JPS58162706A - Feed water supply device for multiple pressure type combined electric generator - Google Patents

Feed water supply device for multiple pressure type combined electric generator

Info

Publication number
JPS58162706A
JPS58162706A JP4471082A JP4471082A JPS58162706A JP S58162706 A JPS58162706 A JP S58162706A JP 4471082 A JP4471082 A JP 4471082A JP 4471082 A JP4471082 A JP 4471082A JP S58162706 A JPS58162706 A JP S58162706A
Authority
JP
Japan
Prior art keywords
pressure
water supply
feed water
pump
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4471082A
Other languages
Japanese (ja)
Inventor
Katsumi Ura
浦 勝己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4471082A priority Critical patent/JPS58162706A/en
Publication of JPS58162706A publication Critical patent/JPS58162706A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/18Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbine being of multiple-inlet-pressure type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To allow a single unit of pump to perform a feed water supplying operation and to remove a flush which can take place at an area close to a suction port of the pump, by extracting a water of intermediate pressure from an intermediate stage of one type of feed water pump and by supplying such a water into a waste heat recovery boiler as a feed water other than a maximum pressure water. CONSTITUTION:A multi-stage feed water pump 18 has its delivery port 18a of final stage connected with a high pressure drum 9 via economizers 19, 7 for a high pressure zone and a high pressure feed water valve 8. An extraction outlet 18b of an intermediate stage is connected with a low pressure drum 5 via an economizer 3 for a low pressure zone and a low pressure feed water valve 4. A suction inlet 18c of feed water pump 18 is connected with a condenser 1. Since one type of feed water pump 18 can supply the feed water both to the high pressure drum 9 and the low pressure drum 5, money investment for equipments are greatly saved. Moreover, the feed water pump 18 can suck a low temperature condenser outlet water directly from the condenser 1 and therefore a risk of causing a flush at a suction port can be got rid of.

Description

【発明の詳細な説明】 本発明は、複圧式コンバインドザイクル発電設備におけ
る排熱回収ボイラの給水装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water supply device for an exhaust heat recovery boiler in a double pressure combined cycle power generation facility.

第1図に従来一般に用いられている複圧式コンバインド
サイクルのシステム構成の一例を示す。
FIG. 1 shows an example of a system configuration of a conventional double pressure type combined cycle.

復水器l内の復水は復水ポンプ2に吸入され、〃0圧さ
れて排熱回収ボイラの低圧部節炭器3で加熱される。2
′は安全基準に基づいて設置された予備の復水ポンプで
ろる。
The condensate in the condenser 1 is sucked into the condensate pump 2, reduced to zero pressure, and heated by the low pressure economizer 3 of the exhaust heat recovery boiler. 2
' is supplied by a backup condensate pump installed in accordance with safety standards.

低圧部節炭!a3で加熱された給水の一部は低圧給水弁
4を経て低圧ドラム5に給水される。
Low pressure section carbon saving! A part of the feed water heated in a3 is fed to the low pressure drum 5 via the low pressure water feed valve 4.

“ 低圧部節炭器3で〃口#1された給水の残部は給水
ポンプ6で更に昇圧され、高圧部節炭器7および旙圧給
水弁8を経て高圧ドラム9に給水される。
The remaining water supplied from the low-pressure section economizer 3 is further boosted in pressure by the water supply pump 6, and is supplied to the high-pressure drum 9 via the high-pressure section economizer 7 and the mid-pressure water supply valve 8.

6′は安全基準に基づいて設置され几予備の給水ポンプ
である。
6' is a water supply pump installed in accordance with safety standards and used as a backup.

低圧ドラム5内の貯水は、冷水と熱水との比重差により
低圧蒸発器10に対流循環し、排ガスとの熱交換によっ
て昇温せしめられ、蒸発して低圧ドラム5に還り、低圧
主蒸気管11および低圧加減弁12’idて蒸気タービ
ン17に送入されてこれを駆動し、元電機Gを回転させ
る。
The water stored in the low-pressure drum 5 is convectively circulated to the low-pressure evaporator 10 due to the difference in specific gravity between cold water and hot water, heated by heat exchange with exhaust gas, evaporated and returned to the low-pressure drum 5, and then passed through the low-pressure main steam pipe. 11 and a low pressure regulating valve 12'id to be sent to the steam turbine 17 to drive it and rotate the main electric machine G.

高圧ドラム9内の貯水は、同僚にして高圧蒸発器13で
蒸発し、高圧過熱器14、高圧主蒸気管15及び高圧加
減弁16を経て蒸気タービン17に送入され、これを駆
動する。
The water stored in the high-pressure drum 9 is evaporated in a high-pressure evaporator 13 and sent to a steam turbine 17 via a high-pressure superheater 14, a high-pressure main steam pipe 15, and a high-pressure control valve 16 to drive it.

以上は^圧部節炭器7、高圧ドラム9及び高圧蒸発器1
3等からなる高圧熱回収系統と、低圧部節炭器3、低圧
ドラム5及び低圧蒸発器lO等からなる低圧熱回収系統
との2系統を、構成したダブルプレッシャ形の複圧式コ
ンバインド発電設備について説明したが、高圧、中圧、
低圧の3系統を構成した後圧式コンバインド発′に設備
、並びに、同様にして高圧、中島圧、中土、低圧の4系
統を構成した複正式コンバインド発″vt設備もある。
The above is the pressure part economizer 7, high pressure drum 9 and high pressure evaporator 1.
About a double pressure type double pressure combined power generation facility that consists of two systems: a high pressure heat recovery system consisting of 3 etc., and a low pressure heat recovery system consisting of a low pressure section economizer 3, a low pressure drum 5, a low pressure evaporator 1O etc. As explained, high pressure, medium pressure,
There is a post-pressure combined generator' facility that consists of three low pressure systems, and a double-type combined generator'vt facility that similarly consists of four systems: high pressure, Nakajima pressure, Nakado, and low pressure.

上述のようなコ/パ′インドサイクルの発電設備は熱効
率が商いという長所が有る反面、補機器の数が多いので
設備コストや保守管理コストが高いという短所がある。
Although the above-mentioned co/pound cycle power generation equipment has the advantage of high thermal efficiency, it has the disadvantage of high equipment cost and maintenance management cost due to the large number of auxiliary equipment.

前述の例(第1図)のごとく筒、低圧2系統のi圧式コ
ンバインド発電設備の場合、予備のポンプを含めると、
蒸気タービン1軸について復水ポンプ2個、給水ポンプ
2個というように計4個のポンプを設置しなければなら
ない、それぞれ発生蒸気圧力の異なるn系統の回収系統
を構成しようとすると2n個の給水用ポンプの設置が必
要である。このように給水用ポンプの設置必要個数が多
いということも、前述したところの補機冊数が多いとい
う短所の一因となしている。
In the case of an i-pressure combined power generation facility with two cylinder and low-pressure systems as in the above example (Fig. 1), including the spare pump,
If a total of 4 pumps, 2 condensate pumps and 2 water supply pumps, are to be installed for one steam turbine shaft, and n systems with different generated steam pressures are constructed, 2n water supply systems will be required. It is necessary to install a pump for The fact that a large number of water supply pumps are required to be installed is also one of the reasons for the above-mentioned disadvantage of having a large number of auxiliary equipment.

また、第1図の例における給水ポンプ6は、低圧部節炭
器3で加熱された高温の給水を吸入するように構成され
ているので、負荷急変時の過渡状態においてポンプ入口
部でフラッシュを発生し易い。これも又、従来技術に係
る複圧式コンバインド発電設備に共通する技術的問題点
である。
In addition, the water supply pump 6 in the example shown in FIG. 1 is configured to suck in high-temperature supply water heated by the low-pressure section economizer 3, so that it is flushed at the pump inlet in a transient state when the load suddenly changes. Easy to occur. This is also a technical problem common to conventional double pressure combined power generation equipment.

本発明は以上の事情に鑑みて為され友もので、その目的
とするところは、複数糧類の圧力の蒸気として排ガスの
熱回収を行なう複圧式コンバインド発電設備において、
蒸気タービン1台当たり1種類のポンプで給水すること
ができ、その上、ポンプ人口付近においてフラッシュを
発生する虞れの無い給水装置を提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a double-pressure combined power generation facility that recovers heat from exhaust gas as steam at the pressure of multiple foods.
To provide a water supply device that can supply water with one type of pump per steam turbine and is free from the risk of flash occurring near the pump population.

本発明の原理は、高圧の熱回収系統の所要に適合する一
種類の多段形高圧給水ポンプを設置し、その中間段から
中高圧、中圧、又は低圧等、所要圧力の給水を抽出して
これを各圧力の排熱回収系統に供給することにより、給
水用ポンプを[1類に集約するものである。
The principle of the present invention is to install one type of multi-stage high-pressure water supply pump that meets the requirements of a high-pressure heat recovery system, and extract water at the required pressure, such as medium-high pressure, medium pressure, or low pressure, from the intermediate stage. By supplying this to the exhaust heat recovery system of each pressure, the water supply pumps are consolidated into [Type 1].

上述の本発明の原理が実地に適用し得るものであること
を、給水の所要圧力とポンプ性能との関係から検討する
と次記のごとくである。
The fact that the principle of the present invention described above can be practically applied is as follows when examined from the relationship between the required pressure of water supply and pump performance.

第2図は、第1図に示したダブルプレッシャ形の複圧式
コンバインド発電設備における夕、−ビン負荷と給水圧
力とを表わし九図表である。
FIG. 2 is a chart showing the evening bin load and water supply pressure in the double pressure type double pressure type combined power generation equipment shown in FIG. 1.

カーブptVi低圧側システム圧力を示し、第1図にお
ける低圧ドラム5に給水するための所要圧力である、こ
のカーブptがタービン負荷100%の線と交わる点p
、の具体的な値は4〜5atgである。
Curve ptVi indicates the low-pressure side system pressure, and is the required pressure to supply water to the low-pressure drum 5 in FIG.
The specific value of , is 4 to 5 atg.

第1図に示した従来形の給水装置ではタービン負荷10
0%において上記の圧力p1が得られるように、第1図
における復水ポンプ2の圧力特性をPLのごとく設定し
゛、図に斑点で示した部分に相当する差圧は低圧給水弁
4の絞り効果によって減圧する。
In the conventional water supply system shown in Fig. 1, the turbine load is 10
In order to obtain the above pressure p1 at 0%, the pressure characteristics of the condensate pump 2 in Fig. 1 are set as PL. Reduce pressure by effect.

上記と同様に、カーブpkは高圧側システム圧力を示し
、第1図における高圧ドラム9に給水するための所要圧
力である。従来形の装置ではこのカーブp−がタービン
負荷100%の線と交わる点の圧力p!が得られるよう
に給水ポンプ6の吐出圧力特性をP−のごとく設定し、
図に)・ツチングを付して示し九部分に相当する差圧は
高圧給水弁80絞9効果によって減圧する。
As before, the curve pk shows the high-pressure side system pressure, which is the required pressure to feed the high-pressure drum 9 in FIG. In conventional equipment, the pressure p! at the point where this curve p- intersects with the 100% turbine load line. The discharge pressure characteristic of the water supply pump 6 is set as P- so that
In the figure, the differential pressure corresponding to the section 9 shown with tuching is reduced by the effect of the high-pressure water supply valve 80 and the throttle 9.

第1図について説明し念ように、上記の給水ポンプ6は
、復水ポンプ2によってカーブPLまで昇圧された復水
を吸入してカーブPhまで8口圧する。
Referring to FIG. 1, as a reminder, the water supply pump 6 sucks the condensate that has been pressurized to the curve PL by the condensate pump 2 and increases the pressure to the curve Ph by 8 ports.

前記の圧力p、の具体的な値は50〜60atgである
The specific value of the pressure p is 50 to 60 atg.

従来技術においては、上に述べ九ごとく、復水ポンプ2
によってvsz図のカーブP□まで復水全加圧し、給水
ポンプ6によって更にカーブP1まで昇圧させていたが
、1個のポンプによって復水をカーブPhまで加圧する
ことは勿論可能である。
In the conventional technology, as described above, the condensate pump 2
The condensate was fully pressurized to the curve P□ in the vsz diagram, and the pressure was further increased to the curve P1 by the water supply pump 6, but it is of course possible to pressurize the condensate to the curve Ph with a single pump.

そして、該1個のポンプとして、例えば定格1100a
tの5段のポンプを用いた場合、その1段目の中間段か
ら抽出すれば20atgの圧力が得られるからこれを絞
り弁によってカーブpLまで降圧させることは技術的に
可能である。
As the one pump, for example, the rating is 1100a.
When using a five-stage pump of t, a pressure of 20 atg can be obtained by extracting from the first intermediate stage, so it is technically possible to reduce the pressure to the curve pL using a throttle valve.

上述の原理に基づいて、蒸気ター、ビン1軸あたv1s
類の給水ポンプで複圧式コンバインド発電設備の給水装
置を構成し、かつ、フラッシュを防止するという本発明
の目的を達成するため、本発明は、横圧式フンバインド
発電設備における複数種類の給水圧力の中で最高圧の仕
様を満足する1穐類の給水ポンプを設け、その中間段か
ら中間圧力の水を抽出して、これを最高圧以外の給水と
して排熱回収ボイラに供給することを特徴とする。
Based on the above principle, steam turbine, v1s per bottle shaft
In order to achieve the object of the present invention, which is to construct a water supply system for a double-pressure combined power generation equipment using similar water supply pumps and to prevent flushing, the present invention provides a water supply system for multiple types of water supply pressures in a lateral pressure combined power generation equipment. The system is characterized in that it is equipped with a water feed pump that satisfies the specifications for the highest pressure, extracts water at an intermediate pressure from the intermediate stage, and supplies this water to the exhaust heat recovery boiler as water at a pressure other than the highest pressure. do.

友だし、上記の1種類のポンプとは、予備のポンプを除
外すれば1台のポンプという意味である。
To my friend, the one type of pump mentioned above means one pump, excluding the spare pump.

次に、本発明の一実施例を第3図について説明する。本
図において第1図と同一の図面参照番号を附したものは
第1図(従来技術装置)におけると同僚乃至は類似の構
成部材である。
Next, an embodiment of the present invention will be described with reference to FIG. In this figure, the same drawing reference numerals as in FIG. 1 refer to similar or similar components to those in FIG. 1 (prior art device).

18は本発明を適用して設けた多段形の給水ポンプで、
最終段の吐出口18aと中間段の抽出口18bとを備え
ている。この多段給水ボ/グ18の定格圧力は高圧ドラ
ム9の所要給水圧力と同等若しくは着干高く設定し、か
つ、中間段の抽出圧力が低圧ドラム5の所要給水圧力と
同等若しくは若干高圧であるように設定する。18’は
予備の給水ポンプである。
18 is a multistage water supply pump provided by applying the present invention,
It has a final stage discharge port 18a and an intermediate stage extraction port 18b. The rated pressure of this multi-stage water supply tank 18 is set to be equal to or significantly higher than the required water supply pressure of the high-pressure drum 9, and the extraction pressure of the intermediate stage is set to be equal to or slightly higher than the required water supply pressure of the low-pressure drum 5. Set to . 18' is a backup water pump.

給水ポンプ18の最終段の吐出口18mを高圧部節炭器
19、同7、及び高圧給水弁8t−介して高圧ドラム9
に接続する。そして、前記の中間段の抽出口18bを低
圧部節炭器g7hび低圧給水弁4を介して低圧ドラム5
に接続する。給水ポンプ18の吸入口18cは復水器1
に接続する。
The discharge port 18m of the final stage of the water supply pump 18 is connected to the high pressure drum 9 through the high pressure section economizer 19, the same 7, and the high pressure water supply valve 8t.
Connect to. Then, the intermediate stage extraction port 18b is connected to the low pressure drum 5 via the low pressure section economizer g7h and the low pressure water supply valve 4.
Connect to. The suction port 18c of the water supply pump 18 is connected to the condenser 1
Connect to.

次に、以上のように構成し九複圧式コンバインド発電設
備の給水装置の作用について説明する。
Next, the operation of the water supply system for the nine double pressure combined power generation facilities constructed as described above will be explained.

給水ポンプ18は復水器1内の復水を吸入して    
 (最終段吐出口18a及び中間段抽出口18bから吐
出する。
The water supply pump 18 sucks the condensate in the condenser 1.
(Discharged from the final stage discharge port 18a and intermediate stage extraction port 18b.

最終段吐出口18aからは、高圧トリム9の所要給水圧
力と同等若しくはそれ以上の圧力の給水が吐出されるの
で、これを高圧給水弁8で適宜に絞り、タービン負荷に
応じた所要給水圧力まで減圧して高圧ドラム9に供給す
る。高圧ドラム9に供給される給水は高圧部節炭器19
及び同7で加熱され、高圧給水弁8で調圧されて、高圧
ドラム9に流入−して貯水となシ、その後は従来装置(
11図)におけると同様にして蒸気タービン17を駆動
する。
From the final stage discharge port 18a, water with a pressure equal to or higher than the required water supply pressure of the high-pressure trim 9 is discharged, so this is appropriately throttled with the high-pressure water supply valve 8 to the required water supply pressure according to the turbine load. It is depressurized and supplied to the high pressure drum 9. The water supplied to the high pressure drum 9 is supplied to the high pressure part economizer 19
The water is heated in the water tank 7, the pressure is regulated by the high-pressure water supply valve 8, and the water flows into the high-pressure drum 9 to be stored.
The steam turbine 17 is driven in the same manner as in Fig. 11).

また、給水ポンプの中間段抽出口18bがらは、低圧ド
ラム50所要給水圧力と同等若しくはそれ以上の圧力の
給水が吐出されるので、これを低圧給水弁4で適宜に絞
り、タービン負荷に応じた所要給水圧力まで減圧して低
圧ドラム5に供給する。
In addition, since the intermediate stage extraction port 18b of the water supply pump discharges water at a pressure equal to or higher than the water supply pressure required for the low pressure drum 50, this is appropriately throttled by the low pressure water supply valve 4 and adjusted according to the turbine load. The water is depressurized to the required water supply pressure and supplied to the low pressure drum 5.

低圧ドラム5に供給される給水は低圧部節炭器3で加熱
され、低圧給水弁4で調圧されて低圧ドラム5に流入し
て貯水となり、その後は従来装置(第1図)Kおけると
同様にして蒸気タービン17を駆動する。
The water supplied to the low-pressure drum 5 is heated by the low-pressure part economizer 3, the pressure is regulated by the low-pressure water supply valve 4, and flows into the low-pressure drum 5 to be stored.After that, in the conventional device (Fig. 1) K. The steam turbine 17 is driven in the same manner.

以上説明したように、本実施例においてはlfa類の給
水ポンプ18によって高圧ドラム9および低圧ドラム5
の給水が可能である。このように、従来ダブルプレッシ
ャ形の複圧式コンバインド発電設備の給水装置として使
用していた2種類のポンプ(第1図の例における復水ポ
ンプ2及び給水ポンプ6)を1種類のポンプに集約する
ことにより、ポンプの設備コストが節減されるのみでな
く、ポンプに付属する電気系統、配管、介抱、及び制御
手段が簡素化石れ、設備投資が著しく低減され、その上
、運用性、保守性が改善される。
As explained above, in this embodiment, the high-pressure drum 9 and the low-pressure drum 5 are
water supply is possible. In this way, the two types of pumps (condensate pump 2 and water supply pump 6 in the example in Figure 1) that were conventionally used as water supply devices for double-pressure type double-pressure combined power generation equipment are consolidated into one type of pump. This not only reduces the equipment cost of the pump, but also simplifies the electrical system, piping, care, and control means attached to the pump, significantly reduces equipment investment, and improves operability and maintainability. Improved.

第3図に示し友実施例は、高圧、低圧2系統の排熱回収
系統を構成した複圧式コンバインド発電設備の給水装置
に本発明を適用したものであるが、本発明は本例と同様
にして、3系統若しくはそれ以上の排熱回収系統を構成
した複圧式コンバインド発電設備の給水装置にも適用す
ることができる。
The embodiment shown in FIG. 3 is one in which the present invention is applied to a water supply system for a double pressure combined power generation facility that has two exhaust heat recovery systems, one high pressure and one low pressure. Therefore, the present invention can also be applied to a water supply device of a double pressure combined power generation facility having three or more exhaust heat recovery systems.

艶に、181図に示した従来形装置における給水ポンプ
6は低圧部節炭器3で約1500に加熱された復水を吸
入していたので、負荷の急変に伴うて吸入口付近でフラ
ッシュを発生し易いという欠点が有ったが、第3図に示
した本発明の実施例から容品に理鱗されるように、本発
明に係る給水ポンプ(本例においては18)は、復水器
lから直接的に低温の復水器出口水を吸入するので吸入
部で7ラツシユを発生する虐れが無い。
In particular, the water supply pump 6 in the conventional device shown in Figure 181 sucks condensate heated to about 1,500 ℃ by the low-pressure section economizer 3, so it is necessary to flush near the suction port due to sudden changes in load. However, as can be seen from the embodiment of the present invention shown in Fig. 3, the water supply pump according to the present invention (18 in this example) Since the low-temperature condenser outlet water is directly sucked from the vessel, there is no strain that would cause 7 lashes at the suction section.

以上説明したように1本発明は、複圧式コンバインド発
電設備における複数種類の給水圧力中の最高圧の仕様を
満足する、1種類の給水ポンプを設け、その中間段から
中間圧力の、水を抽出してこれを曖高圧以外の給水とし
て排熱回収ボイラに供給することにより、複圧式コンバ
インド発電設備における蒸気タービン1台当たり1攬類
のポンプで給水することができ、その上、ポンプ吸入口
付近でフラッシュを発生する醜れが無いという優れた実
用的効果を奏する。
As explained above, the present invention provides one type of water supply pump that satisfies the specifications of the highest pressure among multiple types of water supply pressures in a double-pressure combined power generation facility, and extracts water at an intermediate pressure from an intermediate stage of the water supply pump. By supplying this water to the exhaust heat recovery boiler as water other than high pressure water, it is possible to supply water with one pump per steam turbine in a double pressure combined power generation facility. This has an excellent practical effect in that there is no ugliness caused by flash.

【図面の簡単な説明】[Brief explanation of the drawing]

1IAI図は従来形複圧式コンバインド発電設備の蒸気
系統図、第2図は複圧式コンバインドサイクルにおけ本
タービン負荷率と給水圧力との関係を示す図4、@3図
は本発明に保る複圧式コ/ノクイ/ド発電設備の給水装
置の一実施例の4気系統図である。 l・・・復水器、2・・・復水ポンプ、3・・・低圧部
節炭器、4・・・低圧給水弁、5・・・低圧トリム、6
・・・給水ポンプ、7・・・高圧部tdr炭器、8・・
・高圧給水弁、9・・・高圧ドラム、17・・・蒸気タ
ービン、18・・・給水ポンプ、18a・・・同峡終段
吐出口、18b・・・同中間段抽出口、19・・・温圧
部節炭器。 代理人 弁理士 秋本正実 葛20 !−1:ン髪訂%
Figure 1IAI is a steam system diagram of a conventional double-pressure combined power generation facility, Figure 2 is a diagram showing the relationship between the main turbine load factor and water supply pressure in a double-pressure combined cycle, and Figure 4 and @3 are steam system diagrams of a conventional double-pressure combined cycle. It is a 4-gas system diagram of an embodiment of a water supply device for a pressure-type CO/NOKUI/DO power generation facility. l...Condenser, 2...Condensate pump, 3...Low pressure section economizer, 4...Low pressure water supply valve, 5...Low pressure trim, 6
...Water supply pump, 7...High pressure section TDR coal generator, 8...
- High pressure water supply valve, 9... High pressure drum, 17... Steam turbine, 18... Water supply pump, 18a... Same final stage discharge port, 18b... Same middle stage extraction port, 19...・Thermostatic section energy saver. Agent: Patent attorney Masamikatsu Akimoto, 20! -1:N hair correction%

Claims (1)

【特許請求の範囲】[Claims] 1、ガスタービンの排ガスに含まれている熱エネルギー
を、排熱回収ボイラにより複数樵類の圧力の蒸気として
熱回収し、この蒸気に、よって蒸気タービンを駆動する
複圧式コンバインド発電設備において、前記複数圧力中
の最高圧の蒸気を発生する排熱回収ボイ2に適合する給
水ポンプを設けてその中間段から中圧の水を抽出して、
これを最高圧以外の蒸気を発生する排熱回収ボイラに給
水として供給するように構成し、1種類の給水装置によ
って複圧式コンバインド発電設備の複数基の排熱回収ボ
イラに給水し得べくなし次ることを%徴とする複圧式コ
ンバインド発電設備の給水装置。
1. In a double-pressure combined power generation facility in which the thermal energy contained in the exhaust gas of a gas turbine is recovered as steam at a pressure of several degrees by an exhaust heat recovery boiler, and this steam is used to drive a steam turbine, the above-mentioned A water supply pump compatible with the exhaust heat recovery boiler 2 that generates steam at the highest pressure among multiple pressures is installed, and medium-pressure water is extracted from the intermediate stage.
This is configured to be supplied as water to the exhaust heat recovery boiler that generates steam at a pressure other than the highest pressure, and it is possible to supply water to multiple exhaust heat recovery boilers in a double pressure combined power generation facility using one type of water supply device. Water supply system for double pressure combined power generation equipment.
JP4471082A 1982-03-23 1982-03-23 Feed water supply device for multiple pressure type combined electric generator Pending JPS58162706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4471082A JPS58162706A (en) 1982-03-23 1982-03-23 Feed water supply device for multiple pressure type combined electric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4471082A JPS58162706A (en) 1982-03-23 1982-03-23 Feed water supply device for multiple pressure type combined electric generator

Publications (1)

Publication Number Publication Date
JPS58162706A true JPS58162706A (en) 1983-09-27

Family

ID=12698971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4471082A Pending JPS58162706A (en) 1982-03-23 1982-03-23 Feed water supply device for multiple pressure type combined electric generator

Country Status (1)

Country Link
JP (1) JPS58162706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220163140A (en) * 2021-06-02 2022-12-09 한국해양과학기술원 Power generation system using heat of cooling water from fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220163140A (en) * 2021-06-02 2022-12-09 한국해양과학기술원 Power generation system using heat of cooling water from fuel cell

Similar Documents

Publication Publication Date Title
CN110454769B (en) Control system and control method for high-backpressure steam-driven feed pump of large generator set
CN206035553U (en) Cogeneration system of combined cycle
US8695347B2 (en) Power plant
CN103452611A (en) Combined-cycle combined heat and power system
CN104976671B (en) Wide-load heat supply energy-saving system of back pressure type small steam turbine driven water feeding pump
JPH01240705A (en) Feed water pump turbine unit
CN113389606A (en) Direct heat supply system and method for steam exhaust and extraction of steam of intermediate pressure cylinder of steam turbine of nuclear power unit
CN106887265A (en) The start and stop shut-down system of one bulb bed modular high temperature gas cooled reactor
CN108167036A (en) A kind of system and method for nuclear power generating sets vapor self
CN109028999B (en) Steam-water system
JPH10306708A (en) Combined cycle generating plant
CN110593972B (en) Double-machine heat regenerative system
CN104456519A (en) Novel efficient water supply heat recovery system for secondary reheating unit
CN210164663U (en) Double-pneumatic feed water pump steam turbine recirculation water pipeline device
JPS58162706A (en) Feed water supply device for multiple pressure type combined electric generator
CN113175361B (en) High-pressure cylinder zero-output and reheat steam main pipe system connection and operation method
JPH0440524B2 (en)
CN110925730A (en) Emergency industrial heating system based on shutdown and non-shutdown of coal-fired generating set
CN115929430B (en) Heat regeneration system of industrial heat supply steam turbine
CN113323735B (en) Parallel operation waste incineration power generation thermodynamic system
CN214660396U (en) Coupling peak shaving system based on middle row and cooling of middle row among units
CN214249553U (en) High-energy heat-mass recovery system of thermal power plant
CN214840753U (en) Two or many thermal power generating unit condensate water contact systems
CN219713336U (en) Millions of unit water supply system
CN213478407U (en) Main unit shaft seal temperature-reducing water pipeline system