JPS58159456A - Preparation of methyl mercaptan - Google Patents

Preparation of methyl mercaptan

Info

Publication number
JPS58159456A
JPS58159456A JP57043428A JP4342882A JPS58159456A JP S58159456 A JPS58159456 A JP S58159456A JP 57043428 A JP57043428 A JP 57043428A JP 4342882 A JP4342882 A JP 4342882A JP S58159456 A JPS58159456 A JP S58159456A
Authority
JP
Japan
Prior art keywords
methanol
reaction
reactor
catalyst
activated alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57043428A
Other languages
Japanese (ja)
Other versions
JPH0323541B2 (en
Inventor
Hiroo Tsuchiya
土屋 宏夫
Shigenobu Yamaguchi
山口 重信
Hisao Sugie
杉江 久男
Kenzo Kobayashi
小林 謙三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Seitetsu Kagaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seitetsu Kagaku Co Ltd filed Critical Seitetsu Kagaku Co Ltd
Priority to JP57043428A priority Critical patent/JPS58159456A/en
Publication of JPS58159456A publication Critical patent/JPS58159456A/en
Publication of JPH0323541B2 publication Critical patent/JPH0323541B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To prepare the titled compound useful as a synthetic raw material of methionine, in high yield and selectivity, by reacting methanol with H2S essentially in the first reactor and reacting the by-products with H2S essentially in the second reactor, wherein each reaction is carried out in the presence of a catalyst suitable for the respective reaction system. CONSTITUTION:Methyl mercaptan is prepared by the vapor-phase reaction of methanol and hydrogen sulfide. In the above process, the reaction is carried out at 300-430 deg.C in the first reactor containing an active alumina catalyst (e.g. a mixture of active alumina and potassium tungstate) which catalyzes essentially the reaction of methanol with hydrogen sulfide, and methyl mercaptan is separated from the reaction product. The unreacted methanol and H2S are mixed with fresh methanol and unreacted H2S, and reacted at 300-400 deg.C in the second reactor containing an active alumina catalyst (e.g. a mixture of active alumina and phosphotungstic acid) which catalyzes essentially the reaction of H2S with dimethyl sulfide, and methyl mercaptan is separated as a reaction product.

Description

【発明の詳細な説明】 本発明はメタノールと硫化水素とからメチルメルカプタ
ンを製造する方法に関し、さらに詳しくは、98チ以−
、ヒの高収率でメチルメルカプタンを取得できる工業的
に有利な製造方法に関するものである1 メチルメルカプタンはメチオニンの合1jV原料、無臭
ガスの着臭剤、ジメチルスルフォキサイドあるいはジメ
チルスルフォンの製造原料として有用な化合物である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing methyl mercaptan from methanol and hydrogen sulfide.
This article relates to an industrially advantageous production method that can obtain methyl mercaptan in a high yield from methionine. It is a useful compound as a raw material.

う ゛)4ンチルメル力ブタンは二硫化炭素、−酸化炭素′
ノ・ またはメタンのような物質を原料として接触的d、 >bメタノールと硫化水素とを触媒の存在下気相反応さ
せる方法である。
゛) 4-methylbutane is carbon disulfide, -carbon oxide'
This is a method in which methanol and hydrogen sulfide are catalytically reacted in the gas phase in the presence of a catalyst using a substance such as or methane as a raw material.

この方法は1910年サバティア−らにより報告(P、
5abatier ancL A、mailhe、Co
mpt、rencl、 l 5 Q。
This method was reported in 1910 by Sabatier et al.
5abatier ancL A, mailhe, Co
mpt, rencl, l 5 Q.

82B、 1217.1569 (1910)  )さ
れて以来反応時に使用する触媒の改良が種々行なわれて
きている。触媒を改良する方向として、原料メタノール
の転化率や選択率の向上もしくけ触媒寿命の向上に着目
した方法がある。例えば、硫化水素/メタノールのモル
比3において、触媒として活性アルミナを使用して反応
させれば、メタノール転化率100係、メチルメルカプ
タン選択率30%であるが、触媒に活性アルミナ−タン
グステン酸カリウムを使用すれは、硫化水素′メタノー
ルのモル比を2としても、メタノール転化率90チ、メ
チルメルカプタン98チがで得られる触媒について検討
を重ねだ。
82B, 1217.1569 (1910)), various improvements have been made to the catalysts used in the reaction. In order to improve catalysts, there are methods that focus on improving the conversion rate and selectivity of raw methanol, and also on improving catalyst life. For example, if the reaction is carried out using activated alumina as a catalyst at a hydrogen sulfide/methanol molar ratio of 3, the methanol conversion rate will be 100% and the methyl mercaptan selectivity will be 30%. Regarding the use of this catalyst, even if the molar ratio of hydrogen sulfide to methanol was 2, a catalyst that would yield a methanol conversion of 90% and a methyl mercaptan of 98% was repeatedly investigated.

すなわち活性アルミナ−タングステン酸カリウム(対活
性アルミナ2〜20%混合)、活性アルミナ−硫化カド
ミウム(対活性アルミナ10〜50%混合)、活性アル
ミナ−タングステン酸(対活性アルミナ2チ混合)、活
性アルミナーリンタングステノII#(対活セトアルミ
ナ1〜4チ混合)その他硫化アルカリ金属、リン酸など
の触媒活+4について検討を加えた結果、選択率は活性
アルミナ−タングステン酸カリウムが最本優れていると
の知見を得た。しかし、活性アルミナ−タングステン酸
カリウム触媒を用いて一つの反応器で反応させると、硫
化水素とメタノールのモル比を3にしてメタノールの転
化率90係、選択率95係が最高であり、そわ以上転化
率を上昇させようとすると、逆に選択率が低下する結果
になる。従って実用上は選択″:、492〜95チとな
り、常に5〜8チのジメチタンと比較して少なく、価値
が低いため、従来法ではこれを同一反応器にリサイクル
して、メチルメルカプタンに転化する方法か工業的に採
用されてきた1、 5− この場合、活性アルミナ−タングステン酸カリウムのよ
うな高選択率触媒を使用してリサイクルする表、リサイ
クル量がメタノールの2〜3倍となり、蒸気贅用等のユ
ーティリティコストが人となり、活性アルミナ触媒単独
使用の場合と比較して工業的有利性が失なわれ、反応器
容積当りの生産性も低下する欠点がある。
Namely, activated alumina-potassium tungstate (2-20% mixture of activated alumina), activated alumina-cadmium sulfide (10-50% mixture of activated alumina), activated alumina-tungstic acid (2% mixture of activated alumina), and activated aluminum. Narin Tungsten II # (mixture of 1 to 4 tungstate of counteractive cetoalumina) As a result of considering the catalyst activity +4 of other alkali metal sulfides, phosphoric acid, etc., active alumina-potassium tungstate was the best in terms of selectivity. We obtained the following knowledge. However, when the reaction is carried out in one reactor using an activated alumina-potassium tungstate catalyst, the molar ratio of hydrogen sulfide and methanol is 3, and the conversion rate of methanol is the highest, and the selectivity is 95%, which is higher than that of Sowa. Attempting to increase the conversion rate results in a decrease in selectivity. Therefore, in practice, the amount is 492 to 95 mm, which is always smaller and less valuable than 5 to 8 percent dimethitane, so in the conventional method, it is recycled into the same reactor and converted to methyl mercaptan. In this case, the recycling method using a high selectivity catalyst such as activated alumina-potassium tungstate, the recycling amount is 2 to 3 times that of methanol, and the vapor waste is reduced. This method has disadvantages such as increased utility costs, loss of industrial advantage compared to the case of using activated alumina catalyst alone, and lower productivity per reactor volume.

本発明者らはリサイクル量を減少させる目的で、メタノ
ールを含有または含有しないジメチルサルファイドと硫
化水素との反応に有利な触媒について鋭意検討を続けた
結果、リサイクル成分のうちジメチルサルファイドを別
の反応器ドと硫化水素を実質的に第2反応器で反応させ
;島Yこと、およびそれぞれの反応器における反応ボン にそれぞれ有効な触媒のあることを見出し本発明に到達
した。
In order to reduce the amount recycled, the inventors of the present invention continued to conduct intensive studies on catalysts that are advantageous for the reaction between dimethyl sulfide containing or not containing methanol and hydrogen sulfide. The present invention was achieved by discovering that hydrogen sulfide and hydrogen sulfide were substantially reacted in the second reactor; and that each reactor had an effective catalyst.

すなわち本発明の要旨は、メタノールと硫化水素とを気
相反応させてメチルメルカプタンを6− 製造するに際し、第1反応器において、実質的にメタノ
ールと硫化水素とを反応させる活性アルミナ系触媒の存
在下300℃〜430℃の温度で反応させ、メチルメル
カプタンを分離取得後、未反応メタノールおよび硫化水
素はフレッシュのメタノールおよび硫化水素と共に第1
反応器に循環し、副生ジメチルサルファイドはフレッシ
ュおよび未反応の硫化水素と共に第2反応器において、
実質的に硫化水素とジメチルサルファイドとを反応させ
る活性アルミナ系触媒の存在下300℃〜450℃の温
度で反応させメチルメルカプタンを分離取得することを
特徴とするメチルメルカプタンの製造法である。
That is, the gist of the present invention is that when producing methyl mercaptan by a gas phase reaction of methanol and hydrogen sulfide, the presence of an activated alumina-based catalyst that substantially causes the methanol and hydrogen sulfide to react in the first reactor. After the reaction is carried out at a temperature of 300°C to 430°C and methyl mercaptan is separated and obtained, unreacted methanol and hydrogen sulfide are collected in the first stage along with fresh methanol and hydrogen sulfide.
The by-product dimethyl sulfide is recycled to the reactor together with fresh and unreacted hydrogen sulfide in a second reactor.
This is a method for producing methyl mercaptan, which is characterized in that hydrogen sulfide and dimethyl sulfide are reacted in the presence of an activated alumina-based catalyst at a temperature of 300°C to 450°C to separate and obtain methyl mercaptan.

本発明で使用する活性アルミナ系触媒とは、るいは混合
させたものであるが、第1反応器では活性アルミナ−タ
ングステン酸カリウム、第2反応器では活性アルミナ−
リンタングステン酸あるいは活性アルミナ−タングステ
ン酸または活性アルミナ−硫化カドミウム触媒を用いた
ときに好結果が得られる。触媒の混合割合は活性アルミ
ナ1重量部に対していずれも0.01〜0.2重量部を
混合して成型するか、活性アルミナに他の触媒成分を担
持させてもよい。活性アルミナに混合あるいは担持させ
る他の触媒成分の量が0.01重量部以下では触媒効果
を発揮せず、また0、2重量部以上添加しても格別の効
果があがらないので不箭語である。
The activated alumina catalyst used in the present invention is a mixture of activated alumina and potassium tungstate in the first reactor and activated alumina and potassium tungstate in the second reactor.
Good results are obtained when using phosphotungstic acid or activated alumina-tungstic acid or activated alumina-cadmium sulfide catalysts. The mixing ratio of the catalyst may be 0.01 to 0.2 parts by weight per 1 part by weight of activated alumina, or the activated alumina may support other catalyst components. If the amount of other catalyst components mixed or supported on activated alumina is less than 0.01 part by weight, the catalytic effect will not be exhibited, and if it is added in excess of 0.2 parts by weight, no particular effect will be obtained. be.

各反応器における反応温度は300℃〜450℃の温度
範囲で行なえばよいが、第1反応器で14“ 場合が多い。メタノールと硫化水素のモル比はメタノー
ル1モルに対し5モル以下、通常1〜3モル倍、ジメチ
ルサルファイドと硫化水素のモル比はジメチルサルファ
イド1モルに対し、5モル以下、通常1〜3モル倍の範
囲で反応させることが多い。
The reaction temperature in each reactor should be in the range of 300°C to 450°C, but the first reactor is often 14". The molar ratio of methanol to hydrogen sulfide is 5 mol or less per 1 mol of methanol, usually The molar ratio of dimethyl sulfide and hydrogen sulfide is often 5 moles or less, usually 1 to 3 times, per mole of dimethyl sulfide.

反応圧力は通常大気圧ないしは8 kg/−の圧力で反
応させることが多いが、反応温度との関連において決す
るので必ずしもこの範囲内に限定されるものではない。
The reaction pressure is usually atmospheric pressure or 8 kg/-, but it is determined in relation to the reaction temperature and is not necessarily limited to this range.

一般に反応圧力を高くすると適当な反応温度は低めにな
る。
Generally, the higher the reaction pressure, the lower the appropriate reaction temperature.

本発明ではメタノールと硫化水素をこの系の反応に適し
た触媒の存在下に反応させ、反応物を分離してメチルメ
ルカプタンとジメチルザルファイドを得、ジメチルサル
ファイドを実質的にジメチルサルファイドと硫化水素を
反応させる触媒を充填した第2の反応器で硫化水素と反
応させ、メチルメルカプタンを高収率で取得することが
できる。
In the present invention, methanol and hydrogen sulfide are reacted in the presence of a catalyst suitable for this type of reaction, and the reactants are separated to obtain methyl mercaptan and dimethyl sulfide. Methyl mercaptan can be obtained in high yield by reacting with hydrogen sulfide in a second reactor filled with a catalyst to be reacted.

次に本発明を実施例によって説明する。Next, the present invention will be explained by examples.

参考例 硫化水素8ニジメチルサルフアイド2:メタノール10
モル比の原料ガスを390℃、空間速度1000 hr
−1にて表−1に示す各触媒上に 9− 通過反応させて表−1の結果を得た。メタノール転化率
はいずれも100チであった。メチルメルカプタン生成
率は活性アルミナ触媒の場合を100としてメタノール
に対するモルチで示した。
Reference example Hydrogen sulfide 8 Nidimethyl sulfide 2: Methanol 10
The molar ratio of the raw material gas is 390°C and the space velocity is 1000 hr.
-1, 9-pass reaction was carried out on each catalyst shown in Table-1, and the results shown in Table-1 were obtained. The methanol conversion rate was 100% in all cases. The methyl mercaptan production rate is expressed in moles relative to methanol, with the case of activated alumina catalyst being 100.

10− 実施例1 管径251111の反応管1には触媒として10チのタ
ングステン酸カリウムを混合したall11径の活性ア
ルミナ千Odを充填(触媒層長さ約100@a)シ、温
度を390℃に保持した。。
10- Example 1 Reaction tube 1 with a tube diameter of 251111 was filled with activated alumina 1,000 Od of all 11 diameters mixed with 10 T of potassium tungstate as a catalyst (catalyst layer length approximately 100@a), and the temperature was set at 390°C. was held at .

ここへ370℃に予熱した硫化水素/メタノールのモル
比を2に調整した混合ガスを空間速度70 Q hr−
lで通じた。反応混合物をガスクロマトグラフで分析し
たところメチルメルカプタンの収率は92%であった。
A mixed gas of hydrogen sulfide/methanol preheated to 370°C and adjusted to a molar ratio of 2 was added to this at a space velocity of 70 Q hr-
I got through with l. Analysis of the reaction mixture by gas chromatography revealed that the yield of methyl mercaptan was 92%.

使用したメタノールに対して副生ジメチルサルファイド
は7qI)であり、イナートガスが約1%生成した1、
メタノール転化率は100チであった。
The by-product dimethyl sulfide was 7qI) based on the methanol used, and about 1% of inert gas was generated.
The methanol conversion rate was 100%.

一方管径25III11、長さ500flの反応管2に
2 % (P2O5−24WOa)を混合した8u径の
活性アスミナ触媒4 Q mlを充填した。温度を40
0℃に保持し、370℃に予熱した硫化水素/ジメチル
サルファイドのモル比が3の混合ガスを空間速度700
 hr”  で通じた。反応混合物をガスクロマトグラ
フで分析した結果、メチルメルカプタンの収率は40%
であった。
On the other hand, a reaction tube 2 having a tube diameter of 25III11 and a length of 500 fl was filled with 4 Q ml of an 8 u diameter active asmina catalyst mixed with 2% (P2O5-24WOa). temperature to 40
A mixed gas of hydrogen sulfide/dimethyl sulfide with a molar ratio of 3, which was maintained at 0°C and preheated to 370°C, was heated at a space velocity of 700.
The reaction mixture was analyzed by gas chromatography, and the yield of methyl mercaptan was 40%.
Met.

以上の値から、メチルメルカプタン1モルを製造するに
要する循環ガス量は、硫化水素1.28モル、ジメチル
サルファイド0.10モル、合計1.38モルでよいこ
とがわかる。この実施例におけるフローシートを図1で
説明すると、反応管1に新入メタノール3と新入硫化水
素4を供給して反応させ、反応生成物は凝縮分離器5で
メチルメルカプタン6を分離取得し、別にイナートガス
7と水8を分離し、未反応の硫化水素9およびメタノー
ル10はそれぞれ循環して新人硫化水素および新入メタ
ノール9供給経路に戻す。
From the above values, it can be seen that the amount of circulating gas required to produce 1 mole of methyl mercaptan is 1.28 mole of hydrogen sulfide, 0.10 mole of dimethyl sulfide, and a total of 1.38 mole. To explain the flow sheet in this example with reference to FIG. 1, fresh methanol 3 and fresh hydrogen sulfide 4 are supplied to a reaction tube 1 and reacted, and the reaction product is separated into methyl mercaptan 6 in a condensation separator 5, and then separately obtained. Inert gas 7 and water 8 are separated, and unreacted hydrogen sulfide 9 and methanol 10 are circulated and returned to the fresh hydrogen sulfide and fresh methanol 9 supply path, respectively.

ユ。Yu.

副生じだジメチルサルファイド11は反応管2に循環供
給してここで新入硫化水素および未反応の硫化水素と反
応させる。
The by-product dimethyl sulfide 11 is circulated and supplied to the reaction tube 2, where it is reacted with fresh hydrogen sulfide and unreacted hydrogen sulfide.

実施例2 実施例1における反応管2の触媒成分である2チ(P2
O5−24WO3)にかえて10チC亜を使用した以外
は実施例1と同様に操作した結果、メチルメルカプタン
1モルを製造するに要する循環ガス量は硫化水素1.3
0モル、ジメチルサルファイド0.12モル、合計1.
42モルであった。
Example 2 2-chi (P2) which is the catalyst component of reaction tube 2 in Example 1
As a result of the same operation as in Example 1 except that 10% carbon dioxide was used instead of O5-24WO3), the amount of circulating gas required to produce 1 mole of methyl mercaptan was 1.3 hydrogen sulfide.
0 mol, dimethyl sulfide 0.12 mol, total 1.
It was 42 moles.

実施例3 実施例1における反応管2の触媒成分である2%(P2
O5−24WO8)にかえて5%タングステン酸を使用
した以外は実施例1と同様に操作しだ結果、メチルメル
カプタン1モルヲ製造するに要する循環ガス量は、硫化
水素1.29モル、ジメチルサルファイド0.11モル
、合計1.40モルであった。
Example 3 2% (P2
The procedure was carried out in the same manner as in Example 1 except that 5% tungstic acid was used instead of O5-24WO8). As a result, the amount of circulating gas required to produce 1 mole of methyl mercaptan was 1.29 moles of hydrogen sulfide and 0 moles of dimethyl sulfide. .11 mol, total 1.40 mol.

比較例1 内径25m−の反応管に活性アルミナ40dを充填し、
メタノール、硫化水素、ジメチルサルファイドの混合比
を変え反応管に通じ、メチル) メルカプタン生成量を求めた。その結果、温度890℃
、空間速度1000hr−1において、硫化水素/ジメ
チルサルファイド/メタノールのモル比8.3 / 2
.5 / 1のとき、メタノールに13一 対するメチルメルカプタン生成比が100チであること
がわかった。すなわちこのとき循環ジメチルサルファイ
ドは2.5モルのモル比で定常状態を保つことがわかり
、硫化水素の循環量は2.3モルとなる。これは実施例
2と比較して、循環量が硫化水素で1.02モル、ジメ
チルサルファイドで2.20モル、合計3.22モル多
いこととなる。なおこの比較例におけるフローシトを図
2で説、明すれば、反応管1に新入メタノール2と新入
硫化水素3が供給され、反応管1からの反、応生成物は
凝縮分離器4でそれぞれの成分に分離される。メチルメ
ルカプクン5は製品とし゛C取得され、イナートガス6
および水7は除姓され、また未反応硫化水素8および未
反応メタノール9はそれぞれ新入硫化水素3と新入メタ
ノール2の供給経路に循環される。副生じたジメチルサ
ルファイド10も循環して反応管1に戻される。
Comparative Example 1 A reaction tube with an inner diameter of 25 m was filled with activated alumina 40d,
The amount of methyl mercaptan produced was determined by changing the mixing ratio of methanol, hydrogen sulfide, and dimethyl sulfide and passing them through the reaction tube. As a result, the temperature was 890℃
, at a space velocity of 1000 hr-1, the molar ratio of hydrogen sulfide/dimethyl sulfide/methanol is 8.3/2.
.. It was found that when the ratio was 5/1, the production ratio of methyl mercaptan to methanol was 13 parts to 100 parts. That is, at this time, it is found that the circulating dimethyl sulfide maintains a steady state at a molar ratio of 2.5 mol, and the amount of circulating hydrogen sulfide is 2.3 mol. Compared to Example 2, this means that the circulating amount is 1.02 mol more for hydrogen sulfide and 2.20 mol more for dimethyl sulfide, which is a total of 3.22 mol more. The flow chart of this comparative example will be explained with reference to FIG. 2. Fresh methanol 2 and fresh hydrogen sulfide 3 are supplied to the reaction tube 1, and the reaction products from the reaction tube 1 are separated by the condensation separator 4. separated into components. Methyl mercapkun 5 has been certified as a product and is an inert gas 6.
and water 7 are removed, and unreacted hydrogen sulfide 8 and unreacted methanol 9 are circulated to the supply paths of fresh hydrogen sulfide 3 and fresh methanol 2, respectively. Dimethyl sulfide 10 produced as a by-product is also circulated and returned to the reaction tube 1.

比較例2 比較例1の活性アルミナ触媒を活性アルミナ14− −2チ(P2O524WO3)触媒にかえた以外は比較
例1と同様に操作し、て硫化水素/ジメチルザルファイ
ド/メタノールのモル比が2.8/1.5/′1のとき
メチルメルカプタン/メタノール生成比が10(1%で
あることがわかった。従ってこの場合の循環量はメチル
メルカプタン1モルに対し、硫化水素1.3モル、ジメ
チルサルファイド1.5モル、合H」28モルとなり、
実施例2の合計量より1.42モル多いことになる。
Comparative Example 2 The same procedure as Comparative Example 1 was carried out except that the activated alumina catalyst in Comparative Example 1 was replaced with an activated alumina 14-2-2 (P2O524WO3) catalyst, and the molar ratio of hydrogen sulfide/dimethyl sulfide/methanol was 2. It was found that when .8/1.5/'1, the methyl mercaptan/methanol production ratio was 10 (1%). Therefore, in this case, the circulating amount was 1.3 mol of hydrogen sulfide per 1 mol of methyl mercaptan. 1.5 moles of dimethyl sulfide, totaling 28 moles of H,
This is 1.42 moles more than the total amount in Example 2.

比較例3 反応管1には活性アルミナ触媒を、反応管2には2%タ
ンクステン酸カリウム触媒を充填した以外はヅー施例2
と同じ条件で反応させた。
Comparative Example 3 Same as Example 2 except that reaction tube 1 was filled with activated alumina catalyst and reaction tube 2 was filled with 2% potassium tank state catalyst.
The reaction was carried out under the same conditions.

反応管1でのメチルメルカプタンの収率は48チであり
、ジメチルサルファイドが51チ副生した。また反応管
2ではジメチルサルファイドのメチルメルカプタンへの
転化率は22%であった。この比較例3ではメチルメル
フ1ブタン1モルを得るのに未反応硫化水素4.10モ
ル、未反応ジメチルサルファイド0.90モルが循環さ
れることとなり、合計5,00モルの循環量であった。
The yield of methyl mercaptan in reaction tube 1 was 48 cm, and 51 cm of dimethyl sulfide was produced as a by-product. In reaction tube 2, the conversion rate of dimethyl sulfide to methyl mercaptan was 22%. In Comparative Example 3, 4.10 moles of unreacted hydrogen sulfide and 0.90 moles of unreacted dimethyl sulfide were recycled to obtain 1 mole of methylmerf and 1 mole of butane, for a total circulating amount of 5,00 moles.

従って、実施例2と比較して合計量で362モル循環量
が多くなる。
Therefore, compared to Example 2, the total circulating amount is increased by 362 moles.

比較例4 反応管2に充填する触媒を活性アルミナ−2%(P2O
5−24WO3)にかえた以外は比較例3と同様に反応
させた。反応管2でのジメチルサルファイドのメチルメ
ルカプタンへの転化率は40チであった。
Comparative Example 4 Activated alumina-2% (P2O
The reaction was carried out in the same manner as in Comparative Example 3 except that 5-24WO3) was used. The conversion rate of dimethyl sulfide to methyl mercaptan in reaction tube 2 was 40%.

この反応ではメチルメルカプタン1モルをつくるのに未
反応硫化水素359モル、未反応ジメチルサルファイド
0フ6 ととなり、合計4.35モルの循環量であった。
In this reaction, to produce 1 mole of methyl mercaptan, 359 moles of unreacted hydrogen sulfide and 6 moles of unreacted dimethyl sulfide were produced, for a total circulating amount of 4.35 moles.

従って実施例2の場合と比較して合計量で2.97モル
多い循環量である。
Therefore, compared to the case of Example 2, the total circulating amount is 2.97 mol more.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明のメチルメルカプタン製造工程を示すフロ
ーシート、図2は従来の製造工程を示すフローシートで
ある。
FIG. 1 is a flow sheet showing the methyl mercaptan manufacturing process of the present invention, and FIG. 2 is a flow sheet showing the conventional manufacturing process.

Claims (7)

【特許請求の範囲】[Claims] (1)  メタノールと硫化水素とを気相反応させてメ
チルメルカプタンを製造するに際し、第1反応器におい
て、実質的にメタノールと硫化水素とを反応させる活性
アルミナ系触媒の存在下300°C〜430℃の温度で
反応?Σせ、メチルメルカプタンを分離取得後、未反応
メタノールおよび硫化水素はフレッシュのメタノールお
上び硫化水素と共に第1反応器に循環し、副生ジメチル
サルファイドはフレッシュおよび未反応儒 、・め硫化水素と共に第2反応器において、実質的45
0℃の温度で反応させメチルメルカプタンを分離取得す
ることを特徴とするメチルメルカプタンの製造方法。
(1) When producing methyl mercaptan by causing a gas phase reaction between methanol and hydrogen sulfide, in the first reactor, the reaction temperature is 300°C to 430°C in the presence of an activated alumina catalyst that causes the methanol and hydrogen sulfide to substantially react. Reaction at temperature of °C? After separating and obtaining methyl mercaptan, unreacted methanol and hydrogen sulfide are circulated to the first reactor together with fresh methanol and hydrogen sulfide, and by-product dimethyl sulfide is recycled together with fresh and unreacted mercaptan and hydrogen sulfide. In the second reactor, substantially 45
A method for producing methyl mercaptan, which comprises performing a reaction at a temperature of 0° C. to separate and obtain methyl mercaptan.
(2)第1反応器の触媒が活性アルミナとタングステン
酸カリウムの混合物であり、第2反応器の触媒が活性ア
ルミナとリンタングステン酸の混合物である特許請求の
範囲(1)記載の方法。
(2) The method according to claim (1), wherein the catalyst in the first reactor is a mixture of activated alumina and potassium tungstate, and the catalyst in the second reactor is a mixture of activated alumina and phosphotungstic acid.
(3)活性アルミナとタングステン酸カリウムまたはリ
ンタングステン酸を、活性アルミナ1重量部に対してそ
れぞれ0.01〜0.2重量部の割合で混合した特許請
求の範囲(2)記載の方法。
(3) The method according to claim (2), wherein activated alumina and potassium tungstate or phosphotungstic acid are mixed at a ratio of 0.01 to 0.2 parts by weight per 1 part by weight of activated alumina.
(4)第1反応器の触媒が活性アルミナとタングステン
酸カリウムの混合物であり、第2反応器の触媒が活性ア
ルミナとタングステン酸の混合物である特許請求の範囲
(1)記載の方法。
(4) The method according to claim (1), wherein the catalyst in the first reactor is a mixture of activated alumina and potassium tungstate, and the catalyst in the second reactor is a mixture of activated alumina and tungstic acid.
(5)活性アルミナとタングステン酸カリウムで混合し
た特許請求の範囲(4)記載の方法。
(5) The method according to claim (4), in which activated alumina and potassium tungstate are mixed.
(6)第1反応器の触媒が活性アルミナとタングステン
酸カリウムの混合物であり、第2反応器の触媒が活(′
tアルミナと硫化カドミウムの混合物である特許請求の
範囲(1)記載の方法。
(6) The catalyst in the first reactor is a mixture of activated alumina and potassium tungstate, and the catalyst in the second reactor is activated ('
The method according to claim (1), which is a mixture of alumina and cadmium sulfide.
(7)活性アルミナとタングステン酸カリウムまたは硫
化カドミウムを活性アルミナ1重量部に対してそれぞれ
0.01〜0.2重址部の割合で混合した特許請求の範
囲(6)記載の方法。
(7) The method according to claim (6), wherein activated alumina and potassium tungstate or cadmium sulfide are mixed at a ratio of 0.01 to 0.2 parts by weight per 1 part by weight of activated alumina.
JP57043428A 1982-03-17 1982-03-17 Preparation of methyl mercaptan Granted JPS58159456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57043428A JPS58159456A (en) 1982-03-17 1982-03-17 Preparation of methyl mercaptan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57043428A JPS58159456A (en) 1982-03-17 1982-03-17 Preparation of methyl mercaptan

Publications (2)

Publication Number Publication Date
JPS58159456A true JPS58159456A (en) 1983-09-21
JPH0323541B2 JPH0323541B2 (en) 1991-03-29

Family

ID=12663421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57043428A Granted JPS58159456A (en) 1982-03-17 1982-03-17 Preparation of methyl mercaptan

Country Status (1)

Country Link
JP (1) JPS58159456A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119452A (en) * 1986-09-11 1988-05-24 ソシエテ ナショナル エルフ アキテーヌ(プロデュクション) Catalytic manufacture of mercaptane from thioether
US5026915A (en) * 1985-05-13 1991-06-25 Atochem North America, Inc. Process for the manufacture of dialkyl disulfides
EP0706998A1 (en) * 1994-10-11 1996-04-17 Elf Atochem North America, Inc. Process for the manufacture of high purity linear c4+ alkyl mercaptans
CN1090532C (en) * 1996-09-26 2002-09-11 底古萨股份公司 Catalyst, its preparation and use in synthesis of methyl mercaptan
JP2007515416A (en) * 2003-12-18 2007-06-14 デグサ ゲーエムベーハー Method for separating methyl mercaptan from a reaction gas mixture
DE102007007458A1 (en) 2007-02-15 2008-08-21 Evonik Degussa Gmbh Process for the preparation of methyl mercaptan from dialkyl sulfides and dialkyl polysulfides
JP2009542754A (en) * 2006-07-13 2009-12-03 エボニック デグサ ゲーエムベーハー Process for producing alkyl mercaptans in a multi-zone fixed bed reactor
JP2010502440A (en) * 2006-09-11 2010-01-28 エボニック デグサ ゲーエムベーハー Mo-containing catalyst, production method and production method of methyl mercaptan
CN102658183A (en) * 2012-04-28 2012-09-12 重庆紫光天化蛋氨酸有限责任公司 Catalyst for catalyzing dimethyl sulfide and hydrogen sulfide to synthesize methyl mercaptan, and preparation method and application thereof
US10577314B2 (en) 2016-05-31 2020-03-03 Novus International, Inc. Process for producing methyl mercaptan from dimethyl sulfide
CN114478334A (en) * 2022-02-25 2022-05-13 新疆广汇陆友硫化工有限公司 Method for producing dimethyl disulfide by methyl mercaptan vulcanization method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026915A (en) * 1985-05-13 1991-06-25 Atochem North America, Inc. Process for the manufacture of dialkyl disulfides
JPH042587B2 (en) * 1986-09-11 1992-01-20
JPS63119452A (en) * 1986-09-11 1988-05-24 ソシエテ ナショナル エルフ アキテーヌ(プロデュクション) Catalytic manufacture of mercaptane from thioether
EP0706998A1 (en) * 1994-10-11 1996-04-17 Elf Atochem North America, Inc. Process for the manufacture of high purity linear c4+ alkyl mercaptans
CN1090532C (en) * 1996-09-26 2002-09-11 底古萨股份公司 Catalyst, its preparation and use in synthesis of methyl mercaptan
JP2007515416A (en) * 2003-12-18 2007-06-14 デグサ ゲーエムベーハー Method for separating methyl mercaptan from a reaction gas mixture
JP4886520B2 (en) * 2003-12-18 2012-02-29 エボニック デグサ ゲーエムベーハー Method for separating methyl mercaptan from a reaction gas mixture
JP2009542754A (en) * 2006-07-13 2009-12-03 エボニック デグサ ゲーエムベーハー Process for producing alkyl mercaptans in a multi-zone fixed bed reactor
JP2010502440A (en) * 2006-09-11 2010-01-28 エボニック デグサ ゲーエムベーハー Mo-containing catalyst, production method and production method of methyl mercaptan
US7576243B2 (en) 2007-02-15 2009-08-18 Evonik Degussa Gmbh Process for preparing methyl mercaptan from dialkyl sulphides and dialkyl polysulphides
DE102007007458A1 (en) 2007-02-15 2008-08-21 Evonik Degussa Gmbh Process for the preparation of methyl mercaptan from dialkyl sulfides and dialkyl polysulfides
CN102658183A (en) * 2012-04-28 2012-09-12 重庆紫光天化蛋氨酸有限责任公司 Catalyst for catalyzing dimethyl sulfide and hydrogen sulfide to synthesize methyl mercaptan, and preparation method and application thereof
US10577314B2 (en) 2016-05-31 2020-03-03 Novus International, Inc. Process for producing methyl mercaptan from dimethyl sulfide
CN114478334A (en) * 2022-02-25 2022-05-13 新疆广汇陆友硫化工有限公司 Method for producing dimethyl disulfide by methyl mercaptan vulcanization method
CN114478334B (en) * 2022-02-25 2023-11-10 新疆广汇陆友硫化工有限公司 Method for producing dimethyl disulfide by methyl mercaptan vulcanization

Also Published As

Publication number Publication date
JPH0323541B2 (en) 1991-03-29

Similar Documents

Publication Publication Date Title
US6143921A (en) Method for producing vinyl acetate monomer from ethane or ethylene oxidation
US7833929B2 (en) Process for the manufacture of methylmercaptan
EP0086822B1 (en) Process for the production of methyl halides and methyl alcohol from methane
NZ522267A (en) Process for the production of vinyl acetate using palladium and/or nickel based metal complex as catalyst
EP3464239B1 (en) Process for producing methyl mercaptan from dimethyl sulfide
JPS58159456A (en) Preparation of methyl mercaptan
EP1212276A1 (en) Sulfur containing promoter for alkanes oxidative dehydrogenation processes
US4665242A (en) Process for the production of methyl mercaptan from oxides of carbon
EP0446869A1 (en) Process for preparing 1,1,1-trifluorochloroethane and 1,1,1,2-tetrafluoroethane
JP2963396B2 (en) Method for producing methyl mercaptan
JPH07196553A (en) Preparation of tert- butyl alcohol from tert- butyl hydroperoxide using supported rhodium catalyst
US4449006A (en) Preparation of methyl mercaptan from carbon oxides
CA2261269A1 (en) Processes for the manufacture of methylmercaptopropanal
US4579976A (en) Catalytic process for the preparation of trifluoroacetaldehyde
US20240025847A1 (en) Method for preparing mercaptans by sulfhydrolysis of sulfides
US7211688B2 (en) Process for the production of an alkenyl carboxylate or an alkyl carboxylate
CA2655736A1 (en) Method for producing alkylmercaptans in a multi-zone fixed-bed reactor
US4536492A (en) Catalyst for the preparation of methyl mercaptan from carbon oxides
US5773669A (en) Process for production of vinyl ether
JP2001342169A (en) Method for producing acrylonitrile and/or acrylic acid
JPH07196557A (en) Preparation of tert- butyl alcohol from tert- butyl hydroperoxide using supported lead oxide catalyst