JPS58162838A - Method for analyzing elastoplastic stress - Google Patents

Method for analyzing elastoplastic stress

Info

Publication number
JPS58162838A
JPS58162838A JP4673982A JP4673982A JPS58162838A JP S58162838 A JPS58162838 A JP S58162838A JP 4673982 A JP4673982 A JP 4673982A JP 4673982 A JP4673982 A JP 4673982A JP S58162838 A JPS58162838 A JP S58162838A
Authority
JP
Japan
Prior art keywords
stress
strain
hardening
plastic
rule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4673982A
Other languages
Japanese (ja)
Inventor
Toshio Kodama
児玉 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4673982A priority Critical patent/JPS58162838A/en
Publication of JPS58162838A publication Critical patent/JPS58162838A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To determine a stress state quantitatively with respect to general structures, by writing down the rule of hardening by movement, the rule of flow, etc. with respect to a plane stress state by the use of a bilinearly approximated stress-strain relation. CONSTITUTION:The stress-strain curve a of material is bilinearly approximated by an alternate long and short dash line c. The rule of hardening by movement using the initial yield conditions of Von Mises, the rule of flow of Prandtl Lewis and the relations between the quantity of hardening by movement and strain are written down with respect to a plane stress state as the equations for describing the plastic stress state. young's modules E and coefft. C of work hardening are determined from monoaxial tension tests of material, and the strain increments in the two directions of the noticed points are measured continuously with strain gages and are substd. in the equations. The stress increments, the equivalent plastic strain increments and the extents of movements of the origin of the yield curve are determined. The stress analysis which takes work hardening and Bauschinger effect into consideration is accomplished and the behavior of plastic stress and residual stress are determined quantitatively.

Description

【発明の詳細な説明】 本発明は、蒸気発生器伝熱管勢、層性応力、残留応力が
強度上問題となる一般構造物について、その応力状態を
定量的に求める弾塑性応力解析方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an elasto-plastic stress analysis method for quantitatively determining the stress state of general structures in which steam generator heat transfer tubes, laminar stress, and residual stress pose problems in terms of strength.

現実の材料の応力−ひすみ−a+は、図面の爽@hに示
すように弾性域から塑性域に入〕、塑性域において加工
硬化及びパラシンが効果がある。従来この材料の応力状
態を定量的に求める場合、論理的な取り扱いが簡単な九
め、材料の応力 ひずみ関係を破Ilbに示すように弾
−完全塑性近位し、この近mt−用いてひずみr−ジで
針側し九弾塑性ひずみを応力に換算している。
The stress-strain-a+ of an actual material enters the plastic range from the elastic range, as shown in the figure, and work hardening and parasin are effective in the plastic range. Conventionally, when determining the stress state of this material quantitatively, it is easy to handle logically. The elastoplastic strain is converted into stress by adjusting the needle side with r-ji.

すなわち材料特性として、弾−完全塑性近似を用い次従
来方法の解析手順は、以下の通りである。
That is, the analysis procedure of the conventional method using the elastic-perfect plasticity approximation as the material property is as follows.

stt  d σ11 + S雪3 d σ冨*  =
  O(1)d 1fit 、 dσ2.t−計測して
(1) 、 (2) 、 (3)式により未知数dりo
r d#zz+ d’1yt−算出する。
stt d σ11 + S snow 3 d σtomi* =
O(1)d 1fit , dσ2. t-measure and calculate the unknown quantity doo using equations (1), (2), and (3).
r d#zz+ d'1yt-calculate.

ここで” 11 + d 81怠は応力増分、di、は
轡価塑性ひずみ増分であり、降伏曲面の原点移動量すな
わち材料の加工硬化とパラシンが効果については考慮さ
れていない。このため従来の近似では実際の応力状態を
精度良く求めることができない間勉がめる。
Here, 11 + d81 is the stress increment, di is the stress plastic strain increment, and the amount of movement of the origin of the yield surface, that is, the effect of material work hardening and parasin, is not taken into account.For this reason, conventional approximation In this case, the actual stress state cannot be determined with high accuracy.

本発明は、上記事情に鑑みてなされたもので、その目的
とするところは図面の一点@線Cに示すように加工硬化
、パウシンガ効果を考慮して三直線近似した応力−ひず
みの関係を用いることによシ、応力状s’を精度良く求
め、もつで塑性変形を受ける構造物、製品の応力腐食割
れ対策の基礎データなどとして有効に利用できる弾塑性
応力解析方法を得んとするものである。
The present invention has been made in view of the above circumstances, and its purpose is to use a stress-strain relationship approximated by three straight lines in consideration of work hardening and the Paushinger effect, as shown at a point @ line C in the drawing. In particular, we aim to obtain an elastic-plastic stress analysis method that can accurately determine the stress state s' and can be effectively used as basic data for stress corrosion cracking countermeasures for structures and products that undergo plastic deformation. be.

すなわち本発明は、三直線近似した応力−ひすみ関係を
用いて移動硬化量、流れ則及び移動硬化量とひずみの関
係から塑性応力状mを示す式を求め、開式に塑性実験に
よるひずみ測定値を入れて塑性応力、塑性ひずみ、移動
硬化量上算出する仁と1−特徴とする弾塑性応力解析方
法である。
In other words, the present invention uses a trilinear approximation of the stress-strain relationship to obtain a formula indicating the plastic stress state m from the amount of kinematic hardening, the flow law, and the relationship between the amount of kinematic hardening and strain, and then uses the open formula to measure strain by plasticity experiments. This is an elasto-plastic stress analysis method characterized by 1-1, which calculates the plastic stress, plastic strain, and amount of kinematic hardening by inputting the values.

以下本発明を図mt参照して説明する。本発明では、塑
性応力状11+を記述する式として、7オン・i−ゼス
(Van Misss )の初a降伏条件を用い友移動
硬化則、グラントル・ロイス(Prandtl−R@u
■)の流れ則、および補助剤として、移動硬化量とひず
みの関係式を用いる。
The present invention will be explained below with reference to Figure mt. In the present invention, as a formula to describe the plastic stress state 11+, the initial a yield condition of Van Misss is used, and the friend movement hardening law, Prandtl-Reuss (Prandtl-R@u
(2) The flow law and the relational expression between movement hardening amount and strain are used as the auxiliary agent.

移動硬化量 2 (Sij−α、j) (8,、−α、)、、F謂0
 −(4)流れ則 補助剤(移動硬化量とひずみの関係) dα、=cdgPlj−(6) j aij  ’  応力テンノル Jj :  偏差応力テンソル α  : 移動量テンソル i 1i」−ひずみテンソル(計測値) dl P :  塑性ひずみ増分 j aij:  クロネッ力−のデルタ dσxz = d e■+ d 1g雪十d 133σ
Y : 降伏応力 E : ヤング率 ν : ボアンン比 iP:  相当塑性ひずみ C: 加工硬化係数(材料定数) %j: テンソルの添字  1=1〜3j=1〜3 次に上述した関係を、図面の一点St*Cで示す二直締
近位の応力−ひずみ関係を用いてひずみゲージにより測
定される平面応力状11について書き下す、以下におい
て添字11.11.31は主応力(主ひずみ)方向を示
し、今考えている平面応力状態はσss ” oとする
Movement hardening amount 2 (Sij-α,j) (8,,-α,),,F 0
- (4) Flow law auxiliary agent (relationship between movement hardening amount and strain) dα, = cdgPlj - (6) j aij ' Stress tenor Jj: Deviation stress tensor α: Movement amount tensor i 1i'' - Strain tensor (measured value) dl P: Plastic strain increment j aij: Kronet force - delta dσxz = d e■ + d 1g 133σ
Y: Yield stress E: Young's modulus ν: Boann ratio iP: Equivalent plastic strain C: Work hardening coefficient (material constant) %j: Tensor subscript 1=1~3j=1~3 Next, the above relationship is expressed as In the following, the subscript 11.11.31 indicates the principal stress (principal strain) direction. The plane stress state we are currently considering is σss ”o.

移動硬化量((4)式の増分形) 流れ則((5)式) 補助剤((6)式) 今、材料の単軸引張〕試験によりヤング率E。Transfer hardening amount (incremental form of equation (4)) Flow law (formula (5)) Auxiliary agent (formula (6)) Now, Young's modulus E is determined by the uniaxial tensile test of the material.

加工硬化係数cl求める。また塑性試験において、ひず
みゲージによシ注目点2方向のひずみ増分d#11.d
(** を連続して計測して、(7)式〜(2)式に入
れ、この連立6元1次方程式を解く。
Determine the work hardening coefficient cl. In addition, in the plasticity test, the strain increments d#11. d
(** Measure continuously and enter them into equations (7) to (2) to solve this simultaneous six-element linear equation.

そして応力増分dσ11+dσ■1等価塑性ひずみ増分
djp+降伏曲面の原点の移動量dα11.dα■。
Then, stress increment dσ11+dσ■1 equivalent plastic strain increment djp+movement amount of the origin of yield surface dα11. dα■.

dα33 上京める。dα33 Move to Tokyo.

ここでdαB、dα!3.dαmsは、材料の加工硬化
とパウシンガ効果を表現する物理量である。
Here dαB, dα! 3. dαms is a physical quantity expressing the work hardening of the material and the Paushinger effect.

以上の如く本発明によれば、三直線近似した応力−ひず
みの関係を用いることにより加工硬化、パウシンガ効果
を考慮した応力解析をおこなうことができ、塑性応力挙
動、残留応力を精度よく足置化することができる顕著な
効果を奏する。
As described above, according to the present invention, by using the stress-strain relationship approximated by trilinear lines, it is possible to perform stress analysis that takes work hardening and the Paushinger effect into consideration, and to accurately estimate plastic stress behavior and residual stress. It can produce remarkable effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は応力−ひずみの関係を実際の材料、従来の弾−完
全塑性近似した直線及び本発明に係る二直線近供した直
線についてそれぞれ示す図である。 出願人復代理人 弁理士 鈴 江 武 彦−2(
The drawings are diagrams showing the stress-strain relationship for an actual material, a conventional elastic-perfect plastic approximation straight line, and a bilinear approximation straight line according to the present invention. Applicant Sub-Agent Patent Attorney Takehiko Suzue-2 (

Claims (1)

【特許請求の範囲】[Claims] 二直線近似した応力−ひすみ関係を用いて移動硬化量、
流れ則及び移動硬化量とひずみの関係から塑性応力状態
を示す式を求め、同大KWi性笑験によるひずみ測定値
全入れて塑性応力、塑性ひすみ、移動硬化量を算出する
ことt−%像とする弾塑性応力解析方法。
Using the stress-strain relationship approximated by two lines, the amount of movement hardening,
Determine the formula that indicates the plastic stress state from the flow law and the relationship between the amount of kinematic hardening and strain, and calculate the plastic stress, plastic strain, and amount of kinematic hardening by inputting all the measured strain values from the same large KWi experiment t-% An elastoplastic stress analysis method based on images.
JP4673982A 1982-03-24 1982-03-24 Method for analyzing elastoplastic stress Pending JPS58162838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4673982A JPS58162838A (en) 1982-03-24 1982-03-24 Method for analyzing elastoplastic stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4673982A JPS58162838A (en) 1982-03-24 1982-03-24 Method for analyzing elastoplastic stress

Publications (1)

Publication Number Publication Date
JPS58162838A true JPS58162838A (en) 1983-09-27

Family

ID=12755695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4673982A Pending JPS58162838A (en) 1982-03-24 1982-03-24 Method for analyzing elastoplastic stress

Country Status (1)

Country Link
JP (1) JPS58162838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007759A (en) * 2017-11-27 2018-05-08 中南大学 A kind of method that elastic deformation energy at rock material peak load point is measured in Brazilian diametral compression test
JP6981521B1 (en) * 2020-12-08 2021-12-15 Jfeスチール株式会社 Residual stress calculation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007759A (en) * 2017-11-27 2018-05-08 中南大学 A kind of method that elastic deformation energy at rock material peak load point is measured in Brazilian diametral compression test
JP6981521B1 (en) * 2020-12-08 2021-12-15 Jfeスチール株式会社 Residual stress calculation method

Similar Documents

Publication Publication Date Title
US11754481B2 (en) Method for determining mixed mode dynamic fracture toughness of engineering materials involving forming surface cracks in specimens
CN103760036B (en) A kind of method of testing of steel fiber reinforced concrete destructive test initial cracking load
Toshiro et al. Evaluation of dynamic fracture toughness parameters by instrumented Charpy impact test
Brickstad A viscoplastic analysis of rapid crack propagation experiments in steel
CN109029840A (en) A kind of explosive residual stress supersonic testing method sound bullet coefficient scaling method
Durelli et al. Elastoplastic stress and strain distribution in a finite plate with a circular hole subjected to unidimensional load
CN112858039B (en) Inverse analysis method for steel fiber concrete stress-crack width constitutive relation
CN107167273B (en) High-strength bolt connecting node plate compaction degree detection method based on ultrasonic echo
Sarangi et al. Optimum strain gage locations for accurate determination of the mixed mode stress intensity factors
Chakraborty et al. A strain gage technique for the determination of mixed mode stress intensity factors of orthotropic materials
JPS58162838A (en) Method for analyzing elastoplastic stress
US3899922A (en) Double lever strain multiplier apparatus and method
Berger et al. Determining the dynamic stress intensity factor with strain gages using a crack tip locating algorithm
Bragov et al. Determination of the mechanical properties of concrete using the split Hopkinson pressure bar method
Rogan et al. Yield and subsequent flow behaviour of some annealed steels under combined stress
Yagawa et al. Theoretical and experimental study on unstable fracture for type 304 stainless steel plates with a soft tensile testing machine
Prabhakaran et al. Application of the least-squares method to elastic and photoelastic calibration of orthotropic composites: The measurement of the in-plane elastic constants of a graphite-epoxy and the measurement of the three photoelastic constants of a birefringent glass-polyester using the least-squares method is described
Bush Dynamic Fracture Toughness Tests on A302-B Steel
ITO et al. Study on the Horizontal Bending Stiffness of Bulletin of the Bolted Joint
Zaytsev Improving methods of assessment of a stress state of structures according to the results of coercive measurements
CN105953954A (en) Combined steel bridge deck plate interface base material weld toe fatigue hot spot stress testing method
CN104713775A (en) Method for determining position of neuter layer of eccentric tension member bar
Gui-tong et al. The TSHB technique for material testing at high rates of strain
Carlson A STUDY OF THE EXPERIMENTAL IMPLEMENTATION AND THE RESULTING CHARACTERISTIC BEHAVIOR OF THE J-INTEGRAL FRACTURE TOUGHNESS PARAMETER APPLIED TO TWO CONTROLLED-ROLLED STEELS.
Wang et al. Bending of a thin cracked plate