JPS58160287A - Storage tank for liquid - Google Patents

Storage tank for liquid

Info

Publication number
JPS58160287A
JPS58160287A JP57042670A JP4267082A JPS58160287A JP S58160287 A JPS58160287 A JP S58160287A JP 57042670 A JP57042670 A JP 57042670A JP 4267082 A JP4267082 A JP 4267082A JP S58160287 A JPS58160287 A JP S58160287A
Authority
JP
Japan
Prior art keywords
potential
corrosion
storage tank
liquid storage
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57042670A
Other languages
Japanese (ja)
Other versions
JPS63313B2 (en
Inventor
和利 伊藤
勝美 鈴木
鈴木 衛
湊 昭
宇梶 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57042670A priority Critical patent/JPS58160287A/en
Publication of JPS58160287A publication Critical patent/JPS58160287A/en
Publication of JPS63313B2 publication Critical patent/JPS63313B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は液体貯蔵タンクに係り、特に、2イニングを有
し、腐食性溶液の貯][會行なうタンクに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to liquid storage tanks, and more particularly to tanks having two innings for storing corrosive solutions.

各種の液体を貯蔵するタンクには高い耐食性が必要とさ
れ、鋼鉄製タンクの場合には樹脂ライニングのような防
食塗装が棒されており、を九耐食性にすぐれたステンレ
ス鋼製のタンク及び配管等が使用されている。
High corrosion resistance is required for tanks that store various liquids, and in the case of steel tanks, anti-corrosion coatings such as resin linings are applied. is used.

さらvcwi気防食法を適用し、防食性を高め九ものが
提案されている。ところが防食2イニング塗装が施され
た鉄鋼製タンクに電気防食を適用する際に、過度な防食
で陰極における電位が水素発生電位より岸になつ曳場合
には、防食ライニング塗装下の鉄鋼表面で水嵩が発生し
、塗装のふくれによる製麹で腐食が発生する恐れかめる
In addition, nine methods have been proposed to improve corrosion resistance by applying the VCWI corrosion protection method. However, when cathodic protection is applied to a steel tank that has been coated with two coats of anti-corrosion coating, if the potential at the cathode becomes lower than the hydrogen generation potential due to excessive corrosion protection, water builds up on the steel surface under the anti-corrosion lining coating. There is a risk that corrosion may occur due to the koji produced by the blistering of the paint.

一方、ステンレス鋼は各種滴液中において応力腐食割れ
を発生す石電位域がある(文献、日本鉄鋼協会;鉄鋼の
応力腐食割れWs5B−5)ので、ステンレス鋼製のタ
ンク及び配管等を電気防食する上での電位の選定がむず
かしい。
On the other hand, stainless steel has a potential range where stress corrosion cracking occurs in various droplets (Reference, Japan Iron and Steel Institute; Stress corrosion cracking of steel Ws5B-5), so stainless steel tanks and piping should be protected against cathodic corrosion. It is difficult to select the potential for this purpose.

また、流電陽極方式によゐ電気防食では必要以上の防食
電位になった場合、流電陽&(犠牲陽極)の消耗量がは
けしく、犠牲陽極の数量を増加するか、陽極取替回数を
多くする必要がめシ、非常な手間がかかつていた。
In addition, when using the galvanic anode method for cathodic protection, if the corrosion protection potential exceeds the required level, the galvanic anode and (sacrificial anode) are consumed rapidly, and the number of sacrificial anodes must be increased or the anode replaced. It was necessary to do this many times, which was very time-consuming.

本発明は上記従来の問題点を解決するもので、その目的
は、流電陽極方式による防食方法を採用した、ライニン
グを有する金属製液体貯蔵タンクにおける防食性を高め
ると共に、犠牲陽極の無駄な消費を防止することにるる
The present invention has been made to solve the above-mentioned conventional problems, and its purpose is to improve corrosion protection in a metal liquid storage tank with a lining that employs a galvanic anode corrosion prevention method, and to reduce wasteful consumption of sacrificial anodes. It depends on preventing.

一般に腐食積項下にある金属体を電気防食するにはその
金属体表面の局部陰極部の電位を、局部を1局部陽極部
の電位まで分極させる必要がある。
Generally, in order to electrolytically protect a metal body under corrosion product conditions, it is necessary to polarize the potential of a local cathode portion on the surface of the metal body to the potential of one local anode portion.

例えば海水中において、その防★しようとする金属の自
然電位列に示された定常電位よりα2〜0.3■低い電
位にすればこの状態になるといわれている。海水中にお
ける鉄鋼の防食電位は、飽和甘こう基準で約−α8■で
るる。
For example, in seawater, this state is said to occur if the potential is α2 to 0.3 μ lower than the steady potential shown in the natural potential series of the metal to be protected. The corrosion protection potential of steel in seawater is approximately -α8■ on a saturated amber basis.

一方各種溶液中でのステレス鋼の応カ食割れは第1表に
示?!5K、20%NJiCj+1%N”tCro4溶
液中−1’8 U 8304. SUI!131g共−
(L36V付近テ発生するといわれている。
On the other hand, Table 1 shows stress corrosion cracking of stainless steel in various solutions. ! 5K, 20%NJiCj+1%N"tCro4 solution -1'8 U 8304. SUI!131g together-
(Te is said to occur near L36V.

従って、防食ライニング塗装とステンレス鋼とから成る
液体貯蔵タンクの防食法は、ステンレス鋼の応力腐食割
れの発生と、過度な防食による炭素鋼表面での水素発生
を共に防止し得る防食電位の範囲を常に保時することが
、有効な防食法であることがわかった。
Therefore, the anticorrosion method for liquid storage tanks made of anticorrosive lining and stainless steel requires a range of anticorrosion potential that can prevent both the occurrence of stress corrosion cracking in stainless steel and hydrogen generation on the surface of carbon steel due to excessive corrosion protection. It has been found that constant maintenance is an effective corrosion prevention method.

そこで本実勇者等は、この考え方を確認するためO種々
実験を重ねた。1782表に示した成分を含む試験液中
において、炭素鋼、8U8304及び8U8316Lの
電位を掬定し友。次に犠牲陽極として、υを用イ、炭素
鋼、8U83G4w8US31@Lと組み合せえ場合の
電位を側室した。結果を第1図に示す。図から8US3
04.8US31@L及び炭素鋼の自然電位は電気防食
していない電位で、電気防食すると各試料共水素発生電
位を越えた−1.1V付近KToる1次に本発明法であ
る電位調整器t−隘他と犠牲陽極間に設置した。本実験
で用いた電位調整器には可変抵抗器を使用した。電位は
炭素鋼の自然電位より卑で、水素発生電位よ〉貴な電位
に設定し、1力月間一定に保時した。その結果、炭素鋼
の腐食及びステンレス鋼の応力腐東割れの発生は見られ
ず、健全であった。
Therefore, Yusha Honji and others conducted various experiments to confirm this idea. Measure the potential of carbon steel, 8U8304 and 8U8316L, in a test solution containing the components shown in Table 1782. Next, as a sacrificial anode, υ was used, and the potential when combined with carbon steel and 8U83G4w8US31@L was set as a side chamber. The results are shown in Figure 1. From the figure 8US3
The natural potential of 04.8 US31@L and carbon steel is the potential without cathodic protection, and when cathodic protection is applied, each sample exceeds the hydrogen generation potential at around -1.1V KTo. It was installed between the t-wall and the sacrificial anode. A variable resistor was used as the potential adjuster used in this experiment. The potential was set to be less base than the natural potential of carbon steel, but more noble than the hydrogen generation potential, and kept constant for one month. As a result, no corrosion of the carbon steel or stress cracking of the stainless steel was observed, indicating that the steel was sound.

第  2  表 本発明は上記知見に基いてなされ友ものであって、ライ
ニングを有する金属製液体タンクに犠牲P#極を設ける
と共に、この犠牲4)極とタンクとの間に適正防食電位
に保持するための電位調整器を設けるようにしたもので
Fし 以下、本発明の一実施例t−J12図にょシ貌明する。
Table 2 The present invention has been made based on the above findings, and includes providing a sacrificial P# electrode in a metal liquid tank having a lining, and maintaining an appropriate anti-corrosion potential between the sacrificial electrode and the tank. An embodiment of the present invention will be explained below with reference to Fig. t-J12.

第2図は炭素鋼に防食2イニング塗装したタンクにステ
ンレス鋼内部配管のある液体貯蔵タンクの模式的a1図
でるる。図において、炭素鋼製タンクlは樹脂2イニン
グ2で防食m装されており、タンク内部には温水等を流
すステンレス配管3がセットされている。流電陽極方式
による電気防食法を適用するための犠牲陽極4は、適正
防食電位に保時する電位am器5と防食効果を監視する
ための電流計6を通して、−極でるる炭素銅1及びステ
ンレス鋼3と電気的に接続している。腐食性溶11[7
は温水で加熱され常時50UK保持される。
Figure 2 is a schematic A1 diagram of a liquid storage tank made of carbon steel coated with two coats of anti-corrosion coating and equipped with stainless steel internal piping. In the figure, a carbon steel tank 1 is coated with a resin coating 2 to prevent corrosion, and a stainless steel pipe 3 for flowing hot water, etc. is set inside the tank. The sacrificial anode 4 for applying the electrolytic protection method using the galvanic anode method is connected to the carbon copper 1 and It is electrically connected to stainless steel 3. Corrosive melt 11 [7
is heated with hot water and kept at 50UK at all times.

電流計6Fi防食効果を監視する友めのものである。即
ち犠牲S極4は流電陽極効果を発揮して、各試料に液中
を通して陰極電1(防食電流)會供給するが、この防食
電流を針欄する電流針6を上記回路に設置すれば、犠牲
陽極の消耗量がわかヤ流電陽極方式による防食効果を監
視できる。電流計6は常時使用して監視しても、また始
めにセットして時々監視しても、何らさしつかえない。
The ammeter 6Fi is a companion for monitoring the anti-corrosion effect. That is, the sacrificial S electrode 4 exerts a galvanic anode effect and supplies a cathode electrode 1 (anticorrosion current) to each sample through the liquid, but if a current needle 6 for passing this anticorrosion current is installed in the circuit above, The corrosion prevention effect of the current electrolytic anode method can be monitored by measuring the amount of sacrificial anode consumption. There is no problem in using the ammeter 6 all the time for monitoring, or even setting it at the beginning and monitoring from time to time.

上記実施例装置において旋素鋼l及びステンレス銅3の
腐食は防止でき、嶺性陽&4の消耗量も必要最小限に抑
えることができた。
In the apparatus of the above embodiment, the corrosion of the stainless steel 1 and the stainless copper 3 could be prevented, and the amount of consumption of the Reishiyou & 4 could be suppressed to the necessary minimum.

さらに従来の電気防食法よりも、より一層完全に防食す
ることができた。t+、ライニングの剥離も何ら生じな
かった。
Furthermore, it was able to provide more complete corrosion protection than conventional cathodic protection methods. t+, no peeling of the lining occurred.

以上の過プ本発明によれば、優れた防*性を有する金属
製液体貯蔵タンクが提供される。また、タンク寿命も延
長される。さらに犠牲陽極のいたずらは消耗が回避され
、タンクの保守管理も容易になる。
According to the present invention as described above, a metal liquid storage tank having excellent *proof properties is provided. It also extends the life of the tank. Furthermore, tampering with the sacrificial anode can be avoided, and maintenance of the tank can be facilitated.

【図面の簡単な説明】[Brief explanation of the drawing]

路1図は犠牲陽極の試験結果を示すグラフ、第2図はラ
イニングを有する金属製液体貯蔵タンクの概略断面図で
ある。 l・・・縦索鋼製タンク、2・・・樹脂ライニング、3
・・・ステンレス配管、4・・・犠牲陽極、5・・・電
位調整器、第 IEII 42和「ニク燈」七基欅電イ朕〈7〕
FIG. 1 is a graph showing the test results of the sacrificial anode, and FIG. 2 is a schematic cross-sectional view of a metal liquid storage tank with a lining. l... Longitudinal steel tank, 2... Resin lining, 3
... Stainless steel piping, 4... Sacrificial anode, 5... Potential regulator, No. 42 IEII ``Nikutou'' Seven Keyaki Electric Power Co., Ltd.〈7〕

Claims (1)

【特許請求の範囲】[Claims] 1.1)イニングを有する金属製液体貯蔵タンクに犠性
陽aを設けると共に、この犠牲陽極とタンクとの間に適
正防食電位に保持するための電位調整器を介設したこと
t−特徴とする液体貯蔵タンク。 2、犠牲陽極とタンクとO関には、電位調整器と直列に
、電流針が介設されていることt%黴とする特許請求の
範il!8第1項記載の液体貯蔵タンク。 3、電位調整器は可変抵抗器である特許請求の範囲18
1項又は#12項記載の液体貯蔵タンク。
1.1) A sacrificial anode is provided in a metal liquid storage tank having an inning, and a potential regulator is interposed between the sacrificial anode and the tank to maintain an appropriate anti-corrosion potential. liquid storage tank. 2. The scope of the patent claim is that a current needle is interposed between the sacrificial anode, the tank, and the O connection in series with the potential regulator. 8. The liquid storage tank according to item 1. 3. Claim 18, wherein the potential regulator is a variable resistor.
Liquid storage tank according to item 1 or item #12.
JP57042670A 1982-03-19 1982-03-19 Storage tank for liquid Granted JPS58160287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57042670A JPS58160287A (en) 1982-03-19 1982-03-19 Storage tank for liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57042670A JPS58160287A (en) 1982-03-19 1982-03-19 Storage tank for liquid

Publications (2)

Publication Number Publication Date
JPS58160287A true JPS58160287A (en) 1983-09-22
JPS63313B2 JPS63313B2 (en) 1988-01-06

Family

ID=12642454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57042670A Granted JPS58160287A (en) 1982-03-19 1982-03-19 Storage tank for liquid

Country Status (1)

Country Link
JP (1) JPS58160287A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5729347B2 (en) * 2012-04-16 2015-06-03 トヨタ自動車株式会社 Casting equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899386A (en) * 1981-12-04 1983-06-13 日本ケミカル建設株式会社 Corrosion protective structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899386A (en) * 1981-12-04 1983-06-13 日本ケミカル建設株式会社 Corrosion protective structure

Also Published As

Publication number Publication date
JPS63313B2 (en) 1988-01-06

Similar Documents

Publication Publication Date Title
Bellucci Galvanic corrosion between nonmetallic composites and metals: I effect of metal and of temperature
US2444174A (en) Galvanic coating process
Greene Corrosion of surgical implant alloys: a few basic ideas
US3102086A (en) Method of improving the corrosion resistance of titanium metals
US6511586B1 (en) Marine organism prevention system for structures in seawater
US6579429B2 (en) Antifouling system for structure exposed to seawater and heat exchanger
Li et al. Effect of hydrogen on pitting corrosion of 2205 duplex stainless steel under alternating dry/wet marine environment
CN110296932A (en) A kind of electro-chemical test sample and preparation method thereof
Stern Fundamentals of electrode processes in corrosion
POURBAIX Characteristics of localized corrosion of steel in chloride solutions
JPS58160287A (en) Storage tank for liquid
Pedeferri et al. Cathodic and anodic protection
Hodgkiess et al. Acid cleaning of thermal desalination plant: do we need to use corrosion inhibitors?
Benzbiria et al. Cathodic behavior of pure Al in sulfate media
Watkins et al. Electrochemical investigation of the corrosion rate of sacrificial coatings on steel
US3001919A (en) Methods for protecting immersed metallic structures against corrosion
US3354061A (en) Method and apparatus for anodic protection
Al-Mazeedi et al. A Study of galvanic corrosion in stagnant ammonium bisulfide solution
Kou et al. Galvanic corrosion based on wire beam electrode technique: progress and prospects
US3496079A (en) Corrosion prevention
Bohnes et al. Galvanic (sacrificial) anodes
Ford Jr et al. Galvanic corrosion of structural aluminum coupled with mild steel in a dilute sodium dichromate electrolyte
Lodhi et al. Galvanic compatibility of corrosion protective coatings with AA7075 aluminum alloy
JPH0261080A (en) Cathodic protection method for stainless steel
Lennox Stray current corrosion of steel