JPS58164627A - Production of electroconductive ultrahigh-molecular polyethylene sinter - Google Patents

Production of electroconductive ultrahigh-molecular polyethylene sinter

Info

Publication number
JPS58164627A
JPS58164627A JP4788782A JP4788782A JPS58164627A JP S58164627 A JPS58164627 A JP S58164627A JP 4788782 A JP4788782 A JP 4788782A JP 4788782 A JP4788782 A JP 4788782A JP S58164627 A JPS58164627 A JP S58164627A
Authority
JP
Japan
Prior art keywords
ram
lubricant
parts
sinter
ultrahigh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4788782A
Other languages
Japanese (ja)
Other versions
JPS6225174B2 (en
Inventor
Tadao Matsuo
松尾 唯男
Fumio Matsuoka
松岡 文男
Nobuo Yokota
横田 伸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP4788782A priority Critical patent/JPS58164627A/en
Publication of JPS58164627A publication Critical patent/JPS58164627A/en
Publication of JPS6225174B2 publication Critical patent/JPS6225174B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce the titled sinter having electroconductivity uniform throughout the sinter including its interior and surface, by ram-extruding a mixture prepared by mixing a specified ultrahigh-MW PE with an electroconductivity-imparting agent, a lubricant and an organic peroxide. CONSTITUTION:A mixture is obtained by uniformly mixing and dispersing 100 pts.wt. ultrahigh-MW PE powder, average MW by a viscosity method >=1,000,000 that by light scattering >=3,000,000, with 0.5-10pts.wt. electroconductivity-imparting agent (e.g., acetylene black), below 10pts.wt. lubricant (e.g., polyethylene wax) and 0.01-0.50pts.wt. organic perioxide having a 10hr half life of 90- 130 deg.C, e.g., dicumyl peroxide. Then, this mixture is introduced from a material feed part 3 into the cylinder 1 of a ram extruder equipped with heating means Nos. 1-3 set at 200-300 deg.C for the high-temperature part and at 150-200 deg.C for the low-temperature part and extruded by a ram 2 into a sinter.

Description

【発明の詳細な説明】 本発明は導電性の超高分子量ポリエチレン(以下UHM
W−PHと略称)のラム押出成形に際して、UHMW−
pHiに導電性付与剤、押出圧力軽減の為の滑剤及び架
橋剤である有機過酸化物を配合して均一に分散しこれを
焼結し内部から表面層まで均一な導電性を有する架橋タ
イプのU HMW−PK焼結体を成形する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes conductive ultra-high molecular weight polyethylene (hereinafter referred to as UHM).
During ram extrusion molding of UHMW-PH (abbreviated as W-PH),
A cross-linked type that has uniform conductivity from the inside to the surface layer by blending pHi with a conductivity imparting agent, a lubricant to reduce extrusion pressure, and an organic peroxide as a cross-linking agent, uniformly dispersed, and sintered. The present invention relates to a method for molding a U HMW-PK sintered body.

UHMW−PKd通常のポリエチレンに比し、耐摩耗性
、低温特性、耐衝撃性、ストレスクラッキングに対する
抵抗性等の種々の特性にすぐれており、非粘着性、低摩
擦係数でブリッジなどを防ぎ、かつ耐摩耗性が要求され
るホッパー、シュート等のライニング用として、また自
己潤滑性、低摩擦係数で耐摩耗性が要求される軸受、歯
車、ローラー、ガイドレール等の材料として有用視され
ている。しかし、−面、体積1.1姦+!抵抗が10I
8ocrn以上、表面抵抗がl O”酬上と電気絶縁性
が高く、そのため表面に静電気が帯電し易く、静電気に
よって塵埃等が製品表面に付着し易く衛生上に問題があ
り、食品関連へめ用途が限定されたり、静電気の火花に
よシ引火し爆発もしくは火災の発生する危険性のある石
炭、コークス等の可燃性の粉層を生じ易い雰囲気下や有
機溶剤使用の雰囲気下では使用できないというナースが
ある。
UHMW-PKd has superior properties such as abrasion resistance, low-temperature properties, impact resistance, and resistance to stress cracking compared to ordinary polyethylene. It is considered useful for lining hoppers, chutes, etc. that require wear resistance, and as a material for bearings, gears, rollers, guide rails, etc. that require self-lubricity, low friction coefficient, and wear resistance. However, - side, volume 1.1+! resistance is 10I
8ocrn or more, the surface resistance is 1 O" or higher, and the electrical insulation is high, so the surface is easily charged with static electricity, and the static electricity tends to cause dust to adhere to the product surface, causing hygiene problems. Nurses say that it cannot be used in environments where organic solvents are used, or in atmospheres where combustible powder such as coal or coke is likely to form, or where organic solvents are used. There is.

そこで、このように静電気により不具合を生じる用途に
HUHMW−PK単体そのままでは不向きであるため、
導電性を付与する必要がある。
Therefore, since HUHMW-PK alone is not suitable for applications where problems occur due to static electricity,
It is necessary to provide conductivity.

ところで、導電性を付与するために導電性付与剤として
一般にカーボンブラック、カーボン繊維。
By the way, carbon black and carbon fiber are generally used as conductivity imparting agents to impart conductivity.

金属粉等が用いられているが、これらの導電性付与剤を
UHMW−PIHの粉末に配合してラム押出成形して焼
結体を得る場合、配合量がUHMW−PK100重量部
に対して2重量部以上になると押出圧力が極端に上昇し
ラム押出成形が困難になるため、この押出圧力を低下さ
せるための適切な滑剤を添加する必要がある。しかし、
滑剤を添加すると、これにより押出圧力が低下して導電
性のUHMW−PKの成形が容易になる反面、押出成形
品の表面層付近の導電性が低下するという欠点を生ずる
Metal powders, etc. are used, but when these conductivity imparting agents are mixed with UHMW-PIH powder and subjected to ram extrusion molding to obtain a sintered body, the blending amount is 2 parts by weight per 100 parts by weight of UHMW-PK. When the amount exceeds 1 part by weight, the extrusion pressure increases extremely and ram extrusion becomes difficult, so it is necessary to add an appropriate lubricant to reduce this extrusion pressure. but,
Addition of a lubricant reduces the extrusion pressure and facilitates the molding of conductive UHMW-PK, but it has the disadvantage of reducing the conductivity near the surface layer of the extruded product.

そこで、上記の従来の欠点を解消するため、本発明者等
はかねてより鋭意検討を進め、その結果、従来の導電性
を有するUHMW−PIの配合物に少量の有機過酸化物
を添加して架橋することにより、表面層付近の導電性が
低下しない導電性UHMW−BEの焼結体が得られるこ
とを知見した。
Therefore, in order to eliminate the above-mentioned conventional drawbacks, the inventors of the present invention have conducted intensive studies for some time, and as a result, added a small amount of organic peroxide to the conventional conductive UHMW-PI formulation. It has been found that by crosslinking, a conductive UHMW-BE sintered body in which the conductivity near the surface layer does not decrease can be obtained.

即ち、本発明の特徴とするところは前記UHMW−PK
粉末に導電性付与剤、滑剤と共に有機過酸化物を配合し
てこれらを均一に分散せしめ、得られた混合物を用いて
ラム押出成形により焼結体に成形することにある。
That is, the feature of the present invention is that the UHMW-PK
The method involves blending an organic peroxide with a conductivity imparting agent and a lubricant into a powder, uniformly dispersing them, and molding the resulting mixture into a sintered body by ram extrusion.

ここで、前記有機過酸化物の添加は本発明方法の重要な
点であり、有機過酸化物を添加すると、UHMW−Pl
d架橋するため焼結過程において溶融粘度の上昇によっ
て滑剤の表面層への移行が阻止される。そのため、表面
層における導電性付与剤の濃度は内部層と殆んど変りな
く、導電性の均一な成形品示得られるのである。これに
対し、有機過酸化物を添加しない場合には、滑剤はUH
MW−pIcの溶融粘度より低いため押出圧力より、: 表面層まで移行、ルブルームし、そのため、表面層にお
ける導電性付与剤の濃度が低下して表面層付近の導電性
は低下することになる。
Here, the addition of the organic peroxide is an important point in the method of the present invention, and when the organic peroxide is added, the UHMW-Pl
d Due to crosslinking, the migration of the lubricant to the surface layer is inhibited by an increase in melt viscosity during the sintering process. Therefore, the concentration of the conductivity imparting agent in the surface layer is almost the same as that in the inner layer, and a molded article with uniform conductivity can be obtained. On the other hand, when no organic peroxide is added, the lubricant is UH
Since the melt viscosity is lower than the melt viscosity of MW-pIc, the extrusion pressure: migrates to the surface layer and rubbles, resulting in a decrease in the concentration of the conductivity imparting agent in the surface layer and a decrease in conductivity near the surface layer.

なお、本発明において滑剤を投入しなければ押出圧力が
非常に上昇しこれを低減するためにも必ず滑剤は添加す
る必要がある。
In the present invention, if a lubricant is not added, the extrusion pressure will increase significantly, and in order to reduce this, it is necessary to add a lubricant.

上記本発明において用いられるUHMW−PIcの粉末
とは分子量が、光散乱法で300万以上、粘度法で10
0万以上のものを云い、例えばヘキスト社のホスタレン
(Ho5talen ) G U R、三井石油化学工
業(株)のハイゼツクスミリオン(Hl −ZQX M
illion)等が挙げられる。
The UHMW-PIc powder used in the present invention has a molecular weight of 3 million or more according to the light scattering method and 10 million according to the viscosity method.
For example, Hoechst's Ho5talen GUR, Mitsui Petrochemical Industries, Ltd.'s Hl-ZQX M
illion), etc.

また、本発明における導電性付与剤としては、アセチレ
ンブラック〔商品名:デンカブラック:電気化学工業(
株)製〕、ケッチェンブラック〔商品名:ケツチェンブ
ラックIDC二日本イージー(株)製〕等の導電性カー
ボンブラック、炭素繊維あるいは銅粉、鉄粉、銀粉等の
金属粉等が用いられ、ラム押出成形する場合には押出時
の圧力上昇を抑えるためこれらの導電性付与剤の配合量
はUHMW−PIC100重量部に対して0.5〜10
重量部、好ましくは1〜5重量部である。
In addition, as the conductivity imparting agent in the present invention, acetylene black [trade name: Denka Black: Denki Kagaku Kogyo Co., Ltd.
Conductive carbon black such as Ketschen Black (trade name: Ketschen Black IDC manufactured by Nippon Easy Co., Ltd.), carbon fibers, or metal powders such as copper powder, iron powder, silver powder, etc. are used. When performing lamb extrusion molding, the amount of these conductivity imparting agents is 0.5 to 10 parts by weight per 100 parts by weight of UHMW-PIC in order to suppress the pressure increase during extrusion.
Parts by weight, preferably 1 to 5 parts by weight.

また、本発明に用いる滑剤としてはモンタン酸エステル
系のワックス、各種ポリエチレンワックス、炭化水素ワ
ックス、脂肪酸透導体のワックス。
The lubricants used in the present invention include montanic acid ester waxes, various polyethylene waxes, hydrocarbon waxes, and fatty acid transparent waxes.

(ジカルボン酸エステル、グリセリン脂肪酸エステル、
アマイドワックス等)等の粉末状のものが挙げられる。
(dicarboxylic acid ester, glycerin fatty acid ester,
Powdered products such as amide wax, etc.) can be mentioned.

そして、これらの添加量はUHMW−PlC100重量
部に対して10重量部以下、好ましくは5重量部以下が
好適である。100重量部以上になると機械的な物性が
低下するので避けるべきである。
The amount of these additives added is preferably 10 parts by weight or less, preferably 5 parts by weight or less, per 100 parts by weight of UHMW-PlC. If it exceeds 100 parts by weight, the mechanical properties will deteriorate and should be avoided.

更に、本発明に用いる前記特徴をなす架橋剤の有機過酸
化物とは2,5−ジメチル−2,5−ジ(t−ブチルパ
ーオキシ)ヘキサン、ジクミルパーオキサイド等のジア
ルキルパーオキサイド;l。
Further, the organic peroxide of the crosslinking agent having the characteristics described above used in the present invention includes dialkyl peroxide such as 2,5-dimethyl-2,5-di(t-butylperoxy)hexane and dicumyl peroxide; .

1−ビス(t−ブチルパーオキシ)3,3.5−トリメ
チルミクロヘキサン等のパーオキシケタール等の90〜
135℃の10時間半減期温度を有する通常一般にポリ
エチレンの架橋に用いられる有機過酸化物を総称し、こ
れはUHMW−PI!:粉末への分散を考慮して粉末状
で用いることが望ましい。そして添加量はUKMW−p
xioo重量部に対して0.01〜0.50重置部位で
よく、好ましくけ0.05〜0.2重量部である。もし
、0.5重量部以上添加するならば押出成形時に成形品
表面に亀裂を生じることがある。
90~ of peroxyketals such as 1-bis(t-butylperoxy)3,3.5-trimethylmicrohexane, etc.
UHMW-PI! is a general term for organic peroxides commonly used for crosslinking polyethylene that have a 10-hour half-life temperature of 135°C. : It is desirable to use it in powder form considering its dispersion into powder. And the amount added is UKMW-p
The overlapping portion may be 0.01 to 0.50 parts by weight, preferably 0.05 to 0.2 parts by weight. If 0.5 parts by weight or more is added, cracks may occur on the surface of the molded product during extrusion molding.

次に、本発明において使用するラム押出装置は一般に知
られているもので、例えば第1図に示す如きプランジャ
ータイプのものがある。これは、加熱装置(4)を例え
ば3段(A 1 + A 2 、 A 3 )具備した
シリンダー(1)、該シリンダー中で往復運動するラム
(2)そして原料供給部(3)から構成されている。
Next, the ram extrusion device used in the present invention is generally known, and includes, for example, a plunger type device as shown in FIG. This is composed of a cylinder (1) equipped with a heating device (4) in, for example, three stages (A 1 + A 2 , A 3 ), a ram (2) that reciprocates in the cylinder, and a raw material supply section (3). ing.

そして、押出成形時における押出速度はラム押出装置の
シリンダー内径、長さ、シリンダーのヒーター容量及び
ヒータ一温度によって適切に調節する必要があるが、シ
リンダーのヒータ一温度は高温部で200〜300℃、
好ましくは220〜270℃、低温部で150〜200
℃、好ましくは160〜180℃に設定される。300
℃以上ではUHMW−PIが熱分解により劣化し、15
0℃以下では熱膨張が大きく押出成形品にSmelli
ng Markを生じたり、焼結不足になる場合もある
ので何れも好ましくない。
The extrusion speed during extrusion molding must be appropriately adjusted depending on the inner diameter and length of the cylinder of the ram extrusion device, the cylinder heater capacity, and the heater temperature. ,
Preferably 220-270°C, 150-200°C in the low temperature part
℃, preferably 160 to 180℃. 300
At temperatures above 15°C, UHMW-PI deteriorates due to thermal decomposition.
At temperatures below 0°C, thermal expansion is large and the extrusion molded product becomes smelli
Both are unfavorable since they may cause NG Marks or insufficient sintering.

以下、更に本発明における具体的な実施例を示す。しか
し、本発明はこれらの例に限られないことは勿論である
Hereinafter, further specific examples of the present invention will be shown. However, it goes without saying that the present invention is not limited to these examples.

実施例I UHMW−PIC(商品名Ho5talen GUR4
12;ヘキスト社製)100重量部に対してアセチレン
ブラック(商品名デンカブラック;電気化学工業(株)
W)5重量部、モンタン酸エステル(商品名Hoech
st Wachs In ;ヘキスト社製)3重量部、
炭酸カルシウムで40重量%に希釈した2、5−ジメチ
ル−2,5−ジ(1−ブチルパーオキシ)へキサン(商
品名パーへキサ25B40;日本油脂(株)製)01重
量部を配合しヘンシェルミキサ:・ −で20分間均一に分散させた。この均一に配合・1:
′ した原料を次いで内径50101.長さ2mの断熱ヒー
ター(電気容量N’KW)3帯付シリ・グーを有す1昌
 □ るラム押出機を用い上表1の押出条件にてラム押tbb
x*b−’ctnイゎ48−01□ユ、イツ。え   
1律を成形した。
Example I UHMW-PIC (trade name Ho5talen GUR4
12; manufactured by Hoechst Co., Ltd.) to 100 parts by weight of acetylene black (trade name: Denka Black; manufactured by Denki Kagaku Kogyo Co., Ltd.)
W) 5 parts by weight, montanic acid ester (trade name: Hoech
st Wachs In; manufactured by Hoechst) 3 parts by weight,
01 parts by weight of 2,5-dimethyl-2,5-di(1-butylperoxy)hexane (trade name Perhexa 25B40; manufactured by NOF Corporation) diluted to 40% by weight with calcium carbonate was blended. Henschel mixer: - Uniformly dispersed for 20 minutes. This uniform blend ・1:
' Then the raw material with an inner diameter of 50101. Using a ram extruder with a 2 m long insulated heater (electrical capacity N'KW) and 3-banded ram extruder, press the ram extruder tbb under the extrusion conditions shown in Table 1 above.
x*b-'ctniiwa48-01□Yu, it. picture
1 law was formed.

、1 得られた丸棒について、これを切断し、その断面におけ
る表面抵抗をテスター(測定端子間距離は8101とし
た)を用いて丸棒の表面部から中心部へと測定したとこ
ろ、第2図に示されるように表面部から中心部までは(
103オーダーの表面抵抗であった。
, 1 The obtained round bar was cut and the surface resistance in the cross section was measured from the surface of the round bar to the center using a tester (the distance between the measurement terminals was 8101). As shown in the figure, from the surface to the center (
The surface resistance was on the order of 103.

比較例1 一方、前記実施例1で使用した架橋剤(パーへキサ25
B40)を抜いた原料配合を用いた以外は実施例1と同
様にして導電性の丸棒を同じく表1の条件で押出成形し
く押出圧力は862〜902−と実施例1よりや\低く
なった(表1参照))。
Comparative Example 1 On the other hand, the crosslinking agent used in Example 1 (Perhexa 25
A conductive round bar was extruded in the same manner as in Example 1, except that the raw material formulation excluding B40) was used, and the extrusion pressure was 862 to 902, which was slightly lower than in Example 1. (see Table 1)).

その断面の表面抵抗を実施例1と同様な方法で測定した
ところ、第2図に併せ示されるように押出丸棒の表面層
近くの表面抵抗が急激に上昇していた。従ってlO以下
の表面抵抗が要求される用途では表面層部分的1〜2m
を切削する必要があり、原料のロスが大きいものとなる
ことが分った。
When the surface resistance of the cross section was measured in the same manner as in Example 1, as shown in FIG. 2, the surface resistance near the surface layer of the extruded round bar increased rapidly. Therefore, in applications that require a surface resistance of less than 1O, the surface layer is partially 1 to 2 m thick.
It was found that this required cutting, resulting in a large loss of raw materials.

実施例2 実施例1と同じ原料を使用し、外径795m+11゜長
さ400■のラム外径501111・、長さ800■の
マンドレル及び内径80■、長さ1000vumのシリ
ンダー〔断熱□ヒーター(電気容量IKW)2帯付〕を
有するラム押出機を用いて表2に示す押出条件゛でラム
押出して外在的751111 +内径約4711111
1の導電性架橋タイプのUHMW−pH!パイプを成形
した。
Example 2 Using the same raw materials as in Example 1, a ram with an outer diameter of 795 m + 11° and a length of 400 cm, a mandrel with an outer diameter of 501111 cm, a length of 800 cm, and a cylinder with an inner diameter of 80 cm and a length of 1000 vum [insulated □ heater (electric Using a ram extruder with a capacity IKW) with 2 bands, extrude the product under the extrusion conditions shown in Table 2 to obtain an external diameter of 751111 + inner diameter of approximately 4711111.
1 conductive cross-linked type UHMW-pH! The pipe was formed.

得られたパイプを切断し、その断面における表面抵抗を
測定したところ、第3図に示されるようにパイプの外表
面から内表面までほに均一な値であった。
When the obtained pipe was cut and the surface resistance at its cross section was measured, it was found to be a fairly uniform value from the outer surface to the inner surface of the pipe, as shown in FIG.

比較例2 一方、比較例1と同じ架橋剤無添加の原料配合を実施例
2と同じラム、マンドレル、及びシリンダを有するラム
押出機を用いてラム押出し外径約751011、内在的
451111の導電性UHMW−PICバイブを成形し
、実施例2と同様にその断面の表面抵抗を澗定したとこ
ろ、第3図に示される如くパイプの外表面層及び内表面
層付近で表面抵抗が急激に変化し上昇していた。
Comparative Example 2 On the other hand, using a ram extruder having the same ram, mandrel, and cylinder as in Example 2, the same raw material formulation without the addition of a crosslinking agent as in Comparative Example 1 was used to extrude the ram, and the outer diameter was approximately 751,011 mm, and the internal conductivity was 451,111 mm. When a UHMW-PIC vibe was molded and the surface resistance of its cross section was measured in the same manner as in Example 2, the surface resistance changed rapidly near the outer and inner surface layers of the pipe, as shown in Figure 3. It was rising.

以上のように本発明は導電性のUHMW−PIのラム押
出成形する際に発生する表面(外面、内面)付近での表
面抵抗の急激な上昇を抑え、内部から表面まで均一な導
電性、を有するラム押出成形品の製造を可能にすると向
□時に表面抵π勿;高くな1( り易い表面層部分の切削加工が少なくて済むため原料の
歩留まりの向上にも役立ち、極めて顕著な効果を奏する
ものである。
As described above, the present invention suppresses the rapid increase in surface resistance near the surface (outer surface, inner surface) that occurs during lamb extrusion molding of conductive UHMW-PI, and achieves uniform conductivity from the inside to the surface. By making it possible to manufacture ram extrusion molded products with a high surface resistance, it is possible to reduce the surface resistance. It is something to play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で使用する押出装置の縦断面図、第2図
は丸棒における表面からの距離と表面抵抗の関係を示す
図、第3図はパイプにおける表面からの距離と表面抵抗
の関係を示す図である。 特許出願人  三ツ星ベルト株式会社
Figure 1 is a longitudinal sectional view of the extrusion device used in the present invention, Figure 2 is a diagram showing the relationship between the distance from the surface of a round bar and surface resistance, and Figure 3 is a diagram showing the relationship between the distance from the surface and surface resistance of a pipe. It is a figure showing a relationship. Patent applicant Mitsuboshi Belting Co., Ltd.

Claims (1)

【特許請求の範囲】 L 粘度法による平均分子量が100万以上、光散乱法
で300万以上の超高分子量ポリエチレン粉末に導電性
付与剤、滑剤及び有機過酸化物を配合し、分散せしめて
なる混合物をラム押出成形により焼結体に成形すること
を特徴とする導電性を有する超高分子量ポリエチレン焼
結体の製造法。 2 前記超高分子量ポリエチレン粉末に対して導電性付
与剤を0.5〜10重量部、滑剤を10重置部以下、有
機過酸化物を0.01〜0.50重量部配合せしめた特
許請求の範囲第1項記載の導電性を有する超高分子量ポ
リエチレン焼結体の製造法。
[Scope of Claims] L: An ultra-high molecular weight polyethylene powder having an average molecular weight of 1 million or more as determined by the viscosity method and 3 million or more as determined by the light scattering method, mixed with a conductivity imparting agent, a lubricant, and an organic peroxide and dispersed therein. 1. A method for producing a conductive ultra-high molecular weight polyethylene sintered body, which comprises forming a mixture into a sintered body by ram extrusion. 2 A patent claim in which 0.5 to 10 parts by weight of a conductivity imparting agent, 10 parts by weight or less of a lubricant, and 0.01 to 0.50 parts by weight of an organic peroxide are blended with the ultra-high molecular weight polyethylene powder. A method for producing an ultra-high molecular weight polyethylene sintered body having electrical conductivity according to item 1.
JP4788782A 1982-03-24 1982-03-24 Production of electroconductive ultrahigh-molecular polyethylene sinter Granted JPS58164627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4788782A JPS58164627A (en) 1982-03-24 1982-03-24 Production of electroconductive ultrahigh-molecular polyethylene sinter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4788782A JPS58164627A (en) 1982-03-24 1982-03-24 Production of electroconductive ultrahigh-molecular polyethylene sinter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP57170465A Division JPS58164628A (en) 1982-09-28 1982-09-28 Production of ultrahigh-molecular polyethylene sinter

Publications (2)

Publication Number Publication Date
JPS58164627A true JPS58164627A (en) 1983-09-29
JPS6225174B2 JPS6225174B2 (en) 1987-06-02

Family

ID=12787904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4788782A Granted JPS58164627A (en) 1982-03-24 1982-03-24 Production of electroconductive ultrahigh-molecular polyethylene sinter

Country Status (1)

Country Link
JP (1) JPS58164627A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140346A (en) * 1984-08-01 1986-02-26 Mitsuboshi Belting Ltd Ultra-high-molecular weight polyethylene resin composition having antistatic activity
EP0304476A1 (en) * 1987-02-24 1989-03-01 Raychem Corp Method of joining articles.
JPS6474243A (en) * 1987-09-16 1989-03-20 Mitsuboshi Belting Ltd Ultrahigh molecular weight polyethylene resin composition
US4879076A (en) * 1986-06-17 1989-11-07 Nippon Oil Co., Ltd. Process for the production of polyethylene materials
US4938820A (en) * 1987-06-11 1990-07-03 Raychem Corporation Joining of sheets
JPH05239282A (en) * 1991-12-05 1993-09-17 Hoechst Ag Molding material of ultrahigh molecular weight polyethylene
US5286952A (en) * 1987-06-11 1994-02-15 Raychem Corporation Methods and devices which make use of conductive polymers to join articles
JPH08239485A (en) * 1985-04-02 1996-09-17 Raychem Corp Production of conductive polymer element
WO2010038718A1 (en) * 2008-09-30 2010-04-08 Ntn株式会社 Electrically conductive polyethylene resin composition, electrically conductive polyethylene resin molding, sliding bearing and sliding sheet

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363580B2 (en) * 1984-08-01 1991-10-01 Mitsuboshi Belting Ltd
JPS6140346A (en) * 1984-08-01 1986-02-26 Mitsuboshi Belting Ltd Ultra-high-molecular weight polyethylene resin composition having antistatic activity
JPH08239485A (en) * 1985-04-02 1996-09-17 Raychem Corp Production of conductive polymer element
US4879076A (en) * 1986-06-17 1989-11-07 Nippon Oil Co., Ltd. Process for the production of polyethylene materials
EP0304476A1 (en) * 1987-02-24 1989-03-01 Raychem Corp Method of joining articles.
US4938820A (en) * 1987-06-11 1990-07-03 Raychem Corporation Joining of sheets
US5286952A (en) * 1987-06-11 1994-02-15 Raychem Corporation Methods and devices which make use of conductive polymers to join articles
JPS6474243A (en) * 1987-09-16 1989-03-20 Mitsuboshi Belting Ltd Ultrahigh molecular weight polyethylene resin composition
JPH05239282A (en) * 1991-12-05 1993-09-17 Hoechst Ag Molding material of ultrahigh molecular weight polyethylene
WO2010038718A1 (en) * 2008-09-30 2010-04-08 Ntn株式会社 Electrically conductive polyethylene resin composition, electrically conductive polyethylene resin molding, sliding bearing and sliding sheet
JP2010106257A (en) * 2008-09-30 2010-05-13 Ntn Corp Conductive polyethylene resin composition, conductive polyethylene resin molding, sliding bearing, and sliding sheet
US20110170810A1 (en) * 2008-09-30 2011-07-14 Ntn Corporation Electrically conductive polyethylene resin composition, electrically conductive polyethylene resin molding sliding bearing, and sliding sheet
US8623801B2 (en) 2008-09-30 2014-01-07 Ntn Corporation Electrically conductive polyethylene resin composition, electrically conductive polyethylene resin molding sliding bearing, and sliding sheet
US20140158947A1 (en) * 2008-09-30 2014-06-12 Ntn Corporation Electrically conductive polyethylene resin composition, electrically conductive polyethylene resin molding, sliding bearing, and sliding sheet
US9583230B2 (en) * 2008-09-30 2017-02-28 Ntn Corporation Electrically conductive polyethylene resin composition, electrically conductive polyethylene resin molding, sliding bearing, and sliding sheet

Also Published As

Publication number Publication date
JPS6225174B2 (en) 1987-06-02

Similar Documents

Publication Publication Date Title
US4518552A (en) Method of producing accurately sized material of ultra high molecular weight polyethylene
US4731199A (en) Ultra high molecular weight concurrently sintered and cross-linked polyethylene product
US8623801B2 (en) Electrically conductive polyethylene resin composition, electrically conductive polyethylene resin molding sliding bearing, and sliding sheet
JPS58164627A (en) Production of electroconductive ultrahigh-molecular polyethylene sinter
CN101987902A (en) Halogen-free thermoplastic elastomer and manufacturing method thereof and environment-friendly electric wires and cables using halogen-free thermoplastic elastomer
CN101465185A (en) Positive temperature coefficient material and thermistor containing the material and preparation method therefore
JP4386633B2 (en) Fluoro resin composition
EP0238684B1 (en) Shaped articles comprising crosslinked fluorocarbon polymers and method of forming such articles
CN103172923B (en) High-temperature-resistant thermoplastic flame retardant material for automotive wire and preparation method thereof
KR20180087131A (en) Silicone rubber composite and manufacturing method thereof
US3409584A (en) Tetrafluoroethylene products and methods
JPS58164628A (en) Production of ultrahigh-molecular polyethylene sinter
EP0143863B1 (en) Method of producing accurately sized material of ultra high molecular weight polyethylene
RU2398795C2 (en) Rubber mixture and electrical current conductor
JPH05247268A (en) Rubber composition
JPS6248747A (en) Ultra-high-molecular-weight-polyethylene resin composition suitable for ram extrusion molding
JP6821980B2 (en) Rubber composition containing antistatic agent and method for producing the same
JPS6333465A (en) Production of polyacetal resin composition
RU2365600C2 (en) Method of obtaining electroconductive polymer composition material
JP4687299B2 (en) Plain bearing
KR102235440B1 (en) Semi-conductive composition for power cable joint
JP2589714B2 (en) Sliding material composition
KR20160112128A (en) Semiconductive composition
JPS6153349A (en) Tetrafluoroethylene resin composition
JPS647616B2 (en)