The method described in Claim No. 81 (81, 91) is characterized in that the process is carried out at a temperature of 350 to 1 θ° C. The heat-heavy process in 37O to 9.
A step of accelerating the thermochemical reaction at a temperature in the range of 20°C, followed by a gradual heating of the thermochemical reaction at a temperature of 300°C to 300°C. 370
111iFff#fl, including a step carried out at a temperature within the range of °C under reduced pressure or under the flow of an inert gas. The heaviness step is carried out at a temperature within the range of 300 to 370°C where the thermochemical reaction is sufficiently slow, under reduced pressure or under the passage of an inert gas. 1), (81, (9)) or the method described in -.
1a41 The optically anisotropic carbonaceous pitch is 2
It has a softening point within the range of 30 to 320°C, and contains an AP of go- or more, an easy P1 of less than co-oqb, and a quinoline soluble content of less than or equal to Q wt-. (Method i according to any one of Items 11 to 2) Cod The method according to claim A4, wherein the quinoline solubility is not more than jg Q wH1. , Claim !!11 (method according to claim 19).
JP4790382A 1982-03-24 1982-03-24 Preparation of pitch with optical anisotropy Pending JPS58164687A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4790382A JPS58164687A (en) 1982-03-24 1982-03-24 Preparation of pitch with optical anisotropy
CA000423409A CA1196596A (en) 1982-03-24 1983-03-11 Process for producing an optically anisotropic pitch
DE8383301552T DE3380898D1 (en) 1982-03-24 1983-03-21 METHOD FOR PRODUCING OPTICAL-ANISOTROPAL PECH.
EP19830301552 EP0089840B1 (en) 1982-03-24 1983-03-21 Process for producing an optically anisotropic carbonaceous pitch
AU12755/83A AU565830B2 (en) 1982-03-24 1983-03-23 Process for producing an optically anisotropic pitch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4790382A JPS58164687A (en) 1982-03-24 1982-03-24 Preparation of pitch with optical anisotropy

Publications (1)

Publication Number Publication Date
JPS58164687A true JPS58164687A (en) 1983-09-29

Family

ID=12788346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4790382A Pending JPS58164687A (en) 1982-03-24 1982-03-24 Preparation of pitch with optical anisotropy

Country Status (5)

Country Link
EP (1) EP0089840B1 (en)
JP (1) JPS58164687A (en)
AU (1) AU565830B2 (en)
CA (1) CA1196596A (en)
DE (1) DE3380898D1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0138286B1 (en) * 1983-05-20 1988-01-13 Fuji Standard Research Inc. Method of preparing carbonaceous pitch
JPS60168787A (en) * 1984-02-13 1985-09-02 Fuji Standard Res Kk Production of pitch
EP0172955B1 (en) * 1984-08-28 1989-02-08 Kawasaki Steel Corporation A method for producing a precursor pitch for carbon fiber
AU593326B2 (en) * 1986-06-09 1990-02-08 Conoco Inc. Pressure settling of mesophase

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4184942A (en) * 1978-05-05 1980-01-22 Exxon Research & Engineering Co. Neomesophase formation
JPS57119984A (en) * 1980-07-21 1982-07-26 Toa Nenryo Kogyo Kk Preparation of meso-phase pitch
JPS5917043B2 (en) * 1980-11-05 1984-04-19 興亜石油株式会社 Method for producing mesocarbon microbeads with uniform particle size
JPS5788016A (en) * 1980-11-19 1982-06-01 Toa Nenryo Kogyo Kk Optically anisotropic carbonaceous pitch for carbon material, its manufacture, and manufacture of carbonaceous pitch fiber and carbon fiber
JPS57125289A (en) * 1981-01-28 1982-08-04 Toa Nenryo Kogyo Kk Preparation of optically anisotropic carbonaceous pitch

Also Published As

Publication number Publication date
EP0089840B1 (en) 1989-11-29
DE3380898D1 (en) 1990-01-04
AU1275583A (en) 1983-09-29
AU565830B2 (en) 1987-10-01
CA1196596A (en) 1985-11-12
EP0089840A1 (en) 1983-09-28

Similar Documents

Publication Publication Date Title
CA1164384A (en) Process for producing mesophase pitch
US4277324A (en) Treatment of pitches in carbon artifact manufacture
JPS59131692A (en) Manufacture of meso phase pitch
JPH0258317B2 (en)
US4454019A (en) Process for producing optically anisotropic carbonaceous pitch
JPH07507351A (en) Method for producing solvated mesoface pitch and carbon articles therefrom
EP0087301B1 (en) Optically anisotropic pitch and production thereof
US4277325A (en) Treatment of pitches in carbon artifact manufacture
JPH0336869B2 (en)
US4601813A (en) Process for producing optically anisotropic carbonaceous pitch
JP3789936B2 (en) Method for isolating mesophase pitch
JPS58164687A (en) Preparation of pitch with optical anisotropy
JPS5845277A (en) Optically anisotropic carbonaceous pitch and its preparation
JPH0472876B2 (en)
US4655902A (en) Optically anisotropic carbonaceous pitch
US4414096A (en) Carbon precursor by hydroheat-soaking of steam cracker tar
JPS58180585A (en) Improved preparation of optically anisotropic pitch
JPH02138388A (en) Starting material composition for producing optically anisotropic carbonaceous pitch
JPS6034619A (en) Manufacture of carbon fiber and graphite fiber
JPH02142891A (en) Production of raw material pitch for pitch or carbon microballoon
JPH01247487A (en) Production of mesophase pitch
JPH0534393B2 (en)
JPS6250516B2 (en)
JPS6059950B2 (en) How to make pitutchi
JPS6131159B2 (en)