JPS58161487A - Optical exchange circuit network - Google Patents

Optical exchange circuit network

Info

Publication number
JPS58161487A
JPS58161487A JP57043132A JP4313282A JPS58161487A JP S58161487 A JPS58161487 A JP S58161487A JP 57043132 A JP57043132 A JP 57043132A JP 4313282 A JP4313282 A JP 4313282A JP S58161487 A JPS58161487 A JP S58161487A
Authority
JP
Japan
Prior art keywords
optical
wavelength
signals
spatial
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57043132A
Other languages
Japanese (ja)
Inventor
Takehiko Yamaguchi
武彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57043132A priority Critical patent/JPS58161487A/en
Publication of JPS58161487A publication Critical patent/JPS58161487A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To attain optical exchange between optical signals in wavelength split multiplex, by switching an optical wavelength multiplex light with an optical spatial switch after demultiplexing, transmitting the output light to a demultiplexer via an optical wavelength converter and obtaining the optical wavelength multiplex output light again. CONSTITUTION:Inputs of n-wave from the same optical path are seperated into n-set of spatial separation signals at an optical demultiplexing device D and led to an n-set of optical spatial switch S, where different wavelengths are exchanged. The output light is led to an optical wavelength converter CONVi, where n- set of optical signals incoming on the same optical path are converted at first. The replacement of the n-set of waves among the input optical paths is executed by collecting the outputs of the same wavelength lambdai and providing n-group of optical spatial switches Si performing spatial exchange among them only corresponding to each wavelength. The outputs of the switch S are sectioned into in total m-group of optical signals so as to obtain n-set of different wavelength of optical signals. That is, each group of m-set is an optical signal separated for each wavelength spatially. The optical signals are transmitted on output optical paths as n-set of multiple signals at an optical multiplexer M.

Description

【発明の詳細な説明】 (1)発明の分野 本発明は光交換機に関し、特に光交換機の通話スイッチ
回路網の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of the Invention The present invention relates to an optical exchange, and particularly to the configuration of a call switch network of an optical exchange.

(2発明の背景 光ファイバーによる光伝送技術の発達はめざましい。又
一方では各種光機能素子あるいは光集積回路の開発実用
化研究も内外において精力的に進められているうその結
果、光信号を直接交換する光交換機の出現に対する期待
も高まりつつある。
(2) Background of the Invention The development of optical transmission technology using optical fibers has been remarkable. On the other hand, research on the development and practical application of various optical functional devices and optical integrated circuits is also being vigorously advanced at home and abroad. As a result, optical signals can be directly exchanged. Expectations are also rising for the emergence of optical switching equipment.

光ファイバーを使用した多重伝送方式としては多モード
あるいは単一モードの光を利用した時分割ディジタル多
重伝送方式の開発実用化が主流であるが、一方ではn個
の相異なる波長λ1.・・・入九の光源の出力を光合波
器で多重化し、これを1本の光ファイバーで伝送した後
、光分波器によって多重分離する波長分割多重伝送方式
の開発実用化も進められている。特に後者の波長分割多
重伝送方式は画像信号なとの非常に広い帯域を有する信
号を1チヤネル1波対応の形でアナログのまま直接強度
変調などのアナログ変調を行うか、原信号を−Hディジ
タル符号化し、これにより光をディジタル変調した後、
波長分割多重伝送する方式などに特に適すると考えられ
ている。
The mainstream of multiplex transmission systems using optical fibers is the development and practical use of time division digital multiplex transmission systems that use multimode or single mode light. ...The development and practical application of a wavelength division multiplexing transmission system is underway in which the outputs of nine light sources are multiplexed using an optical multiplexer, transmitted through a single optical fiber, and then demultiplexed using an optical demultiplexer. . In particular, in the latter wavelength division multiplexing transmission system, signals with a very wide band such as image signals can be directly modulated by analog modulation such as intensity modulation in a form that supports one channel and one wave, or the original signal can be converted to -H digital. After encoding and thus digitally modulating the light,
It is considered to be particularly suitable for wavelength division multiplexing transmission systems.

従来、このような波長分割多重方式に間する内外の各種
検討は主に多重伝送を対象としたもので、これを交換と
関連づけた研究などは見当らず全くの未開拓分野である
Conventionally, various studies at home and abroad regarding such wavelength division multiplexing systems have mainly focused on multiplex transmission, and there has been no research relating this to switching, making this a completely unexplored field.

(3)発明の目的 本発明の目的は上記のように波長分割多重された光信号
相互間の光交換回路網を提供することにある。
(3) Purpose of the Invention An object of the present invention is to provide an optical switching network between wavelength division multiplexed optical signals as described above.

(4)発明の要点 本発明の光交換回路網は、複数のおのおの光波長多重さ
れた入力光を分波後光空間スイッチに導き、スイッチン
グ後の出力光をおのおの光波長変換器を介して合波器に
送り再び複数のおのおの光波長多重された出力光として
送出することにより構成されている。
(4) Key Points of the Invention The optical switching network of the present invention guides a plurality of wavelength-multiplexed input lights to an optical space switch after demultiplexing, and combines the output lights after switching via each optical wavelength converter. It is configured by sending the light to a wavelength multiplexer and sending it out again as output light that has been multiplexed with a plurality of optical wavelengths.

(51発明の実施例 以下、本発明を実施例にもとづき説明する。(Examples of 51 inventions Hereinafter, the present invention will be explained based on examples.

第1図は本発明の第1の実施例を示すブロック図である
。図中、■1〜ImzOt〜OIAはおのおのn波(λ
1.λ′暮、・・・入れ)の光波長多重入力光ファイバ
ーおよび出力光フィイバーである。各光波長多重入力光
ファイバー上のn波の光信号は各々光分波器りにてされ
lファイバー(l光路)1光信号の形で合計量nケの空
間的に分離された光信号として光空間スイッチSに導か
れ、ここで光路の空間的な乗り換え(交換)を行う、光
空間スイッチSからの合計量nケの光信号出力は再び各
群nヶの光信号からなるm群の光信号群に区分けされる
。ここで同一群のnヶの光信号は合計nヶの光波長変換
器C0NVL(L=1〜N)に導かれる。光波長変換器
CON VLは後述のように任意の光波長信号を入力と
して受けると、これを波長λ乙の特定波長の光信号に変
換するものである。その結果、同一群のnヶの光信号は
λ】・・・λ^の相異る波長の光信号に変換され、光合
波器Mにてn波の光波長多重信号として出力光ファイバ
ーに送出される。
FIG. 1 is a block diagram showing a first embodiment of the present invention. In the figure, ■1~ImzOt~OIA is each n wave (λ
1. wavelength-multiplexed input optical fiber and output optical fiber. The n-wave optical signals on each wavelength-multiplexed input optical fiber are each passed through an optical demultiplexer and are converted into a total of n spatially separated optical signals in the form of 1 fiber (1 optical path) 1 optical signal. The total amount of n optical signals output from the optical space switch S, which is guided to the space switch S and spatially switches (exchanges) the optical path here, is again converted into m groups of light consisting of n optical signals in each group. It is divided into signal groups. Here, the n optical signals of the same group are guided to a total of n optical wavelength converters C0NVL (L=1 to N). As will be described later, the optical wavelength converter CON VL receives an arbitrary optical wavelength signal as input and converts it into an optical signal of a specific wavelength of wavelength λB. As a result, the n optical signals in the same group are converted into optical signals with different wavelengths of λ]...λ^, and sent out to the output optical fiber as n-wavelength multiplexed signals at the optical multiplexer M. Ru.

ここに、光分岐器、光合波器等々の実現法は光技術関係
業者には衆知の技術でプリズム、回折格子、モ渉フィル
タ等々で実現できる。一方、光空間スイッチについても
機械的な動作で光伝送路の切替を行う方式+ LtN&
03などの材料による方向性光結合器を光IC技術によ
り配列、し、スイッチ・マトリックスを構成する方法な
どが知られている。光波長変換器については、現状技術
からみると、一番その実現が難かしい部分である。現状
で酷も簡単な方法としては第2図(a)に示すように任
意波長光を受光する受光器PDで一旦電気信号に変換後
、これで再び特定波長の発光素子LDを駆動すればよい
。本方法は一部電気信号が介在するが光IC技術でPD
およびLD部を同−IC内に形成してしまえば外見的に
は光−光の直接変換素子としてみえ現状では最も実現し
やすい。
Here, optical branching devices, optical multiplexers, etc. can be realized using techniques such as prisms, diffraction gratings, mole wave filters, etc., which are well known to those in the optical technology industry. On the other hand, for optical space switches, there is also a method of switching optical transmission lines by mechanical operation + LtN&
A method is known in which a switch matrix is constructed by arranging directional optical couplers made of materials such as 03 using optical IC technology. Optical wavelength converters are the most difficult part to realize based on current technology. As shown in Figure 2 (a), the currently extremely simple method is to convert the light into an electrical signal using a photoreceiver PD that receives light of any wavelength, and then drive the light emitting element LD of a specific wavelength again with this signal. . Although this method involves some electrical signals, PD is generated using optical IC technology.
If the LD section and LD section are formed within the same IC, it will appear as a direct light-to-light conversion element, and it is currently the easiest to realize.

第2図(b)は現在研究が進められつつある方法で電気
信号を介在せず光波長を直接変換する方法である。具体
的には非線形光学結晶NOCに先人力信号λtと制御光
人力λCを同時゛に加えると、土=工士土なる波長λJ
の光信号が出力に得入J  λ【  入C られる。
FIG. 2(b) shows a method that is currently being researched to directly convert optical wavelengths without intervening electrical signals. Specifically, when the predecessor power signal λt and the control light power λC are simultaneously applied to the nonlinear optical crystal NOC, the wavelength λJ becomes
An optical signal of J λ[ input C is obtained at the output.

第3図は本発明の第2の実施例を示すブロック図である
。さきの第1図に示した第1の実施例では全ての光信号
を空間的に分離し、光空間スイッチにより交換する方法
で、光空間スイッチのサイズが大きくなる欠点がある。
FIG. 3 is a block diagram showing a second embodiment of the invention. In the first embodiment shown in FIG. 1, all optical signals are spatially separated and exchanged using an optical space switch, which has the disadvantage that the size of the optical space switch becomes large.

しかるに、光交換の目的、すなわち任意の光入力を交換
することは、同一ファイバー(同一光路)上で波長多重
されたn波λ1〜λ、相互の波長的入れ換え(光波長変
換スイッチ機能)と、かつ異ファイバー(異光路)相互
間の空間的入れ換え(光空間スイッチ機能)とに分解で
きる。これは丁度時分割交換回路網がタイムスロット変
換スイッチ機能=時間スイッチ機能と異ハイウェイイ互
閏の空間スイッチ機能とに分解され、これらを朝合せる
ことにより各種時分割回路網を形成できることに対比し
て考えると容易に理解できる。
However, the purpose of optical exchange, that is, exchanging arbitrary optical inputs, is to exchange n waves λ1 to λ wavelength-multiplexed on the same fiber (same optical path), mutual wavelength swapping (optical wavelength conversion switch function), It can also be broken down into spatial switching between different fibers (different optical paths) (optical space switching function). This is in contrast to the fact that a time division switching network is broken down into a time slot conversion switch function (time switch function) and a space switch function of different highways, and by combining these functions, various time division networks can be formed. It is easy to understand if you think about it.

第;3図に示した例では同一ファイバー(光路)からの
n波の先人力信号はさきと同様光分波器りてIfケの空
間的に分離された信号に分離され、n×nの容量をもつ
光空間スイッチ込に導かれ異波長相互間の交換が行われ
る。光空間スイッチ4.のnケの出力光はさきの第2図
で説明したと同様の光波長変換器C0NVL(i−=1
〜N)に導かれる。その結果、同一ファイバー(光路)
で到来したn波の光信号相互間での入れ替え(交換)が
まず行われる。
In the example shown in Figure 3, the n-wave predecessor power signal from the same fiber (optical path) is separated into If's spatially separated signals by the optical demultiplexer as before, and is divided into n×n signals. Mutual exchange between different wavelengths is performed using a capacitive optical space switch. Optical space switch 4. The output lights of the n pieces are transmitted through an optical wavelength converter C0NVL (i-=1
~N). As a result, the same fiber (optical path)
First, the n-wave optical signals that arrive are exchanged with each other.

即ち一ト述の光波長変換スイッチ機能A(ラムダ)の実
現である。
That is, the above-mentioned optical wavelength conversion switch function A (lambda) is realized.

次に人力光ファイバー(光路)相互間の入れ替えは各人
力光ファイバー(光U>対応の上述の光波長変換スイッ
チ部Aから、互いに等しい波長入【の光信号出力を集め
、これら相互間のみでの空間的交換を行う光空間スイッ
チS(を各波長(λ1・・・入へ)対応にn群設けるこ
とによって行われる。
Next, the exchange between human-powered optical fibers (optical paths) is performed by collecting optical signal outputs of equal wavelength input from each human-powered optical fiber (optical wavelength conversion switch section A corresponding to optical U This is done by providing n groups of optical space switches S (for each wavelength (λ1...to input)) for performing optical exchange.

即ち、先に述べた光空間スイッチ機能Sの実現である。That is, this is the realization of the optical space switch function S mentioned above.

光空間スイッチ部Sからの光信号出力は各群nヶの相異
る波長の光信号となるよう合計量群の光信号群に区分け
される。即ち個々の光空間スイッチStからのおのおの
nヶの波長λLの光信号出力はそれぞれ相異る両群に分
配され、その結果、餉ケの各群はそれぞれ波長λ1.λ
2.・・・入、のn波の空間的に分離された光信号とな
る。これを光合波器MT!n波の光波長多重信号として
出力光ファイバー(光路)に送出される。その結果、本
実施例によれば第1の実施例に較べ、より小形の光空間
スイッチをリンク接続することにより総交換点数のより
少ない光交換回路網が実現できる。
The optical signal output from the optical space switch section S is divided into optical signal groups of total quantity groups so that each group has n optical signals of different wavelengths. That is, the optical signal outputs of n wavelengths λL from each optical space switch St are distributed to two different groups, and as a result, each group of wires has wavelengths λ1 . λ
2. . . . becomes a spatially separated optical signal of n waves. This is an optical multiplexer MT! It is sent to an output optical fiber (optical path) as an optical wavelength multiplexed signal of n waves. As a result, according to this embodiment, compared to the first embodiment, an optical switching network with a smaller total number of switching points can be realized by linking smaller optical space switches.

第4図は本発明の第3の実施例である。さきの第2の実
施例ではある入・出ファイバー(光路)の、かつある波
長の光信号相互を接続する径路は一義的に唯一つしか存
在せず、この径路上で、かつA部と8部の間の光リンク
が一他の通話で使用されていれば、接続できない。この
欠点を除去するには第4図の如く、さきの第2の実施例
(第3図)の光交換回路網構成において8部と光合波器
Mとを切開き、この間にもう1段A段を介挿すれはよい
。その結果、ある入・出力ファイバ(光路)のかつある
波長相互を接続する径路はn種類に増加し、接続の自由
度は大幅に向上し、いわゆる内部閉寒率のよい小なる光
交換回路網が得られる。
FIG. 4 shows a third embodiment of the invention. In the second embodiment, there is uniquely only one path that connects optical signals of a certain wavelength between input and output fibers (optical paths), and on this path, there is a If the optical link between the two parts is being used by another call, the connection cannot be made. In order to eliminate this drawback, as shown in FIG. 4, in the optical switching network configuration of the second embodiment (FIG. 3), section 8 and optical multiplexer M are cut out, and in between, one stage A is added. It is okay to insert a stage. As a result, the number of paths that connect a given input/output fiber (optical path) and a given wavelength increases to n types, and the degree of freedom in connection is greatly improved, creating a so-called small optical switching circuit network with a good internal cooling rate. is obtained.

第2.第3の実施例はさきに説明した基本交換機能Aと
Sとの朝合せでみると、それぞれA−8形、A−8−A
形の光交換回路網構成と表現できる。これから容易に推
論できることは基本交換機能A、Sをいろいろ朝合せる
ことにより各種形式%式% S−A形・・・・・・等々である。第6図の第4の実施
例はこれ等の中の5−A−S形の光交換回路網を示す。
Second. In the third embodiment, when the basic exchange functions A and S explained earlier are combined, they are A-8 type and A-8-A type, respectively.
It can be expressed as a type of optical switching network configuration. What can be easily inferred from this is that by combining the basic exchange functions A and S in various ways, various formats such as % type, % S-A type, etc. can be obtained. The fourth embodiment of FIG. 6 shows a 5-A-S type optical switching network among these.

(6)発明の効果 本発明は以上説明したように光波長変換器C0NVと光
空間スイッチSとを単純に組合せることにより、あるい
は上述の光波長変換スイッチ機能へと光空間スイッチ機
能$を組織的に組合せることにより波長分割多重された
光信号相互間の光交換回路網を実現できる効果がある。
(6) Effects of the Invention As explained above, the present invention enables the organization of the optical space switch function into the above-mentioned optical wavelength conversion switch function by simply combining the optical wavelength converter C0NV and the optical space switch S. By combining the two wavelength division multiplexed optical signals, it is possible to realize an optical switching network between wavelength division multiplexed optical signals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光交換回路網の第1の実施例を示すブ
ロック図、第2図(a)、(b)は第1の実施例におけ
る光波長変換器の一例を示す図、第3図から第5図はそ
れぞれ本発明の光交換回路網の第2〜第4の実施例を示
すブロック図である。 11〜■賎:光波長多重人力光ファイバー〇、〜0□:
光波長多重出力光ファイバーD=光分波器 S、JA:光空間スイッチ C0NV :光波長変換器 A:光波長変換スイッチ機能 !S:光空間スイッチ機能
FIG. 1 is a block diagram showing a first embodiment of an optical switching network according to the present invention, FIGS. 2(a) and 2(b) are diagrams showing an example of an optical wavelength converter in the first embodiment, and FIG. 3 to 5 are block diagrams showing second to fourth embodiments of the optical switching network of the present invention, respectively. 11~ ■ 賎: Optical wavelength division multiplexing manual optical fiber〇, ~0□:
Optical wavelength multiplex output optical fiber D = Optical demultiplexer S, JA: Optical space switch C0NV: Optical wavelength converter A: Optical wavelength conversion switch function! S: Optical space switch function

Claims (1)

【特許請求の範囲】[Claims] 複数のおのおの光波長多重された人力光を分波後光空間
スイッチに導き、スイッチング後の出力光をおのおの光
波長変換器を介して合波器に送り再び複数のおのおの光
波長多重された出力光として送出することを特徴とする
光交換回路網。
A plurality of wavelength-multiplexed human-powered lights are demultiplexed and then guided to an optical space switch, and the output light after switching is sent to a multiplexer via each optical wavelength converter, where the output light is again wavelength-multiplexed. An optical switching network characterized by transmitting signals as
JP57043132A 1982-03-18 1982-03-18 Optical exchange circuit network Pending JPS58161487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57043132A JPS58161487A (en) 1982-03-18 1982-03-18 Optical exchange circuit network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57043132A JPS58161487A (en) 1982-03-18 1982-03-18 Optical exchange circuit network

Publications (1)

Publication Number Publication Date
JPS58161487A true JPS58161487A (en) 1983-09-26

Family

ID=12655313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57043132A Pending JPS58161487A (en) 1982-03-18 1982-03-18 Optical exchange circuit network

Country Status (1)

Country Link
JP (1) JPS58161487A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2673785A1 (en) * 1991-03-05 1992-09-11 Alcatel Business Systems Time-based switching module and corresponding operating method
FR2691864A1 (en) * 1992-05-29 1993-12-03 Bosch Gmbh Robert An optical coupling network comprising a plurality of steps for connecting multiple optical transmitters to multiple optical receivers.
US5274487A (en) * 1989-12-29 1993-12-28 Fujitsu Limited Photonic switching system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516584A (en) * 1978-07-22 1980-02-05 Nippon Telegr & Teleph Corp <Ntt> Wavelength-division photo switching system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516584A (en) * 1978-07-22 1980-02-05 Nippon Telegr & Teleph Corp <Ntt> Wavelength-division photo switching system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274487A (en) * 1989-12-29 1993-12-28 Fujitsu Limited Photonic switching system
FR2673785A1 (en) * 1991-03-05 1992-09-11 Alcatel Business Systems Time-based switching module and corresponding operating method
FR2691864A1 (en) * 1992-05-29 1993-12-03 Bosch Gmbh Robert An optical coupling network comprising a plurality of steps for connecting multiple optical transmitters to multiple optical receivers.

Similar Documents

Publication Publication Date Title
EP0463634B1 (en) Wavelength-time-space division switching system
JPH03219793A (en) Wavelength division optical exchange
EP0762689B1 (en) Optical branching apparatus and tranmission line setting method therefor
US20030206743A1 (en) Cross connecting device and optical communication system
JPS60172841A (en) Optical switch
JPS58161487A (en) Optical exchange circuit network
JP3668016B2 (en) Optical cross-connect device
JPS58161488A (en) Optical exchange circuit network
JP2000224108A (en) Wavelength division multiplexer demltiplexer
JP2002315027A (en) Wavelength-group wavelength converter, and wavelength-group exchange using the same
JPS58161489A (en) Optical exchange circuit network
JPS6196893A (en) Compound type light exchange device
KR100446534B1 (en) Wavelength converter and wavelength interchanging cross-connector using the same
JPS58161486A (en) Optical exchange circuit network
JP5622197B2 (en) Hierarchical optical path cross-connect equipment for optical path networks
JP3703018B2 (en) Star optical network
JPS6281136A (en) Wavelength multiplex optical receiver
JP2740334B2 (en) Wavelength conversion switch configuration method
JP2000206362A (en) OPTICAL ADM(Add/Drop Multiplexing) NODE DEVICE
JP3567117B2 (en) Optical network system
JPS6330092A (en) Wavelength split type optical exchange channel
JP2004320527A (en) Optical wavelength division multiplexing network apparatus
JPH01187537A (en) Wavelength changing switch
JPH02223937A (en) Optical cross-connecting device
JP2003338790A (en) Optical switch