JPS58161010A - Flow rate controller - Google Patents

Flow rate controller

Info

Publication number
JPS58161010A
JPS58161010A JP4507982A JP4507982A JPS58161010A JP S58161010 A JPS58161010 A JP S58161010A JP 4507982 A JP4507982 A JP 4507982A JP 4507982 A JP4507982 A JP 4507982A JP S58161010 A JPS58161010 A JP S58161010A
Authority
JP
Japan
Prior art keywords
electrodes
flow rate
flow
control device
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4507982A
Other languages
Japanese (ja)
Other versions
JPS6334485B2 (en
Inventor
Naoki Tanaka
直樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4507982A priority Critical patent/JPS58161010A/en
Publication of JPS58161010A publication Critical patent/JPS58161010A/en
Publication of JPS6334485B2 publication Critical patent/JPS6334485B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Flow Control (AREA)

Abstract

PURPOSE:To control a flow rate easily with a small-sized deivce, by providing a nonconductive fluid resistance between electrodes to fractionize the flow passage in a flow rate controller utilizing the electric viscosity effect. CONSTITUTION:The flow passage is formed between a pair of electrodes 1a and 2a, and a DC or AC voltage is impressed across these electrodes from a voltage variable power source 5. A fluid resistance 10 having a waved section is inserted between electrodes 1a and 2a to fractionize the flow passage between electrodes 1a and 2a. When the voltage is applied across electrodes 1a and 2a, the viscosity of the fluid is changed, and the flow rate is controlled. In this case, the generation of a live current is suppressed in the flow passage between electrodes by the action of the fluid resistance 10 provided between electrodes 1a and 2a.

Description

【発明の詳細な説明】 この発明は電気粘性効果を利用した流量制御装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow rate control device that utilizes electrorheological effects.

一般に、一対の電極間に流れる流体に外部からの直流ま
たは交流電圧を印加することによシその流体の粘性流動
抵抗が変化する電気粘性効果を利用して流量を制御する
流量制御装置は知られてお夛、各種装置の流量プロセス
系に広く使用されつつある。
In general, there are known flow rate control devices that control the flow rate using the electrorheological effect, in which the viscous flow resistance of the fluid changes by applying an external DC or AC voltage to the fluid flowing between a pair of electrodes. Increasingly, it is being widely used in flow rate process systems of various devices.

従来、この種の流量制御装置としては、第1図に示すよ
うに、平板状の一対の電極(1) 、 (2)間にスペ
ーサ0)を介在させて流路(4)を形成し、これら電極
(1) 、 (2)間に電圧可変電源(5)よシ直流ま
たは交流電圧を印加して、前記流路(4)の入口(6)
から出口(1)に流れる流体(8)の流量を制御するも
のと、第2図に示すように、円筒形の一方の電極(1a
)内にスペーサc3>’を介在させて同軸上に配置され
た他方の電極(2a)によシ流路(4)を形成し、電圧
可変電源6)から電極(1a)、(2a)間に印加され
る電圧によって流体(8)の流量を制御するようにした
ものとがある。
Conventionally, as shown in FIG. 1, this type of flow rate control device has a spacer (0) interposed between a pair of flat electrodes (1) and (2) to form a flow path (4). A variable voltage power source (5) applies a DC or AC voltage between these electrodes (1) and (2) to connect the inlet (6) of the flow path (4).
As shown in FIG. 2, one cylindrical electrode (1a
) with a spacer c3>' interposed between the other electrode (2a) coaxially arranged to form a flow path (4) between the variable voltage power source 6) and the electrodes (1a) and (2a). There is one in which the flow rate of the fluid (8) is controlled by the voltage applied to the fluid (8).

ここで、上記流量制御装置の動作を第2図の場合を例に
とって説明する。一対の電極(la)、(2a)間に電
圧可変電源(5)から直流または交流電圧を印加すると
、この電極(la)=(2a)間を流れる流体はその粘
性流動抵抗が変化する電気粘性効果を呈する。このとき
、たとえば流体として水を用いた場合には、第3図に示
すように、電極間に印加される電場に#なは比例して水
の粘度が増加する。また、電極間を流れる流体の流量は
、一般に流れが層流の場合粘度に反比例し、乱流の場合
には粘度の約0.14乗に反比例することが知られてい
る。
Here, the operation of the flow rate control device will be explained using the case of FIG. 2 as an example. When a DC or AC voltage is applied between the pair of electrodes (la) and (2a) from the variable voltage power source (5), the fluid flowing between the electrodes (la) = (2a) has an electroviscous property whose viscous flow resistance changes. exhibits an effect. At this time, for example, when water is used as the fluid, the viscosity of the water increases in proportion to the electric field applied between the electrodes, as shown in FIG. Further, it is known that the flow rate of the fluid flowing between the electrodes is generally inversely proportional to the viscosity when the flow is laminar, and is inversely proportional to the viscosity to the 0.14th power when the flow is turbulent.

したがって、電極(la) 、 (2a)間に印加する
電圧を変えることにより、流体の粘度を変化させて流量
を制御することができる。たとえば、流体として水を用
いた場合は、第3図に示す粘度変化がら流れが層流のと
き、電場強さをE * = 10 (KV/cm)とす
ると、流量は電場強さE・=00ときに比べ約30%減
少し、電場強さをEs =20 (KV/a1M) (
!: t ルと約半分の流量になる。
Therefore, by changing the voltage applied between the electrodes (la) and (2a), the viscosity of the fluid can be changed and the flow rate can be controlled. For example, when using water as the fluid, when the flow is laminar as shown in Figure 3, and the electric field strength is E* = 10 (KV/cm), the flow rate is the electric field strength E・= It is reduced by about 30% compared to when 00, and the electric field strength is reduced to Es = 20 (KV/a1M) (
! : The flow rate is about half that of t.

このように、上記した従来の流量制御装置においては、
電極間に印加する電圧によって流体の粘度を変化させて
流量を制御することができる。しかし、流路系出入口(
6) 、 (7)の圧力差が大きくなって電極間の流速
が大きくなった場合には流れる流体が乱流となり、前述
のように流量が粘度のα14乗でしか変化しないため、
流量の制御範囲が非常に限定されていた。たとえば流体
として水を用いた場合には第3図に示す粘度変化から電
場強さがE * = 10 (KV/am)となると、
流量は電場強すE・=。
In this way, in the conventional flow control device described above,
The flow rate can be controlled by changing the viscosity of the fluid by applying a voltage between the electrodes. However, the flow path system entrance (
6) When the pressure difference in (7) increases and the flow velocity between the electrodes increases, the flowing fluid becomes turbulent, and as mentioned above, the flow rate changes only by the viscosity to the α14th power.
The control range of flow rate was very limited. For example, when water is used as the fluid, the electric field strength becomes E* = 10 (KV/am) from the viscosity change shown in Figure 3.
The flow rate is the electric field strength E·=.

の場合に比べて5X減少、電場強さをEs=20 (K
V/l11)としても10%減少しか得られなくな)、
上述の層流の場合と比較すると制御範囲が著しく狭くな
っていた そのため、流路系出入口の圧力差が大きいときに層流状
態を保つように構成したシ、あるいは電極間の電場を大
きくして制御範囲の拡大を図ろうとしたものもあるが、
前者のものでは流路系が長くなって装置が大型になる。
The electric field strength is reduced by 5X compared to the case of Es=20 (K
Even if V/l11), only a 10% reduction can be obtained),
The control range was significantly narrower than in the laminar flow case described above, so we developed a system that maintains laminar flow when the pressure difference between the inlet and outlet of the flow path is large, or by increasing the electric field between the electrodes. Although some attempts have been made to expand the control range,
In the former case, the channel system becomes long and the device becomes large.

また後者のものでは・放電が生じやすくなるという欠点
があった。
Moreover, the latter type had the disadvantage that discharge was more likely to occur.

この発明は、上記のような従来のものの欠点を除去する
ためになされたもので、電極間に非電導性の流体抵抗を
設けることによシ、流路系出入口の圧力差が大きい場合
にも充分な制御範囲が確保できる流量制御装置を提供す
ることを目的としている。
This invention was made to eliminate the drawbacks of the conventional ones as described above, and by providing a non-conductive fluid resistance between the electrodes, it can be used even when there is a large pressure difference at the inlet and outlet of the flow path system. The object of the present invention is to provide a flow rate control device that can ensure a sufficient control range.

以下、この発明の実施例を図について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第4図−)および(b)はこの発明の一実施例を示す流
量制御装置の基本構造の側面断面図およびB −B断面
図である。同図において第2図と同一符号は同一または
相当部分を示し、この流量制御装置は、一対の電極(1
m)=(2a)間に流路を形成し、この電極(la) 
、 (2a)間に電圧可変電源(5)から直流または交
流電圧を印加する点については第2図の従来のものと同
様であるが、電極(1m)、(2a)間に断面が旋形を
有する流体抵抗(10)tl−挿入することによシ、こ
の流体抵抗(10)にて電極(la)。
4-) and (b) are a side sectional view and a BB sectional view of the basic structure of a flow rate control device showing an embodiment of the present invention. In the same figure, the same reference numerals as in FIG.
A flow path is formed between m)=(2a), and this electrode (la)
, The point that DC or AC voltage is applied from the variable voltage power supply (5) between the electrodes (1 m) and (2a) is the same as the conventional one shown in Fig. 2, but the cross section is helical between the electrodes (1 m) and (2a). A fluid resistance (10) with a tl-by inserting an electrode (la) at this fluid resistance (10).

(2a)間の流路を細分化するごとく構成されている。(2a) It is configured to subdivide the flow path between them.

このように構成された流量制御装置によると、電極(1
a)、(2a)間に電圧を印加することにより、流体の
粘度を変化させて流′量を従来と同様の方法にて制御で
きるが、電極(1a) 、(2a)間に設けた流体抵抗
(10)の働きによってこの電極間の流路において乱流
の発生を抑制することができる。すなわち、乱流の発生
はレイノルズ数(=(流速×尋価直径)/動粘度)があ
る臨界値を越えると生じることが知られているが、上記
流体抵抗(10)は、電極(1a) 、 (2a)間の
流路を細分化するごとく挿入されているために、レイノ
ルズ数における等価直径が小さくなシ、乱流の発生が抑
制される。
According to the flow rate control device configured in this way, the electrode (1
By applying a voltage between electrodes (1a) and (2a), the viscosity of the fluid can be changed and the flow rate can be controlled in the same manner as before. The action of the resistor (10) can suppress the occurrence of turbulent flow in the flow path between the electrodes. That is, it is known that turbulent flow occurs when the Reynolds number (=(flow velocity x diameter)/kinematic viscosity) exceeds a certain critical value, but the fluid resistance (10) is , (2a), so that the equivalent diameter at the Reynolds number is small and the occurrence of turbulent flow is suppressed.

このように、流体抵抗(10)によって電極(Ia) 
In this way, the electrode (Ia) is
.

(2a)間を流れる流体に乱流が発生するのを防ぐこと
ができ、流路系出入口(6)、σ)の圧力差が大きい場
合にも流体の粘度に反比例して流量が変化するので、そ
の制御範囲が拡大するとともに、制御が容易になる。
(2a) It is possible to prevent turbulence from occurring in the fluid flowing between them, and even when the pressure difference between the flow path system entrance and exit (6) and σ is large, the flow rate changes in inverse proportion to the viscosity of the fluid. , the control range is expanded and control becomes easier.

なお、上記実施例では波形の流体抵抗(10) i挿入
したものを示したが、第5図(a)に示すような断面が
くし形の派生抵抗(10m)、または第5図(b)に示
すような交叉平板、ハニカム形などの流体抵抗(10b
)、さらに第5図(e)に示すような形の流体抵抗(1
0c)など、電極(la) −(2a)間の流路を細分
化して、等価直径が小さくなるような流体抵抗を挿入す
れば同様の効果を奏する。
In addition, in the above example, a wave-shaped fluid resistance (10) i was inserted, but a derived resistance (10 m) with a comb-shaped cross section as shown in Fig. 5 (a), or a derived resistance (10 m) with a comb-shaped cross section as shown in Fig. 5 (b) Fluid resistance such as crossed flat plate or honeycomb shape as shown (10b
), and further a fluid resistance (1
A similar effect can be obtained by subdividing the flow path between electrodes (la) and (2a) such as 0c) and inserting fluid resistance that reduces the equivalent diameter.

また、上記実施例では、乱流の発生を抑制して粘度の変
化を流量に大きくきかせていたが、流体抵抗として、第
6図に示すようなガラスおよびポリエステルなどの粒状
物よシなる粒子層(11)や、第7図に示すようなフェ
ルト、紙、メツシュなどの繊維層(12) 、または第
8図に示すようなコルク、す焼き、コークスあるいは焼
結した粒子層。
In addition, in the above embodiment, the occurrence of turbulence was suppressed and the viscosity changed greatly in the flow rate. (11), a fibrous layer (12) of felt, paper, mesh, etc. as shown in FIG. 7, or a particle layer of cork, charcoal, coke, or sintered as shown in FIG.

繊維層などの多孔質層(13) t−挿入した場合にも
、流体はダルシー流と呼ばれる細い管内の流れに類以し
た流れになり、流路系出入口の圧力差が大きい場合でも
流量が粘度に反比例するので、1tIIJ11141の
容易な流量制御装置が得られる。
Even when a porous layer such as a fiber layer (13) is inserted, the fluid becomes a flow similar to the flow in a thin tube called Darcy flow, and even when the pressure difference between the inlet and outlet of the flow path system is large, the flow rate remains low due to the viscosity. Since it is inversely proportional to , a simple flow control device of 1tIIJ11141 can be obtained.

さらに、流体抵抗の挿入位置は電極間の一部であっても
よく、また電極以外の部分に及んでも同様の効果が得ら
れる。また、電極の形状は断面が円形以外に平面形など
でもよく、さらには電極間の間隔を保持するスペーサも
流体抵抗に応じて適宜配置することができる。
Furthermore, the fluid resistance may be inserted in a part between the electrodes, and the same effect can be obtained even if the fluid resistance is inserted in a part other than the electrodes. Further, the shape of the electrodes may be flat in cross section instead of circular, and spacers for maintaining the spacing between the electrodes can also be appropriately arranged depending on the fluid resistance.

なお、この発明による流量制御装置は、空調装置および
冷凍装置やその他の各種、流体の流れを制御する流量プ
ロセス系のすべてに適用することができる。
Note that the flow rate control device according to the present invention can be applied to air conditioners, refrigeration devices, and other various flow rate process systems that control the flow of fluid.

以上のようにこの発明によれば、電気粘性効果を利用し
た流量制御装置において、電極間に非電導性の流体抵抗
を設け、その流路を細分化するごとく構成したので、電
極間に流れる流体に乱流が発生するのを防ぐことができ
る。したがって、流路系出入口の圧力差や゛流量が大き
い場合でも、従来のように流路系を長くしたシあるいは
高い電圧を印加することもなく、制御が容易になるとと
もに、装置の小型化、低廉化がはがれる効果がある。
As described above, according to the present invention, in a flow control device that utilizes the electrorheological effect, a non-conductive fluid resistance is provided between the electrodes and the flow path is segmented, so that the fluid flowing between the electrodes is can prevent turbulence from occurring. Therefore, even when the pressure difference or flow rate at the inlet and outlet of the flow path system is large, there is no need to lengthen the flow path system or apply high voltage as in the past, making control easier and reducing the size of the device. This has the effect of reducing prices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の流量制御装置の概略構造図、第2図(a
)およびΦ)は同じ〈従来の流量制御装置の概略構造の
Itl im断面図およびA−、<断面図、第3図は電
気粘性効果の電場強さに対する変化を示す図、−第4図
(a)および…)はこの発明の一実施例を示す流量制御
装置の基本構造の側面断面図およびB −B’断面図、
第5図(JL)乃至(e)はこの発明の他の実施例を示
す第4図中)に相当する断面図、第6図(a)および(
b)はこの発明のさらに他の実施例を示す軌面断面図お
よびc −c’断面図、第71伝)および伽)はこの発
明のさらに他の実施例を示す側面断面図およびD−D′
断面図、第8図(a)および申)はこの発明のさらに他
の実施例を示す側面断面図およびE −E’断面図であ
る。 (1a)=(2a)  ・・・・電極、(5)・・・・
電圧可変電源、(10)、(10a)−(10b)p(
10c) @ ” ・”流体抵抗、(11)・−・・粒
子層、(12)・・・噛繊維層、(13)・・・・多孔
質層。 第1図 フ 第211 第3図 第4図
Figure 1 is a schematic structural diagram of a conventional flow rate control device, and Figure 2 (a
) and Φ) are the same〈Itl im sectional view and A-〈 cross-sectional view of the schematic structure of a conventional flow rate control device, Fig. 3 is a diagram showing changes in electrorheological effect with respect to electric field strength, - Fig. 4 ( a) and...) are a side sectional view and a B-B' sectional view of the basic structure of a flow rate control device showing one embodiment of the present invention;
5(JL) to (e) are cross-sectional views corresponding to FIG. 4) showing other embodiments of the present invention, and FIGS.
b) is a track sectional view and c-c' sectional view showing still another embodiment of the present invention; ′
8(a) and 8(a) are a side sectional view and an E-E' sectional view showing still another embodiment of the present invention. (1a)=(2a)... Electrode, (5)...
Variable voltage power supply, (10), (10a)-(10b)p(
10c) @ ”・”Fluid resistance, (11) --- Particle layer, (12) --- Chewy fiber layer, (13) --- Porous layer. Figure 1 Figure 211 Figure 3 Figure 4

Claims (5)

【特許請求の範囲】[Claims] (1)一対の電極によシ流路を形成し、この一対の電極
間に直流または交流電圧を印加することにより、該電極
間を流れる流体の流量を制御する装置において、前記一
対の電極間に非電導性の流体抵抗を設けたことを特徴と
する流量制御装置。
(1) A device in which a flow path is formed by a pair of electrodes, and the flow rate of fluid flowing between the pair of electrodes is controlled by applying a DC or AC voltage between the pair of electrodes. A flow control device characterized in that a non-conductive fluid resistance is provided in the flow control device.
(2)流体抵抗は一対の電極間に形成される流路を細分
化するように構成したことを特徴とする特許請求の範囲
第1項記載の流量制御装置。
(2) The flow rate control device according to claim 1, wherein the fluid resistance is configured to subdivide the flow path formed between the pair of electrodes.
(3)流体抵抗としてガラスなどの粒状物よりなる粒子
層を用いたことを特徴とする特許請求の範囲第1項また
は第2項記載の流量制御装置。
(3) The flow rate control device according to claim 1 or 2, characterized in that a particle layer made of granular material such as glass is used as the fluid resistance.
(4)流体抵抗としてフェルト、紙などの繊維層を用い
たことを特徴とする特許請求の範囲第1項または第2項
記載の流量制御装置。
(4) The flow rate control device according to claim 1 or 2, characterized in that a fibrous layer such as felt or paper is used as the fluid resistance.
(5)流体抵抗として多孔質物質を用いたことを特徴と
する特許請求の範囲第1項または第2項記載の流量制御
装置。 @)粒子層、繊維層を焼結などの方法によシ結合したこ
とを特徴とする特許請求の範囲第3項または第4項記載
の流量制御装置。
(5) The flow rate control device according to claim 1 or 2, characterized in that a porous material is used as the fluid resistance. @) The flow rate control device according to claim 3 or 4, characterized in that the particle layer and the fiber layer are bonded together by a method such as sintering.
JP4507982A 1982-03-19 1982-03-19 Flow rate controller Granted JPS58161010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4507982A JPS58161010A (en) 1982-03-19 1982-03-19 Flow rate controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4507982A JPS58161010A (en) 1982-03-19 1982-03-19 Flow rate controller

Publications (2)

Publication Number Publication Date
JPS58161010A true JPS58161010A (en) 1983-09-24
JPS6334485B2 JPS6334485B2 (en) 1988-07-11

Family

ID=12709319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4507982A Granted JPS58161010A (en) 1982-03-19 1982-03-19 Flow rate controller

Country Status (1)

Country Link
JP (1) JPS58161010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044823A1 (en) * 2000-11-29 2002-06-06 Japan Science And Technology Corporation Flow control method for micro system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044823A1 (en) * 2000-11-29 2002-06-06 Japan Science And Technology Corporation Flow control method for micro system
US7204263B2 (en) 2000-11-29 2007-04-17 Japan Science And Technology Corporation Flow control method for micro system

Also Published As

Publication number Publication date
JPS6334485B2 (en) 1988-07-11

Similar Documents

Publication Publication Date Title
Dukhin et al. Intensification of electrodialysis based on electroosmosis of the second kind
Patwary et al. Efficient electrochemomechanical energy conversion in nanochannels grafted with polyelectrolyte layers with pH-dependent charge density
Zeng et al. Fabrication and characterization of electroosmotic micropumps
US6572685B2 (en) Air filter assembly having an electrostatically charged filter material with varying porosity
Laohakunakorn et al. Electroosmotic flow rectification in conical nanopores
Gaudioso et al. Characterizing electroosmotic flow in microfluidic devices
Yang et al. Transient analysis of electroosmotic flow in a slit microchannel
Elton Electroviscosity. I. The flow of liquids between surfaces in close proximity
Cao et al. Microchannel plate electro-osmotic pump
DE60218713T2 (en) SIEB PUMP FOR GENERATING AN ELECTROOSMOTIC RIVER
US4077782A (en) Collector for electrostatic precipitator apparatus
Chen et al. Low-voltage electroosmotic pumping using porous anodic alumina membranes
Khashei et al. Microparticles manipulation and enhancement of their separation in pinched flow fractionation by insulator‐based dielectrophoresis
Oss The influence of the size and shape of molecules and particles on their electrophoretic mobility
Liu et al. Surface-conduction enhanced dielectrophoretic-like particle migration in electric-field driven fluid flow through a straight rectangular microchannel
JPS58161010A (en) Flow rate controller
Colby et al. Statics and dynamics of electroactuation with single-charge-carrier ionomers
Spencer Anomalous conductivity zones in electrophoresis I. Basic theory for two‐ion systems
Chein et al. Electrokinetic energy conversion efficiency analysis using nanoscale finite-length surface-charged capillaries
JP5631338B2 (en) Charged particle movement induction device
Kaygusuz et al. Electric-field induced phase transitions in capillary electrophoretic systems
Zhou et al. Electro-osmotic dispersion in a circular tube with slip-stick striped wall
Watanabe et al. A phenomenological theory of the sigma effect
Martys Numerical simulation of hydrodynamic dispersion in random porous media
US3344853A (en) Apparatus for condensing and controlling the rate of condensation of an electricallyconducting liquid