JPS58160678A - Flow control valve - Google Patents

Flow control valve

Info

Publication number
JPS58160678A
JPS58160678A JP4363582A JP4363582A JPS58160678A JP S58160678 A JPS58160678 A JP S58160678A JP 4363582 A JP4363582 A JP 4363582A JP 4363582 A JP4363582 A JP 4363582A JP S58160678 A JPS58160678 A JP S58160678A
Authority
JP
Japan
Prior art keywords
rotor
valve
control
valve body
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4363582A
Other languages
Japanese (ja)
Inventor
Akira Tokuda
徳田 彰
Katsuyoshi Fukaya
深谷 勝義
Kazuo Hanai
一生 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP4363582A priority Critical patent/JPS58160678A/en
Publication of JPS58160678A publication Critical patent/JPS58160678A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/14Pivoting armatures
    • H01F7/145Rotary electromagnets with variable gap

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Magnetically Actuated Valves (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

PURPOSE:To enable the control of flow rate with high accuracy and response, by providing two pairs of coil-energized fixed poles in upper, lower, right and left positions around a rotor magnetized in the radial direction and by modifying the electric inputs to the fixed poles to set the rotational angle of the rotor and by interlocking the rotor with a valve spindle. CONSTITUTION:A rotor 2 has magnetic pole faces P1, P2 at both the ends in the radial direction. A first and a second fixed cores FC1, FC2 are placed around the rotor 2 and provided with coils CL1, CL2 and switches SW1, SW2 for supplying electricity to the coils. A variable resistor VR1 is connected to the coil CL2. When the switch SW1 is turned on, the rotor 2 is stopped in a position of 0 deg.. When the switch SW2 is turned on, the rotor 2 is located in an optional angle position from 0 to 45 deg. depending on the resistance of the variable resistor VR1. Therefore, the rotor 2 is used to control the opening and closing position of a valve.

Description

【発明の詳細な説明】 本発明は流体の流量を励磁スイルに対する通電電流で制
御する流量制御弁に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow control valve that controls the flow rate of fluid by applying current to an excitation coil.

従来、空燃比A/F制御用流量制御弁としては、一般的
に、流線f5御用弁体のi[#Iに電磁ソレノイドt−
mい丸ものとステップモータを用いたものとがあるが、
電磁ソレノイドを用いたものは第1図に示すように、珊
論空戦比14.5を中心にしての空燃比ムβ変化(第1
図a)に対応した02センサの、出力変化(第1図b)
に対して電磁ゾVノイドは第1図Cのように比例制御に
よって直ちに立上ものの、電磁ソレノイドの持つヒステ
リシス特性によってデユーティ−比制御を含む励磁電流
増大時と減少時とでは同一励磁電流でも制御流蝋が異な
る鎗、デフンVヤをスプリングで付勢しているため電磁
ゾレノイドの温度上昇による吸引力減少によって制御特
性が第1噸0から0′(点線状鴨)のように変化すると
いう欠点があった。
Conventionally, as a flow control valve for air-fuel ratio A/F control, an electromagnetic solenoid t-
There are round ones and ones using a step motor.
As shown in Fig. 1, the one using an electromagnetic solenoid shows the air-fuel ratio μ change (1st
Change in output of 02 sensor corresponding to figure a) (Figure 1 b)
On the other hand, the electromagnetic V-noid starts up immediately due to proportional control as shown in Figure 1C, but due to the hysteresis characteristic of the electromagnetic solenoid, it is controlled even when the excitation current is increased and decreased when the excitation current is increased and decreased, including duty ratio control. The disadvantage is that the control characteristics change from 0 to 0' (dotted line duck) due to a decrease in suction force due to a rise in the temperature of the electromagnetic solenoid, since the spring is biased by the spring with a different flow wax. was there.

又、弁体の駆動にステップモ・−夕を用いたものは制御
動作ににステ!IVスは殆どなく、温If化による彰轡
もないものの、第2図に示すように、理論空燃比14.
5を中心にしての空燃比A/ji”変化(第2図1)に
対応した02センサの出力変化(第21b)に対してス
テップ毫−タは第2図00ように、瞬時に立上がるよう
な比例制御ができず空燃比制御の応答が少し遅れる他、
電気制御回路を含むステップモータの価格が電磁ソレノ
イドの場合と比較すると極端に高いという欠点があう九
Also, if a step motor is used to drive the valve body, the control operation will be much easier! Although there is almost no IV gas and there are no awards for increasing the temperature, as shown in Figure 2, the stoichiometric air-fuel ratio is 14.
In response to the change in the output of the 02 sensor (No. 21b) corresponding to the change in the air-fuel ratio A/ji'' around 5 (Fig. 2 1), the step controller instantly rises as shown in Fig. 2 00. In addition to being unable to perform proportional control, the response of air-fuel ratio control is slightly delayed.
The disadvantage is that the step motor including the electric control circuit is extremely expensive compared to the electromagnetic solenoid.

本発明の目的は高精度、高応答で社ステlvス及び勢的
彰響もなく、シかも、構造簡単にして価格の安i流量制
御弁を提供する仁とによって、前記従来の欠点を除去す
ることくある。
The purpose of the present invention is to provide a flow control valve with high accuracy, high response, low cost and low cost, simple structure, and low cost, thereby eliminating the drawbacks of the conventional art. There are many things to do.

次に、本発明の一実施例の構成をその原理を含めて第5
図〜第9啼によって説明する。
Next, the configuration of one embodiment of the present invention including its principle will be explained in the fifth section.
This will be explained using Figures to No. 9.

第5@は流量制御弁の弁体駆動に用iられる一一タリア
クチ、二−タ1の原珊図であって、18「位置において
#磁したロータ2の磁極I]1p1.ptと、吸引・反
発可能な第1固走鉄心FC1のmWdlJP 3.P4
 とs2m定鉄心re20ilW面pS、P4とを円1
119[7″間隔で3伺するとと−に、各固定鉄心FC
1,FC2には同一仕様のコイA/CL1.CL2が、
それぞれスイッチ8 ”F 1,8 W 2を介して同
一仕様の電池[#B1.B2に接続され良状態で取付け
られ、かつ、第2固定鉄心y′C2のコイIvCL2に
は着磁電流を加減するための可変抵抗VR1が接続され
てiる。
No. 5 is an original diagram of the rotor actuator 1 used for driving the valve body of the flow rate control valve, and shows the magnetic pole I of the rotor 2 magnetized at the 18 "position #1]1p1.pt, and the suction・mWdlJP of the first solid running core FC1 that can repel 3.P4
and s2m constant iron core re20ilW surface pS, P4 and circle 1
119 [3 times at 7" intervals, each fixed core FC
1, FC2 has the same specifications as Carp A/CL1. CL2 is
Batteries with the same specifications [#B1 and B2 are connected and installed in good condition through switches 8''F1 and 8W2, respectively, and the magnetizing current is adjusted to the coil IvCL2 of the second fixed iron core y'C2. A variable resistor VR1 is connected thereto.

仁のように構成されたロータリアクチ、エータIKTh
hて、*2固’19心FC211x4ツ+SW2をオフ
にし良状態で第1固定鉄心FC191スイツチSW1を
オンにすると、ロータ2はその磁極面P1.P2と第1
固定鉄心1i’CIの磁極#Jpg、p4とを対向させ
丸目磁極吸引の1Irf状[1(第3図の!位置)で停
止する。
Rotary actuator configured like Jin, Eta IKTh
Then, when *2 fixed iron core FC211x4 + SW2 is turned off and the first fixed iron core FC191 switch SW1 is turned on in good condition, the rotor 2 moves to its magnetic pole face P1. P2 and 1st
The magnetic poles #Jpg and p4 of the fixed iron core 1i'CI are opposed to each other and stopped in the 1Irf shape [1 (position ! in Fig. 3) of round magnetic pole attraction.

次に、この吸引停止状頓において第2固定鉄心FC2の
スイッチ8W2をオンにすると、このコイ5yCL2励
磁状騙において第2固定銑心FC2の磁If面p 5.
P 4はロータ2の磁極面P1. P 2を吸引し得る
灰層性の磁極に着磁される。
Next, when the switch 8W2 of the second fixed iron core FC2 is turned on in this suction stop state, the magnetic If surface p of the second fixed pig core FC2 in this coil 5yCL2 excitation state.5.
P4 is the magnetic pole face P1 of the rotor 2. It is magnetized into a gray layer magnetic pole that can attract P2.

従うて、この励磁状態において可変抵抗VR1の抵抗値
を零にすると、@2固定鉄心FC2の磁極面p s、p
 4と第1固定鉄心FC1の磁極面p 5゜P4とは、
ともに同一起磁力が得られる結果、ロー!2はその磁W
i面P 1.p 2を第1固定鉄心rc1の磁@1il
iip1.p2に対向させたt185@に点線で示す垂
直の「位置から各磁極の吸引力とバランスし九第3@実
線の45°位置に回転した状置で停止するとともに、可
変抵抗VR1を介してコイルCL2の1励磁電流をtl
I4vrIすることによる第2固定饋心CF2の起磁力
41Inによって、ロータ2を第5図に点線で承す垂直
の0@位看から111![Kl!線で示す45@位置ま
でをフルスト田−りとして缶型の負度位置で停止させる
仁とができ、このように:lイルCL1を励磁電流1で
固定励磁した状OKおiてコイA/CL2の励磁電流を
便化させると一一タ2の陶墳位置が変化するとと%fC
,この変化特性、即ちロータ2の回転角変は第4図のよ
うに、胃−タ2往(ト)慟復(至)時においてとステv
FスのないしかもコイルCL 1.CL 2発熱くよる
抵抗変化の影響を受けない状−で】イA/CL2の電流
値O〜1にほぼ比例して変化する。
Therefore, if the resistance value of variable resistor VR1 is made zero in this excited state, the magnetic pole faces p s, p of @2 fixed core FC2
4 and the magnetic pole face p5゜P4 of the first fixed core FC1 are:
As a result of both obtaining the same magnetomotive force, Low! 2 is the magnetic W
i-side P 1. p 2 as the magnet of the first fixed core rc1 @1il
iip1. It balances the attractive force of each magnetic pole from the perpendicular position indicated by the dotted line at t185 @ facing p2, and stops at the 45° position indicated by the 9th 3rd @ solid line, and the coil is connected via variable resistor VR1. 1 excitation current of CL2 is tl
The magnetomotive force 41In of the second fixed center CF2 caused by I4vrI moves the rotor 2 from the vertical 0 position shown by the dotted line in FIG. 5 to 111! [Kl! The area up to the 45@ position shown by the line is set as a full stop position and stopped at a can-shaped negative position, like this: OK, the coil CL1 is fixedly excited with an excitation current of 1, and the coil A/ If the excitation current of CL2 is simplified and the position of the pottery tomb of Ichita 2 changes, %fC
, this change characteristic, that is, the change in the rotation angle of the rotor 2, as shown in FIG.
Coil CL without F-s 1. CL2 is not affected by resistance changes caused by heat generation] A/C2 changes approximately in proportion to the current value O~1 of CL2.

次に、第3図に示す一−IIリアタチェエータ1′に弁
体lIK励に用い友流量制御弁3について説明する。
Next, the companion flow rate control valve 3 used to excite the valve body lIK in the 1-II reactor 1' shown in FIG. 3 will be explained.

ロータリアタチ息ヱータ10本体ケース4には、磁極m
psを形成したスリーブ状遊−り5と磁極面P4を形成
し九フフンジ状厘−り6とからなる第11mm定鉄心F
C1と、磁極面PSを形成したス菅−プ状厘−夕7と磁
極面P6を形成したフランジ状置−り8とからなる第2
固定鉄心F″C2とが、それぞれに:1イwc L 1
.OL 2を組付けかつクエープワ98’ヤ9によ1て
軸方向ガタを除去した状−でリアカバー10とともに取
付けられ、又、本体ケース4内には1805  位置に
おいて着磁した磁極面P1.P2を形成し九ロータ2が
ウェープヮッVヤ11によ1て軸方向ガタが除去され良
状態で、本体ケース4と讐アカバー10に組付けられた
ベアリング12.13に回転可能に取付けられ、父、リ
アカバー10からは気密性を上げるための溝を#1jf
fit、九グ費メット14を介して各コイA/cL1゜
CL2用リーす纏15□が引き出・されている。
The main case 4 of the rotary breather 10 has a magnetic pole m
An 11 mm constant iron core F is made up of a sleeve-like play 5 forming a ps and a nine-flange-like play 6 forming a magnetic pole face P4.
C1, a tube-like support 7 forming a magnetic pole surface PS, and a flange-like support 8 forming a magnetic pole surface P6.
Fixed iron core F″C2 and each: 1wc L 1
.. The OL 2 is assembled and the axial play has been removed by the quadruple wire 98' and is attached together with the rear cover 10, and inside the main body case 4 there is a magnetic pole face P1. magnetized at the 1805 position. P2 is formed, and the rotor 2 is in good condition with the axial play removed by the wave gear 11, and is rotatably mounted on the bearings 12 and 13 assembled to the main body case 4 and the rear cover 10. , from the rear cover 10 there is a groove #1jf to improve airtightness.
A leash 15□ for each carp A/cL1°CL2 is pulled out through the fitting 14.

このように形成されたロータリアクチュエータ1の前面
には、180’位置に2Mの流体流入口16゜17と流
出018,1?を形成した弁本体20が、0リング21
を介して気密性!保持した状鎮でネジ22によって取付
けられ、弁本体20内には、ロータ2の軸23にキー2
4によって円周方−一体に取付けられた弁体25が、各
流入口1へ17と流出018,19間0流体流通路を形
成−るとともに核流通路の弁孔26の流路面積!ロータ
20回転角度に対応して制御可能に取付けられ、かつ、
ロータ2の軸23は弁本体20に組付けられ九ベアリン
グ27によって軸捩れが確ll!に防止されている。
The front surface of the rotary actuator 1 formed in this way has a 2M fluid inlet 16°17 and an outlet 018,1? at the 180' position. The valve body 20 formed with the O-ring 21
Tightness through! The key 2 is attached to the shaft 23 of the rotor 2 in the valve body 20.
A valve body 25, which is integrally attached to the circumference by 4, forms a fluid flow passage between each inlet 17 and the outlet 018, 19, and the flow passage area of the valve hole 26 of the core flow passage. The rotor is mounted so as to be controllable in response to 20 rotation angles, and
The shaft 23 of the rotor 2 is assembled to the valve body 20, and shaft torsion is ensured by the nine bearings 27! is prevented.

第8flI!jはこのように構成され丸流量制御弁5の
使用例であって、この場合、流量制御弁3は、エンジン
28の排気管29に取付けられた02セン!30、クォ
ータジャケット31に取付けられ九水温セン−?52、
吸気管35に取付けられ九負圧センサ54、スロットル
バルブ35と連動して作動するスロフ“トルスイッチ5
6とのそれぞれをセンサ入力とする制御装置57からの
信号によって、気化器38のメイン系3?とメロ−系4
0の補助エアブリードをii!11?j4する。
8th flI! j is an example of the use of the round flow control valve 5 constructed in this way. In this case, the flow control valve 3 is a 02cm! 30. Attached to quarter jacket 31, nine water temperature sensors? 52,
A sulphur switch 5 is attached to the intake pipe 35 and operates in conjunction with the negative pressure sensor 54 and the throttle valve 35.
6 and 6 as sensor inputs, the main system 3? of the carburetor 38 is activated. and melody 4
0 auxiliary air bleed ii! 11? j4.

次に1本実施例の作用について説明す為。Next, the operation of this embodiment will be explained.

このように4X化11138にエアプψ−ド制御眉とし
て取付けられた流量制i弁5にゝ“て・例えばス!−ト
時等のようにエンリン出力が高い場合において制御装置
37からは、ツータリアタチ、ニー!1のスイA/CL
1のみに規定の電流が供給されて、ロータ2は第313
1の0°位置にあ1て、流量制御弁50弁体25を第7
図の伏線を位置させているため、メインlA39及びス
ーー系40の補助エアブリード通路はともに閉じ九状態
にあって。
In this way, the flow control i-valve 5 installed as an air pressure control valve on the 4X converter 11138 receives the two-tary control from the control device 37 when the engine output is high, such as when starting. , Knee!1's Sui A/CL
A specified current is supplied only to rotor 1, and rotor 2
1, and move the flow control valve 50 valve body 25 to the 7th position.
Since the foreshadowing in the figure is located, both the main IA 39 and the auxiliary air bleed passages of the Sue system 40 are in the closed state.

エンジン28にはリッチな燃料が供li&され為が、例
えば定常走行時のようにエンリン出力が低い場合(は、
制御装置37からは低いエンリン出力に対応して田−タ
ダアクチ凰エータ1のスイ1kICLtにも任意の励磁
電流が供給されて、W−タ2は弁体25とともに第9図
のように:Iイ*CLzの励磁電流にほぼ比例して回転
して、メイン系59と深田−系40の補−エアゾψ−ド
0エア供輸流量qを制御し、この伏線てズイA/CL1
とCI、 20電流値が岡−Kt−J九時点Kかいて、
192歳び弁体25とも45@の)A/jC)It−夕
園転して流量制御弁3はfpH度が最大になるとともに
、この11電状11に:$>hI4)s 4 w CL
 t、CL to@磁電流がそれぞれ温度上昇によりで
変化しても、番1イA/CL1.CL2による吸引力が
同一比率で変化する丸め、田−12歳び弁体25の固転
角度は変化せず、又、励磁電流O増大時と減少時におけ
為各固走鋏心PCI、PC!の艦ステψVスもそれヤれ
同一比率の丸め互いに打lI4され、冒−タ2及び弁体
25の励磁電流に対すJ11神性にはにステIlvスが
現れない。
Because rich fuel is supplied to the engine 28, when the engine output is low, such as during steady driving, for example,
An arbitrary excitation current is also supplied from the control device 37 to the switch 1kICLt of the actuator 1 in response to the low output, and the actuator 2, together with the valve body 25, is activated as shown in FIG. *It rotates approximately in proportion to the excitation current of CLz to control the supplementary aerosol ψ-de 0 air supply amount q of the main system 59 and Fukada system 40, and this foreshadowing causes the
and CI, 20 current value is Oka-Kt-J9 time K,
192 years old valve body 25 and 45 @) A/jC) It-Yuen turn and the flow rate control valve 3 reaches the maximum fpH degree, and this 11 electric state 11: $>hI4)s 4 w CL
Even if the magnetic currents t and CL to @ change due to temperature rise, the number 1 A/CL1. Rounding in which the attraction force by CL2 changes at the same ratio, the locking angle of the valve body 25 does not change, and each locking scissor center PCI, PC! The ship steps ψV are also struck by each other in the same ratio of rounding, and no step Ilv appears in the J11 divinity with respect to the excitation current of the valve body 2 and the valve body 25.

しかも、この四−ターアタチ、エータ1は電徴式〇九め
応答度が高く、田−タ2の停止位置バランスにスプリン
グを用iて−ない丸め、田−I2の停止時保持力が高い
うえ、停止位置の位置決め従1て、この−一タリアタナ
為エータ1麿動の流量制御弁5は従来の電磁式とステッ
プ4#J3c。
In addition, this four-tar attachment, Eta 1, has a high electrical response rate, uses a spring to balance the stop position of Data 2, and has a high holding force when stopped, and I2 has a high holding force when stopped. , for positioning the stop position, the flow rate control valve 5 for this - one tagliatana valve is a conventional electromagnetic type and step 4 #J3c.

優れ九点のみの制御特性と構造を得ることがで自る効果
がある。
Obtaining control characteristics and structure with only nine excellent points has its own effects.

次に、第10−1第11同は第3図に示すロー!リアタ
チ息エータ1の回転運動を直線運動に変換してニードル
式弁体を制御するようにした本発明の他の実施例であっ
て、この場合、第5間、第6鳴に対応シ九ロータリアク
チ、エータ41のロ−!41回転運動を、ロータ42の
ネV孔43にネジ着したネジ軸44と第11図に示すt
i!In止め軸受45とからなる回転→直纏斐換砿構を
介して直線4動に変換するとと吃に前記ネジ軸44と一
体のニードル式弁体46をロータ42の回転を介して軸
方向(往復動させ、弁本体47に形成された流体流入口
48.49と流出口50.51流体流通路の弁孔52流
路面積をロータ420回転角度に対応して制御可能くし
た他は、構成、作用、効果と4111r記実施例とほぼ
同等である。
Next, the 10th-1st and 11th rows are shown in Figure 3! This is another embodiment of the present invention in which the rotational motion of the rear breather 1 is converted into linear motion to control the needle type valve body. Acti, Eta 41's low! 41 rotational movement is caused by a screw shaft 44 screwed into a V-hole 43 of a rotor 42 and a t shown in FIG.
i! When the rotation consisting of the In stop bearing 45 is converted into linear 4-motion via the direct-coupling exchange mechanism, the needle type valve body 46 integrated with the threaded shaft 44 is rotated in the axial direction ( The configuration is such that the fluid inlet 48, 49 and outlet 50, 51 formed in the valve body 47, the valve hole 52 of the fluid flow path, and the flow path area can be controlled in accordance with the rotation angle of the rotor 420. , operation, and effect are almost the same as those of the embodiment described in 4111r.

なお、前記各実施例において、弁本体20.47に形成
され九弁孔26.52と弁体25,46の形状は励磁電
流に対する必要流量特性に応じて任意に設定することが
でき、前記各実施例の流緻制御弁3.53は気化、、i
f!38の補助エアプリ□−ドのエア供i*を制御の他
、バイパス式の電子制御燃料噴射装置を用いた回転数制
御、排ガス再循環装置を用いた制御弁制御、気化器のチ
1−タパ〜プの制御、点火進角装置のガバナ制御等にも
前記同様の特性で用いることができる。
In each of the above embodiments, the shapes of the nine valve holes 26.52 formed in the valve body 20.47 and the valve bodies 25, 46 can be arbitrarily set according to the required flow rate characteristics with respect to the excitation current. The flow control valve 3.53 of the embodiment is vaporized, i
f! In addition to controlling the air supply i* of the 38 auxiliary air lead, it also controls the rotation speed using a bypass type electronically controlled fuel injection device, control valve control using an exhaust gas recirculation device, and carburetor control. With the same characteristics as described above, it can also be used for control of engine speeds, governor control of ignition advance devices, and the like.

次に、本発明の効果について説明する。Next, the effects of the present invention will be explained.

本発明は弁本体の流体流入口と流出口とを連通する流体
流通路途上に弁孔をgI#成し、かつ、ツジアV方向に
着磁されたロータの少なくと41極とロータの左右両回
転方向において同時に吸引若しくは反発してロータに任
童の方向の回転力を付与する固j!極を、前記ロータの
缶型の回転角度位置に対応してコイA/励磁するクーダ
リアクチ。エータを設け、−に、前配り一タリアタチ、
エータのロータと連動して前記弁本体の弁孔の流路面積
を前記ロータの回転角度に対応して制御する弁体を設は
丸流量制御升にある。
The present invention has a valve hole gI# formed in the middle of a fluid flow path that communicates the fluid inlet and outlet of the valve body, and has at least 41 poles of the rotor magnetized in the Tsujia V direction and both the left and right sides of the rotor. A device that simultaneously attracts or repulses in the rotational direction and applies a rotational force in the desired direction to the rotor! A coil actuator that excites a coil A/pole in accordance with a can-shaped rotational angular position of the rotor. Set up eta, -, front distribution one tagliatachi,
A round flow rate control box is provided with a valve body that works in conjunction with the rotor of the rotor to control the flow path area of the valve hole of the valve body in accordance with the rotation angle of the rotor.

これによって、本発明は高精度、高応答でヒステリレス
及び−的彬響もなく、シかも%構造簡琳にして価格の安
い流量制御弁を得ることができる効果がある。
As a result, the present invention has the advantage that it is possible to obtain a flow control valve with high precision, high response, no hysteria, no negative impact, a relatively simple structure, and a low price.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第2図は従来の実施例の動作特性図、図、第7
図はその要部詳細図、第8図はその使用伏線を示す説明
図、第9図はその動作特性図、第10!Iはその他の1
!施例の破断側面図、第11図はその要部詳細用である
。 1.4l−W=りψアタチ、エータ 乙42−1’  −声   5.53・・・流量制御弁
16.17,48,4 ?−流 入 口18.1 ?、
5 Q、51−一流 出 口   25.46・・・弁
   体2氏52−・弁    孔    FCl・・
・第1固定鉄心F’ C2−・・第2固定鉄心  CL
l、 CL2・・・コ イ ル出  願  人 愛三工
業株式会社 弁  理  人 弁場士岡1)英彦 第 1 図 第2凶 第
1 and 2 are operational characteristic diagrams of the conventional embodiment.
The figure is a detailed view of its main parts, Figure 8 is an explanatory diagram showing hints of its use, Figure 9 is a diagram of its operating characteristics, and Figure 10! I is other 1
! A cutaway side view of the embodiment, FIG. 11, shows details of the main parts thereof. 1.4l-W=riψattachi, eta Otsu 42-1'-voice 5.53...Flow rate control valve 16.17, 48, 4? -Inlet 18.1? ,
5 Q, 51-First-class outlet 25.46...Valve body 2 52-・Valve hole FCl...
・First fixed core F' C2-...Second fixed core CL
1, CL2... Coil Applicant: Aisan Industries Co., Ltd. Patent Attorney: Benba Shioka 1) Hidehiko No. 1 Figure 2: No.

Claims (1)

【特許請求の範囲】 弁本体の流体流入口と流出口とを連通する流体流4略途
上に弁孔を形成し、かつ、ヲジアV方向に着磁されたロ
ータの少なくとも1′!@とり一夕の左右両回転方向に
おいて同時(吸引若しくは反発してロータに任意の方向
の回転力を付与する固定極を、前記ロータの任意の回転
角度位置に対応してコイA/I/jll磁するロータリ
アクチ。エータを設け、【に、前記ロータリアクチ、エ
ータのロータト連動して前記弁本体の弁孔の流路面積を
前記ロータの回転角度に対応して制御する弁体を設ける
ことを特徴とする流量制御弁。
[Scope of Claims] A valve hole is formed approximately in the middle of the fluid flow 4 that communicates the fluid inlet and outlet of the valve body, and at least 1' of the rotor is magnetized in the direction V! At the same time in both the left and right rotational directions (attracting or repelling a fixed pole to apply rotational force in any direction to the rotor), the coil A/I/jll is attached to a fixed pole corresponding to any rotational angle position of the rotor. A magnetized rotary actuator is provided, and a valve body is provided that operates in conjunction with the rotary actuator of the rotary actuator and the rotor to control the flow passage area of the valve hole of the valve body in accordance with the rotation angle of the rotor. Characteristic flow control valve.
JP4363582A 1982-03-17 1982-03-17 Flow control valve Pending JPS58160678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4363582A JPS58160678A (en) 1982-03-17 1982-03-17 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4363582A JPS58160678A (en) 1982-03-17 1982-03-17 Flow control valve

Publications (1)

Publication Number Publication Date
JPS58160678A true JPS58160678A (en) 1983-09-24

Family

ID=12669320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4363582A Pending JPS58160678A (en) 1982-03-17 1982-03-17 Flow control valve

Country Status (1)

Country Link
JP (1) JPS58160678A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976227A (en) * 1990-04-16 1990-12-11 Draper David J Internal combustion engine intake and exhaust valve control apparatus
US5146126A (en) * 1991-09-05 1992-09-08 Hr Textron Inc. Adjustable rotor assembly
EP0634830A1 (en) * 1993-07-15 1995-01-18 Siemens Aktiengesellschaft Limited angle torque motor
KR20050103605A (en) * 2004-04-26 2005-11-01 우영식 Electronic rotary valve.
SE2051493A1 (en) * 2020-12-18 2022-06-19 Assa Abloy Ab Actuator and lock device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712103A (en) * 1980-06-24 1982-01-22 Koyo Seiko Co Ltd Control type variable throttle valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712103A (en) * 1980-06-24 1982-01-22 Koyo Seiko Co Ltd Control type variable throttle valve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976227A (en) * 1990-04-16 1990-12-11 Draper David J Internal combustion engine intake and exhaust valve control apparatus
US5146126A (en) * 1991-09-05 1992-09-08 Hr Textron Inc. Adjustable rotor assembly
EP0634830A1 (en) * 1993-07-15 1995-01-18 Siemens Aktiengesellschaft Limited angle torque motor
KR20050103605A (en) * 2004-04-26 2005-11-01 우영식 Electronic rotary valve.
SE2051493A1 (en) * 2020-12-18 2022-06-19 Assa Abloy Ab Actuator and lock device
SE544599C2 (en) * 2020-12-18 2022-09-20 Assa Abloy Ab Actuator and lock device

Similar Documents

Publication Publication Date Title
US4409940A (en) Speed governor for internal combustion engines
EP1568866B1 (en) Choke valve provided with an integrated electromagnetic actuator for an intake manifold with a retracting tumble system
JP2000120906A (en) Electromagnetically operated valve assembly and valve assembling-operating method
US4976237A (en) Engine air intake valve
JPS58160678A (en) Flow control valve
JP2000240474A (en) Throttle valve control device for internal combustion engine
US6581903B2 (en) Electrical flow control valve
CA1134893A (en) Rotary actuator with selectable response characteristics
US4938190A (en) Throttle plate actuator
JPH0123665B2 (en)
US1201055A (en) Multiple-cylinder motor.
US6215207B1 (en) Torque motor having uniform torque output characteristics
JPH075607Y2 (en) Electromagnetic actuator
JPS58192943A (en) Idling speed control device
US4561469A (en) Electromagnetic control valve
JP2001173465A (en) Throttle device
JPS62117372U (en)
US1424140A (en) Engine governor
KR19980027746A (en) Electronic Throttle Valve Device of Carburetor
JPH11299209A (en) Torque motor
JPH11193725A (en) Throttle unit
JPS6036763A (en) Control of secondary throttle valve for two-stage carburettor
JPH04136578A (en) Flow control valve
JPH118963A (en) Electric actuator with stabilized magnetostatic torque and throttle valve provided with actuator
JPS62266283A (en) Driving device for solenoid control valve