JPS58158499A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS58158499A
JPS58158499A JP4047282A JP4047282A JPS58158499A JP S58158499 A JPS58158499 A JP S58158499A JP 4047282 A JP4047282 A JP 4047282A JP 4047282 A JP4047282 A JP 4047282A JP S58158499 A JPS58158499 A JP S58158499A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
heater
space
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4047282A
Other languages
Japanese (ja)
Other versions
JPH0350105B2 (en
Inventor
Naoji Isshiki
一色 尚次
Katsuji Yoshikawa
勝治 吉川
Fusao Terada
房夫 寺田
Takashi Nakazato
中里 孝
Ryoichi Katono
上遠野 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP4047282A priority Critical patent/JPS58158499A/en
Publication of JPS58158499A publication Critical patent/JPS58158499A/en
Publication of JPH0350105B2 publication Critical patent/JPH0350105B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/02Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having pistons and displacers in the same cylinder
    • F02G2243/04Crank-connecting-rod drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/02Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having pistons and displacers in the same cylinder
    • F02G2243/04Crank-connecting-rod drives
    • F02G2243/08External regenerators, e.g. "Rankine Napier" engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2255/00Heater tubes

Abstract

PURPOSE:To enable to obtain a large heat-exchanging quantity with a compact construction, by a method wherein a heat exchanger used for a Stirling engine or the like is constituted of an outer pipe and an inner pipe which is provided with a plurality of small ejceting holes. CONSTITUTION:In the Stirling engine, an expanding space 7 between a displacer piston 4 and a cylinder head 2 is communicated to a compressing space 8 between a power piston 5 and the piston 4 through the heat exchanger 10 in which a heater 11 for heating a working gas by the heat supplied from a burner 1, a heat regenerator 12 and a cooler 13 are provided in series with each other. The heater 11 has a construction in which the inner pipe 16 provided with a plurality of longitudinal grooves 14 at the surface thereof and a plurality of small ejecting holes 15 at bottom parts of the grooves 14 is inserted in the outer pipe 18 having one end stopped up by a plug 19 so that the two fluid passages formed in a counercurrent manner by the pipes 16, 18 are communicated to each other through the holes 15. In addition, the outer pipe 8 is provided with a plurality of fins 17 on the outside surface thereof.

Description

【発明の詳細な説明】 本発明は熱機関に組込むのに特に有効な、コンパクトで
熱交換量の多い熱交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compact heat exchanger with a high heat exchange capacity, which is particularly useful for incorporation into a heat engine.

熱機関の一例として第1図に示すスターリング機関につ
いて説明すると、バーナー熱源1によって加熱されるシ
リンダヘッド2とシリンダ3を構成する上下のシリンダ
のうち上部シリンダ3a内に摺動自在に嵌挿するディス
プレイサービストン4頂部との間に空間7を膨張空間、
下部シリンダ3b内に摺動自在に嵌挿するパワーピスト
ン5と上記ディスプレイサービストン4間の空間8を圧
縮空間、またパワ−ピストン5背部の空間9を背圧空間
と呼ぶと、この膨張空間7と圧縮空間8とは、シリンダ
3の外側に配設されたバーナー熱源1から直接熱を受け
て機関内部に封入した作動ガスに熱を伝える加熱器11
と、作動ガスの往復動時に熱を受けたり与えたりする熱
再生器12、および作動ガスから熱を奪う冷却器13の
三部が連続して構成する熱交換器10によって連絡され
ている。そして下記の如き所謂スターリングサイクルに
よって作動ガスは往復動し、熱交換器10では熱の授受
が行なわれるのである。
To explain the Stirling engine shown in FIG. 1 as an example of a heat engine, a display is slidably inserted into an upper cylinder 3a of the upper and lower cylinders that constitute the cylinder head 2 and cylinder 3 heated by the burner heat source 1. The space 7 is an expansion space between the top of the service ton 4,
The space 8 between the power piston 5 which is slidably inserted into the lower cylinder 3b and the display service ton 4 is called a compression space, and the space 9 behind the power piston 5 is called a back pressure space, and this expansion space 7 The compressed space 8 is a heater 11 that directly receives heat from the burner heat source 1 disposed outside the cylinder 3 and transmits the heat to the working gas sealed inside the engine.
, a heat regenerator 12 that receives and gives heat during the reciprocation of the working gas, and a cooler 13 that removes heat from the working gas, which are connected by a heat exchanger 10 that is successively configured. The working gas reciprocates according to the so-called Stirling cycle as described below, and heat is exchanged in the heat exchanger 10.

■ 等温膨111x(第5図(イ)参照)膨張空間7及
び加熱器11内の作動ガスはバーナー熱源1によって約
600℃に加熱され、その際のガス圧が加熱器11、熱
再生器12、冷却器13を経て圧縮中f[18にかかる
から、パワーピストン5を押し下げ、同時に例えば片ロ
ンビック機構6.で連動してディスプレイサービストン
4も追従して下降させることで、作動ガスの等潰膨張を
行なう。
■ Isothermal expansion 111x (see Figure 5 (a)) The working gas in the expansion space 7 and the heater 11 is heated to about 600°C by the burner heat source 1, and the gas pressure at that time is , passes through the cooler 13 and is applied to f[18 during compression, so the power piston 5 is pushed down, and at the same time, for example, a hemi-rhombic mechanism 6. In conjunction with this, the display service ton 4 is also lowered to perform equal collapsing and expansion of the working gas.

■ 等容放熱(第5図(ロ)参照) パワーピストン5が慣性力によって第5図(ロ)の状態
まで下降するとき、ディスプレイサービストン4を逆に
上昇させることで、膨張空間7内の作動ガスを加熱器1
1、熱再生器12および冷却器13を通って圧縮空間8
内に移動させ、その際、約600℃に加熱された作動ガ
スはその熱を熱再生器12に与え、自らは約200℃ま
で温度降下し、更に冷却器13で冷却され°る。
■ Equal volume heat dissipation (see Fig. 5 (b)) When the power piston 5 descends to the state shown in Fig. 5 (b) due to inertia force, by raising the display service ton 4 in the opposite direction, the inside of the expansion space 7 is Heater 1 for working gas
1, compression space 8 through heat regenerator 12 and cooler 13
At this time, the working gas heated to approximately 600° C. gives its heat to the heat regenerator 12, and its temperature drops to approximately 200° C., and is further cooled by the cooler 13.

■ 等温圧縮(第5図(ハ)参照) 背圧空間9内の圧力が膨張空間7及び圧縮空間8内の圧
力を上層ると、その差圧力と慣性力とによりパワーピス
トン5は下死点から上昇が始まり、引続き片ロンビック
機構6で連動して上昇しているディスプレイサービスト
ン4が第5図(ハ)の状態に至ったのち、圧縮空間8内
の低温作動ガスの圧縮が始まる。
■ Isothermal compression (see Figure 5 (c)) When the pressure in the back pressure space 9 exceeds the pressure in the expansion space 7 and compression space 8, the power piston 5 moves to bottom dead center due to the differential pressure and inertia force. After the display service ton 4, which continues to rise in conjunction with the single rhombic mechanism 6, reaches the state shown in FIG. 5(c), compression of the low-temperature working gas in the compression space 8 begins.

パワーピストン5の上背とディスプレイサービストン4
の下降とによって圧縮空間8内の低温作動ガスは冷却器
13、熱再生器12、加熱器11を経て膨張空間7へ移
動する。その際、上記の等容放熱行程で熱再生器12に
蓄熱した熱を吸熱して約600℃まで昇温する。
Upper back of power piston 5 and display service ton 4
, the low-temperature working gas in the compression space 8 moves to the expansion space 7 via the cooler 13, the heat regenerator 12, and the heater 11. At this time, the heat accumulated in the heat regenerator 12 in the above-mentioned isovolumic heat dissipation process is absorbed to raise the temperature to about 600°C.

この熱交換器10は取付場所も限られていることから、
小・型で、しかも熱交換量の多いものがよいことはいう
までもない。
Since the heat exchanger 10 has limited installation locations,
It goes without saying that something that is small and compact and has a large amount of heat exchange is better.

そこで本発明は、このような用途に極めて好適な熱交換
器を提供することを目的としてなされたものである。
Therefore, the present invention has been made for the purpose of providing a heat exchanger that is extremely suitable for such uses.

上記の目的を達成する本発明の構成は、一端を閉じた外
管内に小さな噴出孔を多数穿設した内管を挿入し、その
外管と内管とで形成される二つの流体通路を上記した多
数の小さな噴出孔で連通させたものである。
The structure of the present invention that achieves the above object is to insert an inner tube with a large number of small ejection holes into an outer tube with one end closed, and to connect the two fluid passages formed by the outer tube and the inner tube to the outer tube. It is connected by a large number of small nozzles.

本発明の好適な実施例を示す第2図に従って以下に詳述
するが、第1図と対応する部品には同一符号を付しであ
る。先ず、加熱器11であるが、一端をプラグ19で塞
いだ外管18内に、表面に複数の縦溝14並びに縦溝1
4の底部に小さな噴出孔15を多数穿設(第3図参照)
した内管16を挿入し、両管16.18とで形成される
向流状の二つの流体通路を上記した多数の小さな噴出孔
15によって連通させている。
A preferred embodiment of the present invention will be described in detail below with reference to FIG. 2, in which parts corresponding to those in FIG. 1 are given the same reference numerals. First, regarding the heater 11, a plurality of vertical grooves 14 and vertical grooves 1 are formed on the surface of the outer tube 18 whose one end is closed with a plug 19.
A large number of small ejection holes 15 are drilled at the bottom of 4 (see Figure 3).
The inner tube 16 is inserted, and the two countercurrent fluid passages formed by the two tubes 16 and 18 are communicated through the large number of small jet holes 15 described above.

外管18外同にはバーナー熱源1からの受熱面積を増や
すフィン17があり、外管18はシリンダヘッド2の鍔
部に取付く。上部シリンダ3aの鍔部に取付く内情16
は、熱電導によって外管18側から加熱されるから両管
16゜18は、膨張空間7とその下端で連通するlI溝
14(外側の流体通路)を除き密着していることが好ま
しい。しかし、加工精度上数10μI程度の遊嵌状態と
なっても格別の支障はない。
There are fins 17 on the outside of the outer tube 18 to increase the heat receiving area from the burner heat source 1, and the outer tube 18 is attached to the flange of the cylinder head 2. Internal information 16 attached to the flange of the upper cylinder 3a
Since the tubes 16 and 18 are heated from the outer tube 18 side by thermal conduction, it is preferable that both tubes 16 and 18 are in close contact with each other except for the II groove 14 (outer fluid passage) communicating with the expansion space 7 at its lower end. However, in terms of processing accuracy, even if there is a loose fit of about 10 μI, there is no particular problem.

内側の流体通路はつぎのようにして形成するのがよい。The inner fluid passage is preferably formed as follows.

すなわち、プラグ19にテーパー状部分20を一体形成
し、該部分20で内管16内側の不必要な死空間を埋め
ることによって、下方になるに従い大きくなる環状の内
側の流体通路を形成し、しかもテーパー状部分20の形
成を決定するにあたっては、ある位置での環状の内側通
路断面積を、その位置までの噴出孔15の全面積とほぼ
等しくなるように設定すると断面積変化によるエネルギ
ー損失を小さくすることができる。併せてテーパー状部
分20の下端で後述する熱再生器12の充填材22を囲
っている金網21を押えつけて加熱器11側への喰い込
みを阻止している。
That is, by integrally forming the tapered portion 20 on the plug 19 and filling the unnecessary dead space inside the inner tube 16 with the tapered portion 20, an annular inner fluid passage which becomes larger as it goes downward is formed. When determining the formation of the tapered portion 20, setting the annular inner passage cross-sectional area at a certain position to be approximately equal to the total area of the ejection hole 15 up to that position will reduce energy loss due to changes in cross-sectional area. can do. At the same time, the lower end of the tapered portion 20 presses down a wire mesh 21 surrounding a filler 22 of a heat regenerator 12, which will be described later, to prevent it from digging into the heater 11 side.

つぎに熱再生器12であるが、上端は内管16と、下端
は後述する管体30と接続するチューブ23内に、等容
放熱行程で蓄熱し、等容吸熱時にその蓄熱を放出する充
填材22を装填したものであって、図中24は充填材2
2を囲む金網である。充填材22の材料を選定するのに
単に熱伝導率の高い材料から決めると、折角蓄熱しても
冷却器13に容易り熱伝達してしまい、熱の有効利用を
図ることができないから、あたたまり易くさめ易い材料
例えばスチールボ−ルと、あたたまりにくくさめにくい
材料例えばセラミックボールとを混合して、加熱器11
に近い方は比較的スチールボールに富み、冷却器13に
近い方は比較的セラミックボールに富む配合とすること
が好ましい。こうすることによって両端間の熱勾配を充
分取ることができる。
Next, regarding the heat regenerator 12, the upper end is connected to an inner tube 16, and the lower end is connected to a tube body 30, which will be described later.A tube 23 is filled with a tube that stores heat in an isovolumic heat radiation process and releases the stored heat during an isovolumic heat absorption process. The filler material 22 is loaded, and 24 in the figure is the filler material 2.
It is a wire mesh surrounding 2. If the material for the filler 22 is simply selected from materials with high thermal conductivity, even if the heat is stored, the heat will be easily transferred to the cooler 13, making it impossible to use the heat effectively. A material that is easy to heat, such as a steel ball, and a material that is difficult to heat, such as a ceramic ball, are mixed to form the heater 11.
It is preferable that the composition closer to the cooler 13 is relatively rich in steel balls, and the one closer to the cooler 13 is relatively rich in ceramic balls. By doing so, a sufficient thermal gradient can be obtained between both ends.

また充填材22の形状や大きさは作動ガスの流動に伴っ
て熱交換を素早(行なうための必要な伝熱面積とか、通
路抵抗あるいは加熱器11や冷却器13からの通路断面
積変化を可及的小ならしめる観点から決めることができ
、例えばおむすび形、米粒形、連珠玉形といったような
形状とする。チューブ23は第4図のようにS字状に形
成し、その曲がりの向きを第2図の紙面方向に向けて取
付けると、上部シリンダ3aとの温度分布の違いによる
熱応力を緩和することができる。
In addition, the shape and size of the filler 22 are determined by changing the heat transfer area necessary for rapid heat exchange (to perform heat exchange), passage resistance, or passage cross-sectional area from the heater 11 or cooler 13 as the working gas flows. For example, the shape can be determined from the viewpoint of making the space smaller, such as a rice ball shape, a rice grain shape, or a string of bead shapes.The tube 23 is formed in an S-shape as shown in Fig. 4, and the direction of its bending is determined. If it is attached toward the plane of the paper in FIG. 2, thermal stress caused by the difference in temperature distribution with the upper cylinder 3a can be alleviated.

最後に冷却器13であるが、これも加熱器11とほぼ同
じように、一端を閉じ他端は冷却水出口29と繋がる外
管28内に、小さな噴出孔27を多数あけ且つ冷却水入
口25と繋がる内管26を挿入しているから、外管28
と内管26とで形成される向流又は並流状の二つの流体
通路を噴出孔27によって連通している。下端で圧縮空
間8と繋がり、上端でチューブ23と繋がる管体30は
外管28との間で作動ガスとの通路を形成し、管体30
の外側はウォータージャケット32内の冷却水で冷やさ
れるようになっている。31は内管26固定用のナツト
である。
Finally, the cooler 13 is similar to the heater 11, with one end closed and the other end connected to the cooling water outlet 29 in an outer tube 28 with many small jet holes 27 and a cooling water inlet 25. Since the inner tube 26 that connects with the outer tube 28 is inserted, the outer tube 28
Two counter-current or co-current fluid passages formed by the inner tube 26 and the inner tube 26 are communicated through a jet hole 27. The tube body 30 is connected to the compression space 8 at the lower end and to the tube 23 at the upper end, and forms a passage for the working gas between the tube body 30 and the outer tube 28.
The outside of the tank is cooled by cooling water inside the water jacket 32. Numeral 31 is a nut for fixing the inner tube 26.

本発明は前述した構成としたから、例えば圧縮空間8か
ら膨張空間7に作動ガスが流れるとき、噴出孔15から
のガス噴流が外管18の内壁に衝突することによって乱
流となるし、同様に噴出孔27からの冷却水噴流が外側
28内壁に衝突して乱流となるから、作動ガスや冷却水
は撹拌され、その撹拌効果によって極めて高効率の熱交
換が素早く達成され、こうしてコンパクトにして安価な
熱交換器を潰供できる点で甚だ優れている。
Since the present invention has the above-described configuration, for example, when the working gas flows from the compression space 8 to the expansion space 7, the gas jet from the jet hole 15 collides with the inner wall of the outer tube 18, resulting in a turbulent flow. Since the cooling water jet from the jet hole 27 collides with the inner wall of the outer side 28 and becomes a turbulent flow, the working gas and the cooling water are stirred, and the stirring effect quickly achieves extremely high efficiency heat exchange. It is extremely superior in that it can be used as an inexpensive heat exchanger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の熱交換器を装着したスターリング機関
の断面図、第2図はその要部を示す拡大断面図、第3図
は第2図の加熱器内管の横断面図、第4図第2図の熱再
生器のチューブの縦断面図、第5図(イ)から(ニ)ま
ではスターリングサイクルを説明するための図である。 15.27・・・噴出孔、16.26・・・内管、18
.28・・・外管。 特許出願人   −色 尚 次 同     三洋電機株式会社 同     東京三洋電機株式会社 代  理  人     尾  股  行  離開  
       茂  見     種間       
 荒  木  友之助第1頁の続き ■出 願 人 東京三洋電機株式会社 群馬県色楽郡大泉町大字坂田18 0番地
Fig. 1 is a sectional view of a Stirling engine equipped with the heat exchanger of the present invention, Fig. 2 is an enlarged sectional view showing its main parts, and Fig. 3 is a cross-sectional view of the heater inner tube shown in Fig. 2. Figure 4 is a longitudinal sectional view of the tube of the heat regenerator in Figure 2, and Figures 5 (a) to (d) are diagrams for explaining the Stirling cycle. 15.27...Blowout hole, 16.26...Inner pipe, 18
.. 28...Outer tube. Patent Applicant - Naoji Iro Same as Sanyo Electric Co., Ltd. Agent of Tokyo Sanyo Electric Co., Ltd.
Tanema Shigemi
Tomonosuke ArakiContinued from page 1 ■Applicant: Tokyo Sanyo Electric Co., Ltd. 180 Sakata, Oizumi-cho, Iraku-gun, Gunma Prefecture

Claims (1)

【特許請求の範囲】[Claims] 1、一端を閉じた外管内に小さな噴出孔を多数穿設した
内管を挿入し、その外管と内管とで形成される二つの流
体通路を上記した多数の小さな噴出孔によって連通させ
たことを特徴とする熱交換器。
1. An inner tube with a large number of small nozzle holes is inserted into an outer tube with one end closed, and the two fluid passages formed by the outer tube and the inner tube are communicated through the large number of small nozzle holes described above. A heat exchanger characterized by:
JP4047282A 1982-03-15 1982-03-15 Heat exchanger Granted JPS58158499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4047282A JPS58158499A (en) 1982-03-15 1982-03-15 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4047282A JPS58158499A (en) 1982-03-15 1982-03-15 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS58158499A true JPS58158499A (en) 1983-09-20
JPH0350105B2 JPH0350105B2 (en) 1991-07-31

Family

ID=12581567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4047282A Granted JPS58158499A (en) 1982-03-15 1982-03-15 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS58158499A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249953A (en) * 1988-03-31 1989-10-05 Toshiba Corp Heater of stirling engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493735A (en) * 1972-05-06 1974-01-14
JPS5865957A (en) * 1981-10-13 1983-04-19 Asahi Glass Co Ltd Stirling engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493735A (en) * 1972-05-06 1974-01-14
JPS5865957A (en) * 1981-10-13 1983-04-19 Asahi Glass Co Ltd Stirling engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249953A (en) * 1988-03-31 1989-10-05 Toshiba Corp Heater of stirling engine

Also Published As

Publication number Publication date
JPH0350105B2 (en) 1991-07-31

Similar Documents

Publication Publication Date Title
US6715285B2 (en) Stirling engine with high pressure fluid heat exchanger
JP2662612B2 (en) Stirling engine
US5632149A (en) Heat exchanger for a gas compression/expansion apparatus and a method of manufacturing thereof
JPS58158499A (en) Heat exchanger
US7114334B2 (en) Impingement heat exchanger for stirling cycle machines
JPS61502005A (en) Stirling engine with air working fluid
US4671064A (en) Heater head for stirling engine
KR940004233Y1 (en) Heat pump
JPS5825556A (en) Starring engine with bayonet heater
CN208579662U (en) A kind of built-in water-cooling heat exchanger for sound energy free-piston type machine
RU2788798C1 (en) Stirling engine thermal block
CN108592660B (en) Double-coil cooler for Stirling thermoelectric conversion device
JPH0747945B2 (en) Stirling engine
CN216385188U (en) Shell and tube heat exchanger
JPS629184A (en) Heat exchanger
JP2603683B2 (en) Hot side heat exchanger of Stirling cycle engine
JPS58104349A (en) External-combustion type heat exchanger
JPS5857052A (en) Stirling engine
SU892000A1 (en) External heat supply engine
JPS60138256A (en) Heat gas engine structure
JPH08210714A (en) Heat exchanger for gas compressing-expanding unit and manufacture thereof
JPH08105353A (en) Heat drive device
JPH0256502B2 (en)
JPS5865957A (en) Stirling engine
JPH01240759A (en) Regenerator for stirling engine