JPS58161993A - Production of thin film - Google Patents

Production of thin film

Info

Publication number
JPS58161993A
JPS58161993A JP4470082A JP4470082A JPS58161993A JP S58161993 A JPS58161993 A JP S58161993A JP 4470082 A JP4470082 A JP 4470082A JP 4470082 A JP4470082 A JP 4470082A JP S58161993 A JPS58161993 A JP S58161993A
Authority
JP
Japan
Prior art keywords
substrate
target electrode
composition
thin film
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4470082A
Other languages
Japanese (ja)
Inventor
Akira Terada
寺田 章
Takayuki Nakamura
貴幸 中村
Hidefumi Asano
秀文 浅野
Masaru Igarashi
賢 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4470082A priority Critical patent/JPS58161993A/en
Publication of JPS58161993A publication Critical patent/JPS58161993A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/04Pattern deposit, e.g. by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00436Maskless processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00657One-dimensional arrays
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce multielement thin films having desired compsn. destributions in a thickness direction by using a specific target electrode material, and moving the position of a substrate in the direction where the compsns. of the electrode material change within the plane parallel with the surface of the target electrode. CONSTITUTION:A target electrode 2 for sputtering wherein materials 4 of different compsns. are arrayed and combined successively by means of adhesive agents 3 on a flat plate and a substrate 5 which is supported with a holder 6 mounted with a heater 7 are provided in parallel in a vacuum vessel 1 which is provided with an introducing port 9 for an inert gas on the top surface and an evacuating port 10 on the side surface in the lower part. An inert gas is introduced into the vessel 1 through the port 9, and is controlled to a specified gaseous pressure. Voltage is then applied to the electrode 2 and the substrate 5 is moved by a moving mechanism 8 in the direction where the comspns. of the materials of the electrode 2 change within the plane parallel with the surface of the target electrode, whereby the multielement thin films having desired compsns. in the depth direction are formed.

Description

【発明の詳細な説明】 本発明は、工業的に利用し易いスパッタリング法を用い
て薄膜の内部に深さ方向に任意の組成分布を実現し、薄
膜の結晶成長のエピタキシィ機構を人為的に制御する方
法に関する。
Detailed Description of the Invention The present invention uses a sputtering method that is easy to use industrially to realize an arbitrary composition distribution in the depth direction inside a thin film, and artificially controls the epitaxy mechanism of crystal growth of the thin film. Regarding how to.

スフ譬ツタリング法はターゲットの材料原子を活性化し
た不活性ガス原子でたたき出し、基板に堆積さ−せて被
膜を形成する方法であシ、次のような手順で実施される
。まず゛ムrのような不活性ガスの10″”−1OTo
rrの雰囲気の下で、所望の材料をターゲット電極とし
、ターゲット電極に高周波(13,56MHz )ある
いは直流電圧を印加する。ここでイオン化して正に帯電
した不活性ガス原子がターゲット電極表面に衝突し、そ
の術撃によってターrソト電極物質原子が飛び出す。こ
れをターゲット電極と対匈した位置にある基板上に堆積
させて、所望の材料の薄膜を形成する。
The sphuttering method is a method in which atoms of a target material are blown out with activated inert gas atoms and deposited on a substrate to form a film, and is carried out in the following steps. First, 10""-1OTo of an inert gas such as
Under an atmosphere of RR, a desired material is used as a target electrode, and a high frequency (13.56 MHz) or DC voltage is applied to the target electrode. Here, the ionized and positively charged inert gas atoms collide with the target electrode surface, and the impact causes the electrode material atoms to fly out. This is deposited on a substrate opposite the target electrode to form a thin film of the desired material.

スノタツタリングで合金や化合物の薄膜を形成する際に
は、形成する被膜の組成と同じ組成の合金や化合物をタ
ーゲット電極とする方法が一般的であシ、ターゲット電
極材料が均一なものであれば、形成した薄膜の組成は、
薄膜形成の回数やスパッタリング時の条件にほとんど依
存しない性質がある。スフ譬ツタリング法での組成の均
一性は、電子ビーム蒸着法や廊W(Mol@cular
Beam Epitaxy)法などの他の方法では得難
い、工業的特長となっている。
When forming a thin film of an alloy or compound using Sunotatsuta ring, it is common to use an alloy or compound with the same composition as the film to be formed as a target electrode, and even if the target electrode material is uniform, For example, the composition of the formed thin film is
It has properties that are almost independent of the number of times the thin film is formed or the conditions during sputtering. The uniformity of the composition in the Suffu tuttering method can be improved by electron beam evaporation method or Mol@cular method.
This is an industrial feature that is difficult to obtain with other methods such as the beam epitaxy method.

しかしながら、薄膜の深さ方向に成分比を変えて組成分
布を形成し、薄膜の結晶成長のエピタキシイを制御した
い場合には、スパッタリング法の上述の性質は逆に欠点
と′なってしまう。
However, when it is desired to change the component ratio in the depth direction of the thin film to form a compositional distribution and control the epitaxy of the crystal growth of the thin film, the above-mentioned properties of the sputtering method become disadvantageous.

例えば、A原子とB原子の2元合金の薄膜内において、
基板直上の膜組成をAxBl−x (0≦X≦l)とし
、膜の表面部をAx’B1−x’(0:ii;x’ ≦
1 )とするには、膜の深さ方向に一定の組成4配をつ
ける必要があるが、これを通常のスパッタリング法で行
うためには、例えば、ム原子より成るターゲット電極と
B原子よ構成るターゲット電極を2つ、基板に対抗させ
て配置し、各ターゲット電極から−の原子の堆積速度を
時間的に制御する共スル4ツタリング方式を採用するこ
とになる。
For example, in a thin film of a binary alloy of A and B atoms,
The film composition directly above the substrate is AxBl-x (0≦X≦l), and the surface portion of the film is Ax'B1-x'(0:ii;x'≦
1), it is necessary to form a constant composition in the depth direction of the film, but in order to do this with the normal sputtering method, for example, a target electrode consisting of M atoms and a structure of B atoms must be formed. In this method, two target electrodes are placed opposite to the substrate, and a co-spooling method is adopted in which the deposition rate of negative atoms from each target electrode is temporally controlled.

しかし、この方式では、ターゲット電極機構及び電源が
2組必要となるので、スパッタリング装置の改造あるい
は新規設計が必要となる。さらに、mイ固の元素よ構成
る膜内において任意q深さ方向の組成分布を実現する際
には、共スパッタリング方式では2mイ励のターゲット
電極機構と2m(固の電源が必要となるので、経済的で
はない。
However, this method requires two sets of target electrode mechanisms and power supplies, and therefore requires modification or new design of the sputtering apparatus. Furthermore, in order to realize a compositional distribution in the arbitrary q depth direction in a film composed of m-hard elements, the co-sputtering method requires a 2-m-strong target electrode mechanism and a 2-meter-hard power source. , not economical.

本発明はこれらの問題点を解決する薄膜の形成方法を提
供するもので、スパッタリングのターゲット電極材料と
、して、組成の異る材料を順次配列させて複合化したも
のを用い、基板の位置をターゲット電極面と平行な面内
で、ターゲット電極材料の組成変化の方向に移動させる
ことによシ、腺の深さ方向に所望の組成分布を有する多
元素系薄iの作製を可能とするものである。
The present invention provides a method for forming a thin film that solves these problems, and uses a composite material made by sequentially arranging materials with different compositions as a target electrode material for sputtering. By moving in the direction of compositional change of the target electrode material in a plane parallel to the target electrode surface, it is possible to fabricate a multi-element thin film having a desired composition distribution in the depth direction of the gland. It is something.

以下に本発明の詳細な説明する 第1図に本発明の方法に係る装置の基本構成を示す。ま
ず真空槽lの内部に水冷ターゲット電極2と基板5とが
設けられる。該真空槽lの上面には不活性ガスの導入口
9が設けられ、又下部側面には排気口10が設けられる
。上記ターゲット電極2はCu 等の平板上に高融点半
田あるいは有機物の接着剤3で各々組成の異なる短冊形
のターグツト材料4を接着したものである。従ってター
ゲット電極2の形状としては円形よシも長方形(プレナ
ー型)の方が好ましい。
The present invention will be explained in detail below. FIG. 1 shows the basic configuration of an apparatus according to the method of the present invention. First, a water-cooled target electrode 2 and a substrate 5 are provided inside a vacuum chamber l. An inert gas inlet 9 is provided on the upper surface of the vacuum chamber l, and an exhaust port 10 is provided on the lower side surface. The target electrode 2 is made by bonding strip-shaped target materials 4 of different compositions onto a flat plate of Cu or the like using a high melting point solder or an organic adhesive 3. Therefore, the shape of the target electrode 2 is preferably rectangular (planar) rather than circular.

次に上記基板5は該ターゲット電極2に面して平行に設
置され基板ホルダ6によって支持されている。該基板ホ
ルダ6には必要に応じて加熱ヒータ7が装置される。更
に該基板ホルダ6には基板5をターゲット−極面と平行
に短冊形ターゲット材料の配列方向に沿って移動させる
移動機構8が設けられる。こめ基板移動機構8は任意の
位置でかつ任意の速度で基板を移動できることが、膜内
の深さ方向の組成分布を自由に変える上で望ましい。
Next, the substrate 5 is placed parallel to the target electrode 2 and supported by a substrate holder 6. A heater 7 is installed on the substrate holder 6 as required. Further, the substrate holder 6 is provided with a moving mechanism 8 for moving the substrate 5 parallel to the target-pole plane along the arrangement direction of the strip-shaped target materials. It is desirable that the substrate moving mechanism 8 be able to move the substrate at any position and at any speed in order to freely change the composition distribution in the depth direction within the film.

次に上記装置構成において薄膜内の深さ方向に組成の分
布を付与する方法を説明する。
Next, a method for imparting a composition distribution in the depth direction within the thin film in the above device configuration will be explained.

先づ、人元素とB元素よ構成る2元系薄膜の場合を説明
する。ターゲット電極はN枚の短冊形の合金で形成され
ておシ、上端からn番目の合金4nの組成はAxnBl
−:cn(0≦xn≦1.n=1゜2.3.・・・、N
)である。ターゲット電極材料4の全体の長手方向の寸
法をL、横幅上Mとする。nit目の短冊形合金の横幅
はMであるが、上下寸法は任意でよい。ここで説明を簡
単にするため客短冊形合金板の上下寸法は全て等しく、
L/Nであるとする。また、基板5はターゲット電極表
面よj5Dだけ離れたターゲット電極2に平行な面上で
第1図および第2図の上下方向即ちターゲット電極材料
4の組成変化の方向に移動できる。基板5の移)直線1
8は、第2図で示したように、ターゲット電極2の中心
線に対応することが望ましい。更に第3図に示すように
、n番目のターゲット合金1gとn+1番目のターゲッ
ト合金11の境界に対応する位置に基板が存る時、ここ
を基板5のn′位置17と名付ける。ここでn′は連続
的に変化する数である。
First, the case of a binary thin film composed of human element and B element will be explained. The target electrode is formed of N rectangular alloys, and the composition of the n-th alloy 4n from the top is AxnBl.
-:cn(0≦xn≦1.n=1゜2.3...., N
). Let L be the overall longitudinal dimension of the target electrode material 4, and M be the upper width. The width of the nit-th rectangular alloy is M, but the vertical dimensions may be arbitrary. To simplify the explanation here, the vertical dimensions of the rectangular alloy plates are all equal.
Suppose that it is L/N. Further, the substrate 5 can be moved in the vertical direction in FIGS. 1 and 2, that is, in the direction of composition change of the target electrode material 4, on a plane parallel to the target electrode 2 and spaced apart from the target electrode surface by j5D. Transfer of board 5) Straight line 1
8 desirably corresponds to the center line of the target electrode 2, as shown in FIG. Furthermore, as shown in FIG. 3, when the substrate is located at a position corresponding to the boundary between the n-th target alloy 1g and the n+1-th target alloy 11, this position is named n' position 17 of the substrate 5. Here, n' is a continuously changing number.

Ar  などの不活性ガスを真空槽内に導入し、適当な
一定のガス圧に制御し、ターゲット電極2に電圧を印加
すると、ターゲット電極材料4のスノ臂ツタ−が開始さ
れる。n番目の合金からは定常状態では、ム原子とB原
子がxn/(1−xn)の比で飛び出す。しかし、1番
目の合金から飛び出す原子はある発散角を持っているた
め、他の合金から飛び出し九原子と飛行中に混合する。
When an inert gas such as Ar is introduced into the vacuum chamber, the gas pressure is controlled at an appropriate constant level, and a voltage is applied to the target electrode 2, the target electrode material 4 starts to sludge. In a steady state, Mu atoms and B atoms fly out from the n-th alloy at a ratio of xn/(1-xn). However, because the atoms that fly out of the first alloy have a certain divergence angle, they mix with the nine atoms that fly out of the other alloys while in flight.

このため基板5の移動**上に形成される膜の組成は、
ゆるやかな変化を有するものとなる。
Therefore, the composition of the film formed on the movement of the substrate 5** is
It will have gradual changes.

ここで基板5をn′位置に静止させ丸際形成される膜の
組成は人x(n’)B1−x(d) (0≦x(nr)
≦1 、 n’は連続数)となる。この値はターrット
合金の組成配列形式、ターゲット−基板間隔り、ス/4
ツタリング条件によシ変化するので、基板移動線上の各
点に堆積される膜の組成X(ゴ)は実験的に決定してお
ぐ必要がある。また一般に組成の異なる合金の場合には
スパッタされる原子量が異なり、ターゲツト面内ではス
パッタ量が分布を持つので基板移動線上では膜の堆積速
度r (n’)が場所毎に異なっている。従ってr(n
’)4実験的にV4V定しておく必要がある。この誤組
成X(n’)と堆積速度r(n・)がn′の函数B7得
られれは基板5を移動させることによシ深さ方向に所望
の組成分布を有するA、B合金ohmを得ることが可能
となる。そこでこの点を更に検討すると、基板を移動線
に沿ってn′位置での速にマ(が)で移動させると、時
間jt の間には、n′位置で、X(n’)の組成の膜
がr(n’zΔを形成される。従つ厚がaの場所では組
成は!(n’)となっている。
Here, when the substrate 5 is kept stationary at the n' position, the composition of the film formed around the circle is x(n')B1-x(d) (0≦x(nr)
≦1, n' is a consecutive number). This value is based on the compositional arrangement format of the target alloy, the target-substrate spacing, and the
The composition X of the film deposited at each point on the substrate movement line must be determined experimentally because it changes depending on the stumbling conditions. Furthermore, in the case of alloys having different compositions, the amount of sputtered atoms generally differs, and the sputtered amount has a distribution within the target plane, so that the film deposition rate r (n') differs from place to place on the substrate movement line. Therefore r(n
') 4 It is necessary to experimentally determine V4V. This incorrect composition X(n') and the deposition rate r(n・) are obtained as a function B7 of n'.By moving the substrate 5, an A, B alloy ohm having a desired composition distribution in the depth direction is obtained. It becomes possible to obtain. Therefore, considering this point further, if the substrate is moved along the movement line at the speed of n' position, the composition of X(n') will change at n' position during time jt. A film of r(n'zΔ) is formed. Therefore, at a location where the thickness is a, the composition is !(n').

δ= f r(n’) dt ここで、B6  はスパッター開始時の基板位ttであ
る。即ち、実験的に求めたr (n’)及び、基板の移
動速度T (n’)よりδ(nつを求め、実験的に求め
たx (n’)よI)−nを消去すると、薄膜内の組成
分布x = f @)が、求められる。以上のことから
、実際には薄膜内の組成分布を所望のものとするため、
あらかじめr (n’) 、 x (n’)よシ薄膜内
の組成分布を予定しておき、それを実現する様に基板の
移動速度を指定すればよい。δを基板表面よシ測った厚
さとし、厚さ方向に変化する組成プロフィル: y=yψ)(2) を実現する場合には膜厚−の時の組成y(δ)は、この
時の堆積ノーの組成に等しくなければならない。即ち、 y(J) E−x (n’)            
 (31が成シ立っている。(3)式から基板の存在ナ
ベ龜位置n′が n’=f(δ)(4) として求められる。また、この時の堆積速度r(nつは
実験的に得た式に(4)式を代入してr(n’)=g(
δ)(5) 、か・求められる。
δ= f r(n') dt Here, B6 is the substrate position tt at the start of sputtering. That is, if we calculate δ(n) from the experimentally determined r (n') and the moving speed of the substrate T (n'), and eliminate I)-n by the experimentally determined x (n'), we get The compositional distribution x = f @) within the thin film is determined. From the above, in order to achieve the desired composition distribution within the thin film,
The composition distribution within the thin film as r(n') and x(n') may be planned in advance, and the moving speed of the substrate may be specified so as to realize the composition distribution. Let δ be the thickness measured from the substrate surface, and when realizing the composition profile that changes in the thickness direction: y = yψ) (2), the composition y (δ) when the film thickness is - is the thickness of the deposition at this time. Must be equal to the composition of no. That is, y(J) E−x(n')
(31 holds true. From equation (3), the pan head position n' where the substrate exists can be found as n'=f(δ) (4). Also, the deposition rate r at this time (n is the experimental By substituting equation (4) into the equation obtained, r(n')=g(
δ) (5) , can be found.

また、膜厚がδ+Aδ となう九時には、膜の組成をy
(δ)から、y(δ)+ (dy/dδ)Δaへ変える
必要がある。このためには、基板をn′位置からn’+
jn’位置へ移動させることによ〉堆積層の組成をx(
nす+(dx/dn’ )Δn′へ変化させ、(dy/
dδ)Δδ と(clx/dn’)Δn′を−散さ、せ
ねばならない。従って基板位置の変化は となる。これよシ、n′位置での基板移wJ速縦マ(n
’) B 、と求められる。ここでdδ/at=g(δ):堆積速
度である。
Also, at 9 o'clock when the film thickness becomes δ+Aδ, the film composition is changed to y
It is necessary to change from (δ) to y(δ) + (dy/dδ)Δa. To do this, move the substrate from n' position to n'+
By moving to position jn', the composition of the deposited layer is changed to x(
n+(dx/dn')Δn', (dy/
dδ) Δδ and (clx/dn') Δn' must be distributed. Therefore, the change in substrate position is. This is it, the board movement wJ speed vertical machining at n' position (n
') B is required. Here, dδ/at=g(δ): deposition rate.

また、膜厚δを形成するに要する時間tは=h(δ) で求められるので、(7)式よりδをtの函数δ= h
−I(t)              (8)として
表現できる。(8)式を(5) 、 t6)式へ代入す
仝と、スノfツタリングで堆、t#を開始後の時刻tで
の基板位置は n’ = f (h−’(t) )         
  (9)で、その時の基板移動速度は で与えられる。(9) 、 GQ)式を具体的に計算し
て、基板を移動させると所望の深さ方向の組成分布を有
する薄膜を得ることができる。実際にId t!>l 
Also, the time t required to form the film thickness δ is calculated as = h(δ), so from equation (7), δ can be expressed as a function of t = δ = h
−I(t) (8) By substituting equation (8) into equation (5) and t6), the substrate position at time t after starting t# is n' = f (h-'(t)).
In (9), the substrate moving speed at that time is given by. By specifically calculating the formula (9), GQ) and moving the substrate, a thin film having a desired composition distribution in the depth direction can be obtained. Actually Id t! >l
.

01式は非常に複雑な函数となるので、マイクロプロセ
ッサ−等を用いてn′とマを指定制御すればよい。また
、組成プロフィルは、実験的に測定し九r (n’)の
最大値と最小値の間でしかコントロールできずそれ以上
の組成域を制御する際には、ターゲット電極に用いる合
金組成を適宜変更する必要がある。第4図に、y =y
(δ)の例を示す。最終的にはAES (Auger 
eleetron 5pec−troscopy)をn
J&深さ方向にエッチしながら、形成され九組成プロフ
ィルと予定したプロフィルを比較して修正する。
Since Equation 01 is a very complicated function, n' and ma can be specified and controlled using a microprocessor or the like. In addition, the composition profile can only be controlled between the maximum and minimum values of 9r (n') measured experimentally, and when controlling the composition range beyond that, the alloy composition used for the target electrode must be adjusted appropriately. Need to change. In Figure 4, y = y
An example of (δ) is shown below. Ultimately, AES (Auger
eletron 5pec-troscopy)
While etching in the J& depth direction, the formed nine composition profile and the planned profile are compared and corrected.

以上説明したように、本発明によれば、組成の異なる多
種類の合金を複合して一体化したターゲット電極を用い
、基板位置を適宜移動させることによシ、一つの薄jI
II!内部において深さ方向に一定の組成分布を有する
薄膜をスパッタリング法で作製することが可能となる。
As explained above, according to the present invention, one thin jI
II! It becomes possible to produce a thin film having a constant composition distribution in the depth direction inside by sputtering.

このため、MBE法のような薄膜のエピタキシャル成長
制御が工業的に容易に行うことができる。例えば、A1
5構造の高転移温度Tc  を有する化合物からなる超
伝導薄膜(Nb、Ge等)は薄膜形成法では多結晶のセ
ルフエピタキシャル成長機構によシ高Te層が膜上部に
形成されるとの見方が一般的であシ、組成を深さ方向で
一定の傾きで変えることにより、この成長機構を積極的
に利用することができる。このため、通常の方法では作
製の困峻なA 15 Nb1Siの合成にも利用できる
可能性がある。さらに、磁気デバイス用薄膜で磁気異方
性を組成によシ変化させることや、電子的特性を制御し
て超伝導デバイスを作製する方法などに、一般的に利用
できるので、本発明の方法の波及効果は非常に大きい。
For this reason, thin film epitaxial growth control such as the MBE method can be easily performed industrially. For example, A1
It is generally believed that superconducting thin films (Nb, Ge, etc.) made of compounds with a high transition temperature Tc structure (Nb, Ge, etc.) are formed using a polycrystalline self-epitaxial growth mechanism to form a high Te layer on top of the film. By changing the target composition with a constant slope in the depth direction, this growth mechanism can be actively utilized. Therefore, it may be possible to use it for the synthesis of A 15 Nb1Si, which is difficult to produce by conventional methods. Furthermore, the method of the present invention can be generally used for changing the magnetic anisotropy depending on the composition of thin films for magnetic devices, and for manufacturing superconducting devices by controlling electronic properties. The ripple effect is huge.

【図面の簡単な説明】 第1図は本発明のスパッタリング方式に係る真空槽の断
面図、 第2図はターゲット電極と基板の相対的位置を示す部分
正面図、 第3因はターゲット電極と基板の相対的位置を示す部分
翻面図、 第4図は本発明によシ作製する薄膜の膜厚方向の組成分
布のグラフである。 図面中 lは真空槽、 2は水冷ターゲット電極、 3・は複合ターゲット材料固定板、 4は複合ターグツト材料、 5は基板 6は基板ホルダー、 7は基板加熱用ヒーター、 8は基板移動機構、 9は不活性ガス導入口、 10は排気口、 1コはn番目のターゲット合金、 11はn+1番目のターゲット合金、 17は基板のn′位置、 18は基板の移動直線、 人は直線的組成変化、 Bは周期的ステップ的組成変化である。 特許出願人 日本電信電話公社 代理人 弁理士 光 石 士 部(他1名) も1図 も2図 yP)3図 馬4図
[Brief Description of the Drawings] Fig. 1 is a cross-sectional view of a vacuum chamber according to the sputtering method of the present invention, Fig. 2 is a partial front view showing the relative position of the target electrode and the substrate, and the third factor is the target electrode and the substrate. FIG. 4 is a graph of the composition distribution in the thickness direction of the thin film produced according to the present invention. In the drawing, l is a vacuum chamber, 2 is a water-cooled target electrode, 3 is a composite target material fixing plate, 4 is a composite target material, 5 is a substrate 6 is a substrate holder, 7 is a heater for heating the substrate, 8 is a substrate moving mechanism, 9 is an inert gas inlet, 10 is an exhaust port, 1 is the nth target alloy, 11 is the n+1th target alloy, 17 is the n' position of the substrate, 18 is the straight line of movement of the substrate, and 1 is the linear composition change , B is a periodic step composition change. Patent applicant Nippon Telegraph and Telephone Public Corporation Patent attorney Shibu Mitsuishi (and 1 other person) Figure 1 Figure 2 Figure yP) Figure 3 Horse Figure 4

Claims (1)

【特許請求の範囲】[Claims] スパッタリングのターゲット電極材料として各々組成の
異なる材料を一方向に# 7N!L合し九ものを用い、
基板の位置をターゲット電極表面と平行に組成の異なる
方向に順次移動することによ)膜の深さ方向に組成分布
を有する多元素系薄膜を得ることを特徴とする薄膜01
1造方法。
#7N! Materials with different compositions are used as sputtering target electrode materials in one direction! Using nine L combinations,
Thin film 01 characterized in that a multi-element thin film having a composition distribution in the depth direction of the film is obtained by sequentially moving the position of the substrate parallel to the target electrode surface in directions with different compositions.
1 method.
JP4470082A 1982-03-23 1982-03-23 Production of thin film Pending JPS58161993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4470082A JPS58161993A (en) 1982-03-23 1982-03-23 Production of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4470082A JPS58161993A (en) 1982-03-23 1982-03-23 Production of thin film

Publications (1)

Publication Number Publication Date
JPS58161993A true JPS58161993A (en) 1983-09-26

Family

ID=12698688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4470082A Pending JPS58161993A (en) 1982-03-23 1982-03-23 Production of thin film

Country Status (1)

Country Link
JP (1) JPS58161993A (en)

Similar Documents

Publication Publication Date Title
Lindfors et al. Cathodic arc deposition technology
Ishihara et al. Control of preferential orientation of AlN films prepared by the reactive sputtering method
US4297387A (en) Cubic boron nitride preparation
JP3027502B2 (en) Abrasion-resistant amorphous hard film and method for producing the same
JPH0211669B2 (en)
JPH0751752B2 (en) Plasma energized magnetron sputter deposition method and apparatus
EP2742539B1 (en) Sputtering systems for liquid target materials
JP2714606B2 (en) Wiring layer and its manufacturing method
JP6407273B2 (en) Method for depositing piezoelectric AlN-containing layer, and AlN-containing piezoelectric layer
KR102091001B1 (en) Manufacturing and Repairing Method of Alloy Target by Metal 3D Printing
CN104428442B (en) High power pulse coating process
Barber The control of thin film deposition and recent developments in oxide film growth
JPS58161993A (en) Production of thin film
JPH0799739B2 (en) Method for forming metal thin film
JPH06128737A (en) Sputtering target
CN104271793A (en) High surface area coatings
JPH01119667A (en) Sputtered film-forming apparatus
JPH01255668A (en) Formation of film using coaxial magnetron sputtering device
JP3602861B2 (en) Method of forming metal silicide film
JPS6199669A (en) Method and device for vapor deposition
JPS639583B2 (en)
JPH0790564A (en) High-purity titanium sputtering target
JPH01159372A (en) Sputtering target for forming thin film
Greene et al. The role of low-energy ion/surface interactions during crystal growth from the vapor phase
JP2001262338A (en) Sputter film deposition system