JPS5816173A - Defroster - Google Patents

Defroster

Info

Publication number
JPS5816173A
JPS5816173A JP56113676A JP11367681A JPS5816173A JP S5816173 A JPS5816173 A JP S5816173A JP 56113676 A JP56113676 A JP 56113676A JP 11367681 A JP11367681 A JP 11367681A JP S5816173 A JPS5816173 A JP S5816173A
Authority
JP
Japan
Prior art keywords
defrosting
heater
temperature
cooler
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56113676A
Other languages
Japanese (ja)
Inventor
織田 誠
哲 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56113676A priority Critical patent/JPS5816173A/en
Publication of JPS5816173A publication Critical patent/JPS5816173A/en
Pending legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、圧縮機、凝縮器毛細管および蒸発器からなる
冷凍システムを備えた冷蔵庫、空気調和機及び冷凍ショ
ーケース等の冷却器罠付着した霜を取り除く除霜装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a defrosting device for removing frost attached to cooler traps of refrigerators, air conditioners, refrigeration showcases, etc., which are equipped with a refrigeration system consisting of a compressor, a condenser capillary tube, and an evaporator. It is something.

一般に、冷蔵庫の蒸発器(以下冷却器と記す)あるいは
、空気調和器等の冷却器には、冷蔵庫内に収納された収
納物から発生する水蒸気や扉の開閉によって庫内に侵入
するしめり空気により、あるいは外気と室内空気との温
度差により着霜が生じる。冷却器に霜が付着すると冷却
器の熱交換効率が低下し、冷却能力が低下する。
In general, the evaporator of a refrigerator (hereinafter referred to as a cooler) or the cooler of an air conditioner, etc., is operated by water vapor generated from the items stored in the refrigerator or damp air that enters the refrigerator when the door is opened or closed. , or frost formation occurs due to the temperature difference between outside air and indoor air. When frost adheres to the cooler, the heat exchange efficiency of the cooler decreases and the cooling capacity decreases.

そのため、冷蔵庫においては、加熱除霜を行なう除霜装
置を設け、冷却能力が低下するのを防止している。すな
わち、第1図に示すように。
Therefore, in refrigerators, a defrosting device that performs heating and defrosting is provided to prevent the cooling capacity from decreasing. That is, as shown in FIG.

冷却器1の冷媒管1αに装着された熱交換用フィン3に
除屑用ヒータ2を設け、冷蔵庫が一定時間稼動する毎に
冷蔵庫の冷却装置の運転を停止し、除霜用ヒータ2へ通
電し、除霜用ヒータ2を加熱して除霜を行っている。冷
蔵庫の除霜用ヒータ2としては、従来、ニクロム線、ニ
ッケル・銅線等の金属ヒータ線をアルミパイプ等の保護
管に収納したヒータが用いられている。
A waste removal heater 2 is provided on the heat exchange fin 3 attached to the refrigerant pipe 1α of the cooler 1, and each time the refrigerator operates for a certain period of time, the operation of the refrigerator cooling device is stopped and the defrosting heater 2 is energized. Then, defrosting is performed by heating the defrosting heater 2. As the defrosting heater 2 of a refrigerator, a heater in which a metal heater wire such as a nichrome wire or a nickel/copper wire is housed in a protective tube such as an aluminum pipe has conventionally been used.

この従来の除籍用ヒータ2は自己温度制御機能を有しな
いヒータであり、冷却器に付着した霜の量及び霜の分布
状態にかかわらず一定の発熱量を維持する特性を有する
ため、冷却器1の各部の除霜完了時点が異なる。すなわ
ち、霜が多量に付着している部分では除霜が遅れる。そ
こで従来、除霜が完了したことを検知するためには、冷
却器1の除霜完了時点が最も遅い部分にサーミスタ等の
温度検知装置を設け、除霜をしながら温度を検知して、
ある温度に達した時に除霜が完了したものとみなしてい
る。このため、冷却器1における着霜量が少なく、早く
除霜が完了した部分の温度は通電時間とともに不必要に
高くなる。すなわち、ヒータ2への通電を終了した時点
において冷却器1の各部の温度は第2図に示すように大
きな温度差を生じる。
This conventional removal heater 2 is a heater that does not have a self-temperature control function, and has the characteristic of maintaining a constant amount of heat regardless of the amount of frost attached to the cooler and the frost distribution state. The time point at which defrosting is completed differs for each part. In other words, defrosting is delayed in areas where a large amount of frost has adhered. Conventionally, in order to detect that defrosting has been completed, a temperature detection device such as a thermistor is installed at the part of the cooler 1 where defrosting is completed latest, and the temperature is detected while defrosting is being performed.
Defrosting is considered complete when a certain temperature is reached. For this reason, the temperature of the portions of the cooler 1 where the amount of frost is small and defrosting is completed quickly increases unnecessarily as the energization time increases. That is, at the time when the heater 2 is no longer energized, there is a large difference in temperature between the various parts of the cooler 1, as shown in FIG.

第2図において1曲線4.5および6は、それぞれ除霜
用ヒータ2.冷媒管1αおよび熱交換フィン3の冷却器
1の上部、中部および下部位置における温度分布を示し
ている。第2図の曲線4および5に示すように冷却器1
の温度が不必要に高温になると、除霜を完了した後に冷
却運転を再開した際に冷却器1の温度を低下させるため
の時間が長くなり、消費電力が大きくなる欠点を有して
いた。またさらに、除霜用ヒータ2を加熱するための電
力も不必要に大きいという欠点がある。また、冷蔵庫内
に収納された食品等の温度上昇を招き易いという欠点が
ある。
In FIG. 2, curves 4.5 and 6 represent the defrosting heater 2.5, respectively. The temperature distribution of the refrigerant pipe 1α and the heat exchange fins 3 at the upper, middle, and lower positions of the cooler 1 is shown. Cooler 1 as shown in curves 4 and 5 of FIG.
If the temperature of the cooler 1 becomes unnecessarily high, it takes a long time to lower the temperature of the cooler 1 when the cooling operation is resumed after defrosting is completed, resulting in an increase in power consumption. Furthermore, there is a drawback that the electric power required to heat the defrosting heater 2 is unnecessarily large. Another disadvantage is that the temperature of foods stored in the refrigerator tends to rise.

上記欠点の解決手段として、上記除霜ヒータの一部を正
の大きな抵抗温度係数を有する正特性サーミスタとし、
該ヒータの電流値が予め定める一定値に減少した時、上
記ヒータへの給電を停止制御する除霜制御装置が特開昭
54−101533にて開示されている。この特開昭5
4−105533による除霜完了方式は、除霜用ヒータ
が長期間の苛酷な使用条件の元で特性劣化を生じない場
合には問題ないが、現実には長期間の加熱、冷却の繰返
しにより除霜用ヒータの抵抗が変化し、除霜終了点が次
第に変動し、除霜過多もしくは除霜不完全な状態で終了
するという不具合が生じる。この解決手段として本発明
者等は冷却器1に付着した霜が除霜された時点およびそ
の後における自己温度制御機能を有するヒータのヒータ
電流が着霜量6着霜状態によらず、一定の電流減少勾配
を示すことを新らたに見い出し、ヒータ電流が一定電流
減少勾配に達した時除霜完了とする新規な除霜装置(特
願昭55−160788)を採用している。該除霜装置
は長期間安定した除籍性能を維持でき、除霜完了時の冷
却器1の各部の温度分布が均一化されるとともに、不必
要に高温となる部分が生じないため、除霜時消費電力低
減に大きな効果を有する良好な除霜装置である。しかし
、自己温度制御機能を有するヒータは給電開始時、突入
電流と呼ばれる大電流が流れ、急激にヒータ温度が上昇
する特性を有しており、この時の電力消費量が省電力の
面でまだ問題を有していた。
As a solution to the above drawback, a part of the defrosting heater is made of a positive temperature coefficient thermistor having a large positive temperature coefficient of resistance,
JP-A-54-101533 discloses a defrosting control device that controls stopping power supply to the heater when the current value of the heater decreases to a predetermined constant value. This JP-A-5
The defrosting completion method according to No. 4-105533 has no problem if the defrosting heater does not deteriorate in characteristics under harsh usage conditions for a long period of time, but in reality, it is difficult to defrost after repeated heating and cooling over a long period of time. The resistance of the frost heater changes, and the defrosting end point gradually changes, causing problems such as excessive defrosting or incomplete defrosting. As a means of solving this problem, the present inventors have proposed that the heater current of the heater having a self-temperature control function at the time when the frost adhering to the cooler 1 is defrosted and thereafter is a constant current regardless of the frost amount 6 and the frosting state. A new defrosting device (Japanese Patent Application No. 55-160788) has been newly discovered that exhibits a decreasing slope, and the defrosting is completed when the heater current reaches a constant current decreasing slope. This defrosting device can maintain stable defrosting performance for a long period of time, and when defrosting is completed, the temperature distribution in each part of the cooler 1 is made uniform, and there are no parts that become unnecessarily high temperature. This is a good defrosting device that has a great effect on reducing power consumption. However, heaters with a self-temperature control function have the characteristic that when power supply starts, a large current called inrush current flows, causing the heater temperature to rise rapidly. I had a problem.

本発明の目的は低消費電力で効率の良い除霜を行ない得
る除霜装置を提供するにある。
An object of the present invention is to provide a defrosting device that can defrost efficiently with low power consumption.

本発明は、上記した目的を達成するために、抵抗の温度
係数が正で、かつ該抵抗の温度係数が急変する温度を有
する除霜用ヒータと、冷凍サイクル稼動停止後一定時間
経過した後に前記除霜用ヒータへの給電を開始する制御
手段とを有することを特徴とするものである。
In order to achieve the above object, the present invention provides a defrosting heater having a positive temperature coefficient of resistance and a temperature at which the temperature coefficient of the resistance suddenly changes; The present invention is characterized by having a control means for starting power supply to the defrosting heater.

まず、本発明に用いた除霜用ヒータの基本動作特性につ
いて説明する。該除霜用ヒータの給電時の電流−電圧特
性を第3図に示す。第3図において、曲線7は周囲温度
7’、℃時の特性を、曲線8は周囲温度11℃時(ここ
でTt>T+)の特性を示している。曲線7の特性を有
する除霜用ヒータに定格電圧(例えば100V)を給電
すると1曲線7の立上り時の特性を延長し、定格電圧と
交わる点A1における電流I、が瞬間的に流れこの電流
1.Ticよるジュール熱のため、除霜用ヒータが急激
に温度上昇する。温度上昇に伴ない除霜用ヒータ固有抵
抗が上昇し、電流が減少し周囲温度がI“1℃時には曲
線7のA2点において安定する。次に除霜用ヒータの発
熱により周囲温度がT、℃へ上昇するにつれて、曲線8
のEt点へ移動する。本発明に用いた除霜用ヒータは、
上記に示したように、電源投入時に安定動作時の2〜3
倍程度の大電流が流れ、急速に温度上昇した後、使用材
料で定まる一定の温度で動作するいわゆる自己温度制御
機能を有したヒータである。
First, the basic operating characteristics of the defrosting heater used in the present invention will be explained. FIG. 3 shows the current-voltage characteristics of the defrosting heater during power supply. In FIG. 3, curve 7 shows the characteristics when the ambient temperature is 7', and curve 8 shows the characteristics when the ambient temperature is 11° C. (here, Tt>T+). When a rated voltage (for example, 100 V) is supplied to a defrosting heater having the characteristics of curve 7, the characteristics at the rise of curve 7 are extended, and a current I instantaneously flows at point A1 where it intersects with the rated voltage. .. Due to the Joule heat generated by Tic, the temperature of the defrosting heater rises rapidly. As the temperature rises, the defrosting heater's specific resistance rises, the current decreases, and when the ambient temperature is I'1°C, it stabilizes at point A2 of curve 7. Next, the ambient temperature rises to T, due to the heat generated by the defrosting heater. As the temperature rises to ℃, the curve 8
Move to the Et point. The defrosting heater used in the present invention is
As shown above, 2 to 3 during stable operation when power is turned on.
This heater has a so-called self-temperature control function, in which a current about twice as large flows through it, and after the temperature rises rapidly, it operates at a constant temperature determined by the material used.

次に本発明による除霜装置について説明する。Next, a defrosting device according to the present invention will be explained.

自己温度制御機能を有する除霜用ヒータに流れる電流の
時間的な変化及び冷却器1の温度の推移を第4図に示す
。第4図において、横軸は圧縮機が停止し、除霜サイク
ルが開始した時からの時間、縦軸は除霜用ヒータを流れ
る電流および冷却器1の温度を示し、曲線9はヒータ電
流を、曲線10は冷却器の温度を示している。除霜用ヒ
ータは圧縮器停止後一定時間(t、)後に通電開始する
と、通電直後に突入電流が流れ急速に温度上昇し、それ
につれてヒータ電流9が減少し始め、冷却器の温度が上
昇し除霜が開始される。冷却器の各部の除籍が開始され
ると霜の融解熱のためヒータ電流90減少率が低下し、
はぼ一定の電流値となる。次に除霜が完了すると、冷却
器の温度が再び上昇し始め、ヒータ電流も再び減少し始
める。0点が除霜完了時点であり、11は除霜完了後に
おけるヒータ電流の減少勾配を示している。第5図にお
いて、曲線12および曲線13は、比較の為九示した、
圧縮機停止と同時に除霜用ヒータに通電面始した場合の
ヒータ電流及び冷却器の温度を示しており、除霜完了時
点はC′である。除籍サイクル開始時。
FIG. 4 shows temporal changes in the current flowing through the defrosting heater having a self-temperature control function and changes in the temperature of the cooler 1. In FIG. 4, the horizontal axis shows the time since the compressor stopped and the defrost cycle started, the vertical axis shows the current flowing through the defrosting heater and the temperature of the cooler 1, and curve 9 shows the heater current. , curve 10 shows the temperature of the cooler. When the defrosting heater starts energizing a certain period of time (t,) after the compressor stops, an inrush current flows immediately after the energization, and the temperature rises rapidly.As the heater current 9 begins to decrease, the temperature of the cooler rises. Defrosting begins. When each part of the cooler starts to be removed from the register, the heater current 90 reduction rate decreases due to the heat of melting the frost.
The current value is almost constant. Then, once defrosting is complete, the cooler temperature begins to rise again and the heater current begins to decrease again. Point 0 is the point of completion of defrosting, and point 11 indicates the decreasing slope of the heater current after completion of defrosting. In FIG. 5, curve 12 and curve 13 are shown for comparison.
It shows the heater current and the temperature of the cooler when the defrosting heater starts to be energized at the same time as the compressor stops, and the time point at which defrosting is completed is C'. At the start of the expulsion cycle.

圧縮機が停止した後一定時間(tl)遅れて除霜用ヒー
タに通電開始すること例より、通電開始時の冷却器の温
度が該一定時間(t、)の自然温度上昇の効果で、圧縮
機停止時の冷却器温度より高いため、除霜用ヒータの電
流が小さくなり除籍開始から除霜完了までの時間は若干
長くなるが、除霜消費電力量としては、低減できること
を見い出した。なお、上記一定時間(tl)は5分以上
では冷却器名自然温度上昇速度が小さくなり省電力効果
が少なくなるため、5分間以内が望ましい。
From the example, power supply to the defrosting heater is started after a certain period of time (tl) after the compressor has stopped. Since the temperature of the cooler is higher than when the machine is stopped, the current of the defrosting heater becomes smaller and the time from the start of defrosting to the completion of defrosting becomes slightly longer, but we found that the amount of power consumed for defrosting can be reduced. It should be noted that if the above-mentioned certain time (tl) is more than 5 minutes, the natural temperature rise rate of the cooler will be low and the power saving effect will be reduced, so it is desirable that the certain time (tl) be within 5 minutes.

次に本発明による除霜装置のブロック図及び除霜装置と
圧縮機の動作を示す時間線図を第5図及び第6図に示す
。第5図において、14は電源、15は圧縮機、16は
圧縮機15への給電用スイッチ、17は圧縮機を制御す
る制御回路、18は圧縮機15の稼動積算時間が一定時
間に到達し、口かも圧縮機15が停止した時、除霜開始
を指令する除霜開始回路、19は除籍開始回路からの指
令信号を受けて後一定時間後に信号を発生するタイマー
回18.20は除霜用ヒータ、21は除籍用ヒータ20
への給電用スイッチ、22は除霜用ヒータ20を流れる
電流を検出するための電流検出回路23は電流検出回路
22が発生する検出信号を演算処理する命令を具備した
演算処理回路、24は演算処理回路が発生する倫号によ
り、除霜用ヒータ20への給電用スイッチ21を切断、
tたは、前記タイマー回路19の信号により除用用ヒー
タ20への給電用スイッチ21を閉じるための除霜用ヒ
ータ制御回路である。また第6図において、(イ)は圧
縮機15の稼動を示す信号の波形図1)、、D、、D。
Next, a block diagram of the defrosting device according to the present invention and a time diagram showing the operations of the defrosting device and the compressor are shown in FIGS. 5 and 6. In FIG. 5, 14 is a power supply, 15 is a compressor, 16 is a switch for supplying power to the compressor 15, 17 is a control circuit for controlling the compressor, and 18 is a control circuit for controlling the compressor 15 when the accumulated operating time reaches a certain time. , a defrosting start circuit that commands the start of defrosting when the compressor 15 stops; 19 a timer circuit that generates a signal after a certain period of time after receiving a command signal from the defrosting start circuit; and 18 a timer circuit 20 a defrosting circuit. 21 is a heater for expulsion 20
22 is a current detection circuit 23 for detecting the current flowing through the defrosting heater 20, and 24 is an arithmetic processing circuit equipped with instructions for arithmetic processing of the detection signal generated by the current detection circuit 22. Due to the noise generated by the processing circuit, the power supply switch 21 to the defrosting heater 20 is disconnected,
t is a defrosting heater control circuit for closing the power supply switch 21 to the defrosting heater 20 in response to the signal from the timer circuit 19; In FIG. 6, (A) is a waveform diagram of a signal indicating the operation of the compressor 15 (1), ,D,,D.

(ロ)は圧縮機15の稼動積算時間が一定値に達し、し
かも圧縮機15が停止した時に、除霜開始回路から出さ
れる信号の波形図E、(ハ)は除霜開始回路18からの
信号を受けて後一定時間後にタイマー回路19が発生す
る信号の波形図F、←)はタイマー回路19の信号を受
けて除籍用ヒータ制御回路24が給電用スイッチ21を
閉じ、除霜用ヒータ20が通電状態にあることを示す信
号波形図0゜(ホ)は演算処理回路23の除霜完了信号
波形図Hである。
(b) is a waveform diagram E of the signal output from the defrosting start circuit when the cumulative operating time of the compressor 15 reaches a certain value and the compressor 15 is stopped, and (c) is a waveform diagram E of the signal output from the defrosting start circuit 18. A waveform diagram F (←) of a signal generated by the timer circuit 19 after a certain period of time after receiving the signal shows that upon receiving the signal from the timer circuit 19, the removal heater control circuit 24 closes the power supply switch 21, and the defrosting heater 20 A signal waveform diagram 0° (E) showing that the is in the energized state is a defrosting completion signal waveform diagram H of the arithmetic processing circuit 23.

この装置において、圧縮機15の稼動時間を示す信号り
、、n、の積算値が予め定める一定値圧到達し、さらに
圧縮機制御回路17が給電用スイッチ16を切断し、圧
縮機15への給電を停止した時除紺開始回M18がタイ
マー回路19へ信号Eを発生し、タイマ回路力i動作す
る。タイマー回路が予め定める一定時間に到達すると除
霜用ヒータ制御回j824へ信号I゛を発生しご除霜用
ヒータ制御回路24は給電用スイッチ21を閉じ除霜用
ヒータ20が発熱を始める。なお、圧縮機制御回路17
は除霜用ヒータ20が動作している間は圧縮機15を休
止し、除籍用と一タ20が休止している間は通常動作を
行なう様に制御している。
In this device, when the integrated value of the signals , , n, indicating the operating time of the compressor 15 reaches a predetermined constant pressure, the compressor control circuit 17 disconnects the power supply switch 16 and the power supply to the compressor 15 is turned off. When the power supply is stopped, the dark blue removal start circuit M18 generates a signal E to the timer circuit 19, and the timer circuit power i operates. When the timer circuit reaches a predetermined period of time, it generates a signal I' to the defrosting heater control circuit j824, the defrosting heater control circuit 24 closes the power supply switch 21, and the defrosting heater 20 starts generating heat. Note that the compressor control circuit 17
The compressor 15 is controlled to be inactive while the defrosting heater 20 is operating, and to operate normally while the defrosting heater 20 is inactive.

除霜用ヒータ20を流れる電流は電流検出回路22に供
給される。電流検出回路22は電流変成器などで電流に
応動する信号を作り、演算回路23に供給する。電流検
出回路22は時刻Tにおける除霜用ヒ〜り20を流れる
電流JT及び時刻(T十ΔT〕における電流I(T十Δ
T)を検出しこの電流11.1<T十Δr)K応じた信
号を演算処理回路23へ供給する。演算処理回路23は
入力された信号を記憶するとともに、電流JTの減少勾
配C1r−ICr+ΔT)/Δ7゛)を演算により求め
、該減少勾配があらかじめ定められた値αよりも小さい
値になった後、再び減少勾配が増大し、値αよりも大き
なりに達した場合に出力信号を発生して、除籍用ヒータ
制御回路24へこの出力信号を供給する。演算面745
23の出力信号が制御回路2tK供給されると、制御回
路24は給電用スイッチ21を開放する。給電用スイッ
チ21が開放されれば、除霜用ヒータ20へ供給された
電流は遮断され、除霜は終了する。なお、演算処理回路
は給電用スイッチ21が閉じられた後、あらかじめ定め
られた時間が経過した後から演算を行ない給電開始直後
の電流減少勾配により誤動作するのを防止しである。
The current flowing through the defrosting heater 20 is supplied to a current detection circuit 22. The current detection circuit 22 uses a current transformer or the like to generate a signal responsive to current and supplies it to the arithmetic circuit 23 . The current detection circuit 22 detects the current JT flowing through the defrosting heater 20 at time T and the current I (T0ΔT) at time (T0ΔT).
T) is detected and a signal corresponding to this current 11.1<T+Δr)K is supplied to the arithmetic processing circuit 23. The arithmetic processing circuit 23 stores the input signal and calculates the decreasing slope C1r-ICr+ΔT)/Δ7゛) of the current JT, and after the decreasing slope becomes a value smaller than a predetermined value α. , when the decreasing slope increases again and reaches a value larger than α, an output signal is generated and this output signal is supplied to the expulsion heater control circuit 24. Calculation surface 745
When the output signal 23 is supplied to the control circuit 2tK, the control circuit 24 opens the power supply switch 21. When the power supply switch 21 is opened, the current supplied to the defrosting heater 20 is cut off, and defrosting ends. Note that the arithmetic processing circuit performs calculations after a predetermined period of time has elapsed after the power supply switch 21 is closed to prevent malfunctions due to the current decreasing gradient immediately after the start of power supply.

次に本発明例よる除霜装置Kより除霜完了した時点にお
ける冷却器1の各部の温度分布を第7図に示す。第7図
において、曲線25は自己温度制御機能を有する豚箱用
ヒータ2′の温度、曲線26は冷媒管1αの温度1曲線
27は熱交換用フィン30表面温度であり、第2図に示
した従来の除霜装置による結果と較べて均一化されると
ともに不必要に高温となる部分が無い。
Next, FIG. 7 shows the temperature distribution of each part of the cooler 1 at the time when defrosting is completed by the defrosting device K according to an example of the present invention. In FIG. 7, a curve 25 is the temperature of the pig box heater 2' having a self-temperature control function, a curve 26 is the temperature of the refrigerant pipe 1α, and a curve 27 is the surface temperature of the heat exchange fin 30, which is shown in FIG. Compared to the results obtained by conventional defrosting devices, the results are more uniform and there are no areas that become unnecessarily hot.

以上にのべたごとく、本発明によれば、ヒータによる加
熱豚箱を行なう除霜装置において、少なくとも抵抗の温
度係数が正で、かつ該抵抗の温度係数が急変する温度を
有する。いわゆる自己温度制御機能を持つ豚箱用ヒータ
への通電開始を圧縮機の停止と同時でなく、あらかじめ
定められた一定時間遅れて行なうことVCより、除霜消
費電力量低減効果が得られると共に冷却器の不必要な温
度上昇も防止でき、またさらに除霜サイクル中における
冷凍食品等の温度上昇を低く押えることができる。
As described above, according to the present invention, in a defrosting device that heats pig boxes using a heater, at least the temperature coefficient of the resistance is positive and the temperature coefficient of the resistance changes rapidly. VC starts energizing the pig box heater, which has a so-called self-temperature control function, not at the same time as the compressor stops, but after a predetermined period of time.By VC, it is possible to reduce the power consumption of defrosting, and to reduce the power consumption of the cooler. It is also possible to prevent unnecessary temperature rises in frozen food products, etc. during the defrosting cycle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷蔵庫における冷却器の構造を示す・11 正面図、第2図は従来の除霜用ヒータが使用された場合
の、除霜完了時における冷却器各部の温度分布を示す特
性図、第3図は本発明による除霜装置に使用される除籍
用ヒータの特性図、第4図は本発明の除霜装置における
除霜用ヒータを流れるヒータ電流と冷却器温度の変化を
示す特性図、第5図は本発明例よる除霜装置構成を示す
ブロック図、第6図は本発明による除霜装置動作時にお
ける装置要部の信号の波形図で第7図は冷却器各部の温
度分布を示す特性図である。 20:除霜用ヒータ 代理人弁理士薄1)利、−雫 2 第1図 第2図 上中下 部都邪
Figure 1 shows the structure of a cooler in a refrigerator. 11 A front view, Figure 2 is a characteristic diagram showing the temperature distribution of each part of the cooler when defrosting is completed when a conventional defrosting heater is used. FIG. 3 is a characteristic diagram of the defrosting heater used in the defrosting device of the present invention, and FIG. 4 is a characteristic diagram showing changes in heater current flowing through the defrosting heater and cooler temperature in the defrosting device of the present invention. , FIG. 5 is a block diagram showing the configuration of a defrosting device according to an example of the present invention, FIG. 6 is a waveform diagram of signals of the main parts of the defrosting device according to the present invention during operation, and FIG. 7 is a temperature distribution of each part of the cooler. FIG. 20: Defrosting heater representative patent attorney Usui 1) Tori, - Shizuku 2 Figure 1 Figure 2 Upper middle and lower Toja

Claims (1)

【特許請求の範囲】[Claims] ヒータによる加熱除霜を行なう除霜装置において、少な
くとも、抵抗値の温度係数が正で、かつ抵抗値の温度係
数がある温度で急変する特性を有する除霜用ヒータと、
冷凍サイクル稼動停止後一定時間経過後に前記除霜用ヒ
ータへの給電を開始する制御手段とを有することを特徴
とする除霜装置。
A defrosting device that performs heating defrosting using a heater includes at least a defrosting heater that has a positive temperature coefficient of resistance and a characteristic that the temperature coefficient of resistance suddenly changes at a certain temperature;
A defrosting device comprising: a control means for starting power supply to the defrosting heater after a predetermined period of time has passed after the refrigeration cycle stops operating.
JP56113676A 1981-07-22 1981-07-22 Defroster Pending JPS5816173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56113676A JPS5816173A (en) 1981-07-22 1981-07-22 Defroster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56113676A JPS5816173A (en) 1981-07-22 1981-07-22 Defroster

Publications (1)

Publication Number Publication Date
JPS5816173A true JPS5816173A (en) 1983-01-29

Family

ID=14618337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56113676A Pending JPS5816173A (en) 1981-07-22 1981-07-22 Defroster

Country Status (1)

Country Link
JP (1) JPS5816173A (en)

Similar Documents

Publication Publication Date Title
KR860002043B1 (en) Defrosting apparatus
JPH0894234A (en) Defrosting device for refrigerator
US4530218A (en) Refrigeration apparatus defrost control
EP0803690B1 (en) Defrost control of a refrigeration system utilizing ambient air temperature determination
EP1325271B1 (en) Refrigerating apparatus control method
JPS5816173A (en) Defroster
JP2975878B2 (en) refrigerator
JPH05215460A (en) Method and apparatus for deforsting evaporator
JPH0634259A (en) Electrical refrigerator
US3013400A (en) Defrost control for refrigerating apparatus
JPS58214767A (en) Defroster
JPH102658A (en) Refrigerator with freezer
JP2000329446A (en) Refrigerator
JPS5816171A (en) Defroster
JPS5966677A (en) Defroster
JPS5816170A (en) Defroster
KR100190126B1 (en) Defrosting cycling decision method and its apparatus for evaporator of a refrigerator
JP3033260B2 (en) Defrosting control device for refrigeration equipment
JP6847262B2 (en) Refrigerator, heater drive, heater drive method and program
JP2589105B2 (en) Heat pump type air conditioner
JPS6140905B2 (en)
JPS6140904B2 (en)
JPS60226688A (en) Defrostation controller
JPS6142179B2 (en)
JPS60114670A (en) Air conditioner