JPS58158195A - Preparation of 5'-inosic acid by fermentation process - Google Patents

Preparation of 5'-inosic acid by fermentation process

Info

Publication number
JPS58158195A
JPS58158195A JP57040365A JP4036582A JPS58158195A JP S58158195 A JPS58158195 A JP S58158195A JP 57040365 A JP57040365 A JP 57040365A JP 4036582 A JP4036582 A JP 4036582A JP S58158195 A JPS58158195 A JP S58158195A
Authority
JP
Japan
Prior art keywords
inosinic acid
strain
purine analog
dna
adenine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57040365A
Other languages
Japanese (ja)
Other versions
JPH0333317B2 (en
Inventor
Hitoshi Ei
仁 江井
Shigeatsu Shimizu
清水 栄厚
Takayasu Tsuchida
隆康 土田
Nobuki Kawashima
川嶋 伸樹
Takashi Tanaka
崇 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP57040365A priority Critical patent/JPS58158195A/en
Publication of JPS58158195A publication Critical patent/JPS58158195A/en
Publication of JPH0333317B2 publication Critical patent/JPH0333317B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To prepare 5'-inosic acid in high yield, by cultivating a bacterium belonging to the genus Bacillus containing a vector integrated with a genetic range taking part in purine analog resistance. CONSTITUTION:A bacterium such as Bacillus subtilis AJ11818(FERM-P6340), capable of producing 5'-inosic acid, obtained by adding a vector integrated with a genetic range participating in purine analog resistance obtained from the chromosome of a variant belonging to the genus Bacillus having purine analog resistance to an adenine damanding variant belonging to the genus Bacillus is inoculated into a nutritive medium, cultivated under aerobic conditions at 4- 8pH for 1-5 days, and 5'-inosic acid is collected from the culture solution.

Description

【発明の詳細な説明】 この発明は発酵法による51−イノシン酸の製造法に関
する。51−イノシン酸は調味料として広く利用されて
いて、バチルス属あるいはフリネバクテリウム属等の変
異株を培養して51−イノシン酸  ′を生産せしめる
方法等が知られている(特公昭56−32918.特開
55−150899 )。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing 51-inosinic acid by fermentation. 51-inosinic acid is widely used as a seasoning, and a method is known in which 51-inosinic acid is produced by culturing mutant strains of Bacillus or Frinebacterium (Japanese Patent Publication No. 1982- 32918. JP 55-150899).

本発明者らは上述のような従来の51−イノシン酸の製
造法に対し、プリンアナログ耐性を有するバチルス属の
変異株の染色体より得たプリンアナログ耐性に関与する
遺伝子領域が組み込まれているベクターをアデニン要求
性のバチルス属変異株に含有せしめた微生物が高い収率
で51−イノシン酸を蓄積することを見い出した。
The present inventors developed a vector incorporating a gene region involved in purine analog resistance obtained from the chromosome of a Bacillus mutant strain having resistance to purine analogs, in contrast to the conventional method for producing 51-inosinic acid as described above. It has been found that a microorganism containing 51-inosinic acid in an adenine-auxotrophic Bacillus mutant strain accumulates 51-inosinic acid at a high yield.

バチルス属のプリンアナログ耐性株は、特定のものを使
用する必要はないが、耐性度のより高いものが望ましい
。又プリンアナログ耐性のはか1こ、サルファ剤等の他
の薬剤への耐性を併有するものも使用できる。プリンア
ナログ耐性株としてより51−イノシン酸の生産能が高
いものを使用すれば、より望ましい結果が得られること
が多い。
Although it is not necessary to use a specific purine analog resistant strain of the genus Bacillus, one with a higher degree of resistance is desirable. In addition, those resistant to purine analogs and those resistant to other drugs such as sulfa drugs can also be used. More desirable results can often be obtained by using purine analog-resistant strains that have a higher ability to produce 51-inosinic acid.

このようなバチルス属のプリンアナログ耐性株は、既に
多数知られているが、更に又例えばN−)+に−N’−
二トローN−二トロソグアニジンによりバチルス属の微
生物を変異せしめ、プリンアナログの生育阻害に対し耐
性を獲得した変異株を分離するような通常の方法で得る
ことができる。
Many such strains of Bacillus that are resistant to purine analogs are already known;
It can be obtained by a conventional method such as mutating a Bacillus microorganism with N-nitrosoguanidine and isolating a mutant strain that has acquired resistance to growth inhibition by purine analogs.

本発明でいうプリンアナログとはバチルス属、・ノ微生
物の増殖を抑制し、かつその抑制がヒポキサンチン、イ
ノシン、あるいは51−イノンン酸等ヲ培地中に添加す
れば全体的又は部分的に解除されるようなものである。
Purine analogs as used in the present invention inhibit the growth of microorganisms of the genus Bacillus, and this inhibition can be completely or partially relieved by adding hypoxanthine, inosine, or 51-ynonic acid to the culture medium. It is like

例えば、8−アザグアニン、8−アザヒポキサンチン、
8−アザアデニン、2.6−ジアミツプリン、6−メル
カプトプリン、6−メルカプトプリンリボシド、8−メ
ルヵブトグアノンン等がある。
For example, 8-azaguanine, 8-azahypoxanthine,
Examples include 8-azaadenine, 2,6-diamitpurine, 6-mercaptopurine, 6-mercaptopurine riboside, and 8-mercaptoguanone.

プリンアナログ耐性株より染色体DNAを抽出する方法
は、J、Bacteriol、、 83,1065(1
965)に記載されているような通常の方法で行うこと
ができるベクターDNAとしては、バチルス属の菌体中
で複製するプラスミド又はファージならば、どのヨウナ
モのでもよい。例えば、スタフィロフンカス属微生物由
来のpT127. pc194. pc221. pC
223,pUB112(以上、Proc、 Natl、
 Acad、 8ci、 U、 S、 A、、74.1
680(1977)参照)、pUBl 10 (J、 
Bacteriol、、 134.318(1978)
参照)、pTP4. p’rps(以上Microbi
ol Letters 。
A method for extracting chromosomal DNA from purine analog resistant strains is described in J. Bacteriol, 83, 1065 (1).
The vector DNA that can be used in the conventional method as described in 965) may be any plasmid or phage that replicates in the cells of the genus Bacillus. For example, pT127 derived from a microorganism of the genus Staphylofuncus. pc194. pc221. pC
223, pUB112 (Proc, Natl,
Acad, 8ci, U, S, A,, 74.1
680 (1977)), pUBl 10 (J,
Bacteriol, 134.318 (1978)
), pTP4. p'rps (more than Microbi
ol Letters.

5.55(1978)参照)、枯草菌由来のpLsls
、 pL828(以上J、Bacterio1..13
1.699(1977)参照)、pLs13(J、Ba
cteriol、、 129.1487(1977)参
照) 、pPLl。
5.55 (1978)), pLsls from Bacillus subtilis
, pL828 (J, Bacterio1..13
1.699 (1977)), pLs13 (J, Ba
cteriol, 129.1487 (1977)), pPLl.

pPL2 (以上J、 Bacteriol、、 12
4 、484 (1975)参照)、テンペレートファ
ージとしても知られるrho 11(Gene、、 5
.89(1979) )、phi105(Gene、、
 5.87(1979) )、SPO2(Gene、、
ユ、51 (1979))等がある。更に上記プラスミ
ドをもとにして構築した複合プラスミドも当然のことな
がらベクターDNAとして利用できうる。
pPL2 (J, Bacteriol, 12
4, 484 (1975)), rho 11, also known as the temperate phage (Gene, 5
.. 89 (1979)), phi105 (Gene,...
5.87 (1979)), SPO2 (Gene,...
Yu, 51 (1979)). Furthermore, a complex plasmid constructed based on the above-mentioned plasmid can also be used as a vector DNA.

染色体riNA及びベクターDNAはそれぞれ制限エン
ドヌクレアーゼを用いて切断する。それぞれのベクター
には適した制限エンドヌクレアーゼがあるが、それは上
記ベクターについての記載がある文献等に示されである
。染色体DNAについては制限エンドヌクレアーゼによ
る切断が部分的に行われるように反応条件を調節すれば
多くの種類の制限酵素が利用できる。
Chromosomal riNA and vector DNA are each cut using restriction endonucleases. There is a suitable restriction endonuclease for each vector, as indicated in the literature describing the vector. For chromosomal DNA, many types of restriction enzymes can be used by adjusting the reaction conditions so that the restriction endonucleases partially cut the DNA.

かくして得られた染色体DNA断片と、切断されたベク
ターDNAとを連結せしめる方法は、リガーゼを用いる
通常の方法が使用できる。一方、ターミナルトランスフ
ェラーゼを用いて染色体DNA断片と開裂したベクター
DNAとにデオキシシチジル酸とデオキシシチジル酸を
それぞれ付加し、混合した後アニーリングして連結せし
める方法も利用し得る。
A conventional method using ligase can be used to link the chromosomal DNA fragment thus obtained and the cut vector DNA. On the other hand, it is also possible to use a method in which deoxycytidylic acid and deoxycytidylic acid are respectively added to a chromosomal DNA fragment and cleaved vector DNA using terminal transferase, mixed, and then annealed to link them.

カくシて得られた染色体DNA断片とベクターの混合物
の受容菌はバチルス属のアデニン要求性を有する変異株
ならどのようなものでもよいが、プリンアナログ耐性を
有していない菌株を用いれば形質転換株を選択する際に
好都合である。
The recipient bacterium for the mixture of chromosomal DNA fragment and vector obtained by extraction may be any mutant strain of the genus Bacillus that has adenine auxotrophy, but if a strain that does not have purine analog resistance is used, the This is advantageous when selecting convertible stocks.

もちろんDNA受容菌は、51−イノシン酸の分解能が
より低いものを用いるのがよし・。従って、5′−イノ
ンン酸生産・蓄積能がより高(・ものを用いれば、より
望ましい結果が得られる。
Of course, it is better to use DNA recipient bacteria that have a lower ability to degrade 51-inosinic acid. Therefore, more desirable results can be obtained by using a compound with a higher ability to produce and accumulate 5'-ynonic acid.

染色体DNAとベクターの混合物をDNA受容菌に導入
するには、例えば、Mo1ec、 Gene、 Gen
et、、 IJII。
To introduce a mixture of chromosomal DNA and vector into a recipient DNA strain, e.g.
et,, IJII.

111(1979)に記載されているような通常の形質
転換法が使用できる。
111 (1979) can be used.

5′−イノシン酸生産能を有し、プリンアナログ耐性に
関する遺伝子領域が組み込まれているベクターを含有す
る′形質転換株を選択するには、例えばDNA受容菌と
してアデニン要求性変異株を用いて形質転換し、プリン
アナログを含有する培地で生育してくる菌株を選択すれ
ばよい。又、ベクターDNAの抗生物質耐性等の性質を
併せもつ菌株を選別できるような培地を用いれば、より
選別が容易である。
To select a transformed strain that has the ability to produce 5'-inosinic acid and contains a vector into which a gene region related to purine analog resistance has been integrated, for example, an adenine auxotrophic mutant strain is used as a DNA recipient. A strain that can be converted and grows in a medium containing a purine analog may be selected. In addition, if a medium is used that allows selection of bacterial strains that have vector DNA properties such as antibiotic resistance, selection will be easier.

このようにして、一旦選別されたプリンアナログ耐性に
関与する遺伝子領域が組み込まれている組換えベタター
は、形質転換株より抽出後、他のDNA受容菌、例えば
51−イノシン酸生産能を有する菌株に導入することt
こより、51−イノシン酸蓄積量を更に増大せしめるこ
とができる。
In this way, the once selected recombinant beta that incorporates the gene region involved in purine analog resistance is extracted from the transformed strain and then transferred to other DNA recipient bacteria, such as a strain capable of producing 51-inosinic acid. to be introduced into
This makes it possible to further increase the amount of 51-inosinic acid accumulated.

かくして得られた5′−イノシン酸生産菌を用いて、5
1−イノシン酸を製造する方法は従来の51−イノシン
酸生産菌の培養方法と特に変らない。即ち、培地として
は炭素源、窒素源、無機イオン、および無機微量栄養素
を含有する通常の培地である。炭素源としてはグルコー
ス等の炭水化物が望iLい。窒素源としてはアンモニア
水、アンモニアガス、アンモニウム塩その他アミノ酸等
の有機窒素源が利用できる。無機イオンとしてはリン−
1イオンが必要であるほか、カリイオン、マグネ/ラム
イオン、鉄イオン、マノガンイオン等が適宜培地中に添
加される。有機微量栄養素としてアデニン要求性を満足
せしめるべき物質、例えばアデニン、アデノシン、又は
RNA加水分解物等を添加する。その他にビタミン、ア
ミノ酸等が有機e量栄養素として適宜使用される。
Using the thus obtained 5'-inosinic acid producing bacteria, 5
The method for producing 1-inosinic acid is not particularly different from the conventional culture method for 51-inosinic acid producing bacteria. That is, the medium is a conventional medium containing a carbon source, a nitrogen source, inorganic ions, and inorganic micronutrients. Carbohydrates such as glucose are preferred as carbon sources. As the nitrogen source, organic nitrogen sources such as aqueous ammonia, ammonia gas, ammonium salts, and amino acids can be used. As an inorganic ion, phosphorus
In addition to the 1 ion required, potassium ions, magne/lamb ions, iron ions, manogan ions, etc. are added to the medium as appropriate. A substance that should satisfy adenine requirement as an organic micronutrient, such as adenine, adenosine, or RNA hydrolyzate, is added. In addition, vitamins, amino acids, etc. are appropriately used as organic e-nutrients.

培養は好気的条件下で、望ましくはpH4ないし8に制
御しつつ1ないし5日も行えばよい。かくして得られた
培養液中には著量の51−イノシン酸が生成蓄積される
。培養液より51−イノシン酸を採取する方法はイオン
交換樹脂を用いる等、通常の方法でよい。
Cultivation may be carried out under aerobic conditions, preferably with pH controlled at 4 to 8, for 1 to 5 days. A significant amount of 51-inosinic acid is produced and accumulated in the culture solution thus obtained. 51-inosinic acid may be collected from the culture solution by any conventional method such as using an ion exchange resin.

実施例 バチルス・ズブチリスAJ11711(アルギニン、ロ
イシン要求性)からN−メチル−Nl−ニトロ−N−ニ
トロソグアニジン変異処理によって誘導したアデニン要
求性変異株AJ11813(FERMP 6 千)j 
 )を得た。さらにこのアデニン要求性株から同様の変
異処理によって誘導した51−イノシン酸生産菌AJ 
11814 (FERMPA+z6 )(アルギニン・
要求性、ロイシン要求性、アデニン要求性、8−アザグ
アニン耐性)、AJ 11 ’815 (FERMP 
6仝λ7  )(アルギニノ要求性、ロイシン要求性、
アデニン要求性、8−7ザグアニン耐性、サルファグア
ニジン耐性)を原株とし、これより次のような方法で新
規51−イノシン酸生産菌を造成した。
Example Adenine auxotrophic mutant strain AJ11813 (FERMP 6,000) induced from Bacillus subtilis AJ11711 (arginine, leucine auxotrophic) by N-methyl-Nl-nitro-N-nitrosoguanidine mutation treatment
) was obtained. Furthermore, 51-inosinic acid producing bacteria AJ were derived from this adenine auxotrophic strain by the same mutation treatment.
11814 (FERMPA+z6) (Arginine
auxotrophy, leucine auxotrophy, adenine auxotrophy, 8-azaguanine resistance), AJ 11 '815 (FERMP
6 λ7 ) (arginino auxotrophy, leucine auxotrophy,
Adenine auxotrophic, 8-7zaguanine resistant, sulfaguanidine resistant) was used as the original strain, from which a new 51-inosinic acid producing bacterium was constructed by the following method.

+11  染色体DNAの調製 AJ11814及びAJ11815を各々1tのr B
acto −Penassay Broth J (商
品名、Difco社製)中で30℃で約2時間振盪培養
を行い、対数増殖期の菌体を集菌後、通常のDNA抽出
法(J、 Bac−teriol、、 89.1065
(1965) )により染色体DNAを抽出、精製し、
最終AJ11814がら3.9〜、AJ11815から
3.2〜を得た。
+11 Preparation of chromosomal DNA 1t rB of each of AJ11814 and AJ11815
Shaking culture was carried out at 30°C for about 2 hours in acto-Penassay Broth J (trade name, manufactured by Difco), and after collecting the cells in the logarithmic growth phase, the normal DNA extraction method (J, Bac-teriol, 89.1065
(1965) ) to extract and purify chromosomal DNA,
Final results were 3.9~ from AJ11814 and 3.2~ from AJ11815.

(2)  染色体DNA断片のベクターへの挿入プリン
アナログ耐性および5′−イノシン酸生産能を支配する
遺伝子領域をクロ、−ニングするため、ソノベクターと
して自律増殖性のプラスミドpUB110(カナマイ7
ン、ネオマイシジ耐性を発現する)を用いた。(1)で
得た染色体DNAを各々5μ2ずつとプラスミドpUB
1105μ2ずっをそれぞれ制限エンドヌクレアーゼE
co RIで37℃、60分作用させてDNA鎖を切断
した。65℃で10分間の熱処理後、各両反応液を混合
し、ATP及びジチオスライトール存在下、T4ファー
ジ由来のDNAリガーゼにて10℃、24時間、DNA
鎖の連結反応を行った。
(2) Insertion of chromosomal DNA fragment into vector In order to clone the gene region governing purine analog resistance and 5'-inosinic acid production ability, we used the autonomously replicating plasmid pUB110 (Kanamai 7) as a sonovector.
(expressing resistance to neomycin). 5μ2 each of the chromosomal DNA obtained in (1) and plasmid pUB
1105μ2 each of restriction endonuclease E
The DNA strand was cleaved with coRI at 37°C for 60 minutes. After heat treatment at 65°C for 10 minutes, both reaction solutions were mixed, and DNA was ligated with T4 phage-derived DNA ligase at 10°C for 24 hours in the presence of ATP and dithiothreitol.
A chain ligation reaction was performed.

印 サルファ剤耐性かっ5しイノシン酸生産遺伝りを担
ったプラスミドによる形質転換 バチルス・ズブチリスAJ]1813(アルギニン、ロ
イシン複要求株、アデニン要求性変異株)をr Pen
assay Broth J (Difco社製)に接
種して30℃にて1晩振盪培養なdキ・、第1培養培地
(グルコース5り/A、(NHI\5042 f/l 
1  M、PO46t/l 。
Transformation of Bacillus subtilis AJ] 1813 (arginine, leucine double auxotrophic strain, adenine auxotrophic mutant strain) with a plasmid carrying sulfa drug resistance and inosinic acid production inheritance.
Inoculate assay Broth J (manufactured by Difco) and culture with shaking overnight at 30°C, first culture medium (glucose 5 l/A, (NHI\5042 f/l
1 M, PO46t/l.

K、HPO414f/L 1Mg804・7H,OO,
2f/l 1クエン酸ナトリウムlt/l 、酵母エキ
ス29/l、L−アlレギニン250 H2/1%L−
ロイシン50〜%4アデニン5o#v/lを含む)に接
種し、37℃にて4時間振MgSO4・7 H2O1、
2f/l 、 り、z7酸ナトリウム1f/11酵母風
キス0.2f/l、 L−フルギニン50q/1%L−
ロイシン5 IIP/を及びアデニ750Hj/lを含
む)へ接種し、3 ’7 ℃にて1.5時間振盪培養を
行tJうことによって、いわゆるコンピテントな(DN
A取込能を有する)細胞を調製した(参考文献、J、B
acteriol、、 81.741 (1961) 
) 。このコンピテント細胞懸濁液にイ2)で得たDN
A溶液を各々別々に加えて37℃でさらに2時間振盪培
養を行って形質転換反応を完了させた。
K, HPO414f/L 1Mg804・7H, OO,
2f/l 1 sodium citrate lt/l, yeast extract 29/l, L-arginine 250 H2/1% L-
Leucine (containing 50~%4Adenine5o #v/l) was inoculated and shaken at 37°C for 4 hours in MgSO4.7H2O1,
2f/l, sodium z7ate 1f/11 yeast-like kiss 0.2f/l, L-fulginine 50q/1%L-
A so-called competent (DN
Cells with A uptake ability were prepared (References, J, B
acteriol,, 81.741 (1961)
). The DN obtained in a2) was added to this competent cell suspension.
Solution A was added separately to each and cultured with shaking at 37°C for an additional 2 hours to complete the transformation reaction.

次に、AJ11814のDNAの形質転換株を含む懸濁
液をカナマイシフ5μ97m1.8−7ザグアニン50
0 r /me含有最小プレート、培地■(グルコース
59/l)、(NH4)、5o4s+f/z 、 KH
,PO46t/l 、 K2HPO414Ill 、 
Mg804・7H,00,2f/1.クエン酸ナトリウ
ム1f/l、L−アルギニン100η/l、L−ロイシ
ン100IIIII/11アゾ= 750m1/l。
Next, the suspension containing the transformed strain of AJ11814 DNA was added to Kanamai Schift 5 μ97ml 1.8-7 Zaguanin 50
Minimal plate containing 0 r/me, medium ■ (glucose 59/l), (NH4), 5o4s+f/z, KH
, PO46t/l, K2HPO414Ill,
Mg804・7H, 00, 2f/1. Sodium citrate 1f/l, L-arginine 100η/l, L-leucine 100III/11azo = 750ml/l.

寒天20f/l、p H7,2)に塗沫し、37℃で培
養した。又、AJ1111115のDNAの形質転換株
を含む懸濁液をカナマイシン5 )tf/ml、8−7
ザグアニン100r/at 、サルファグアニジン10
0r74/含有の上記最小プレート培地■に塗沫し、3
7℃で培養した。培養3日後には上記Cm)培地上ンこ
6個のコロニー、上記培地(■)上に5個のコロニーが
出現したのでこれを釣菌し、各クローンをそれぞれ純粋
に分離した。
The mixture was spread on agar (20 f/l, pH 7.2) and cultured at 37°C. In addition, a suspension containing a transformed strain of AJ1111115 DNA was treated with kanamycin (5) tf/ml, 8-7
Zaguanine 100r/at, Sulfaguanidine 10
Spread on the above minimal plate medium containing 0r74/3.
Cultured at 7°C. After 3 days of culture, 6 colonies appeared on the Cm) medium and 5 colonies appeared on the medium (■), which were harvested and each clone was isolated.

培地(III)から得られた形質転換株の性質は、いず
れもアルギニン要求性、ロイシン要求性、アデニン要求
性、8−7ザグアニン耐性、カナマイシン耐性を示し、
培地(■)から得られた形質転換株の性質は、いずれも
アルギニン要求性、ロイシン要求性、アデニン要求性、
8−アザグアニン耐性、サルファグアニジン耐性、カナ
マイシン耐性を示した。
The properties of the transformed strain obtained from the medium (III) were as follows: arginine auxotrophy, leucine auxotrophy, adenine auxotrophy, 8-7 zaguanine resistance, kanamycin resistance,
The properties of the transformed strain obtained from the medium (■) are arginine auxotrophy, leucine auxotrophy, adenine auxotrophy,
It showed resistance to 8-azaguanine, sulfaguanidine, and kanamycin.

+41  プリンアナログ耐性又はサルファ剤耐性領域
を担うプラスミドpUB 1 t oの抽出13)で得
られたクローンのうち、培地(III)上のクローンA
Jl1816(vwRM−p  IE、??  >、培
地(■)上のクローンA J 11 Ill 7 (F
ERM−Pj/2ヲ)を用いて、C,1,Kadoらの
方法(J。
+41 Extraction of plasmid pUB 1 to carrying purine analog resistance or sulfa drug resistance region Among the clones obtained in 13), clone A on medium (III)
Jl1816 (vwRM-p IE, ??>, clone A J 11 Ill 7 (F
ERM-Pj/2wo) using the method of C,1, Kado et al. (J.

Bacteriol、、 145.1365(1981
) )に基づいたDNA抽出法により各々別々に菌体の
DNAを抽出し、アカロース電気泳動によってプラスミ
ドDNA を染色体DNAを分離し、プラスミドD N
 A 区分を各々分画採取し、精製した。
Bacteriol, 145.1365 (1981
) The DNA of each bacterial cell was extracted separately using a DNA extraction method based on
A fraction of each fraction was collected and purified.

こうして得られた新規プラスミド、即ち菌株AJ118
16から得られたプラスミドを(3)で述べたの七同様
の方法によって、原株の51−イノシン酸生産菌AJ1
1814へ形質転換法により再導入し、カナマイシン耐
性株A J 11818 (FERM−p   jlj
l )を得た。又、AJ1’1817から得られたプラ
スミドを5′−イノシン酸生産菌AJ11815へ形質
転換法により再導入し、カナマイシン耐性株AJ 11
819 (FERMP −jぐj/)を得た。
The new plasmid thus obtained, namely strain AJ118
The plasmid obtained from No. 16 was transformed into the original strain of 51-inosinic acid producing bacterium AJ1 using the same method as described in (3).
1814 by the transformation method, and the kanamycin-resistant strain AJ 11818 (FERM-p jlj
l) was obtained. In addition, the plasmid obtained from AJ1'1817 was reintroduced into 5'-inosinic acid producing bacterium AJ11815 by the transformation method, and a kanamycin-resistant strain AJ11 was obtained.
819 (FERMP-jguj/) was obtained.

(5)新規51−イノシン酸生産菌による51−イノ。(5) 51-ino produced by a novel 51-inosinic acid producing bacterium.

ン酸生産 以上のようにして得られた各菌株A J 11813、
AJ 11814 、AJ 11815、AJ 118
16、AJ11817、AJ11818、AJ 118
19を培養した結果を第1表に示す。培養は50〇−容
肩付フラスコ中に51−イノシン酸生産培地(グルコー
ス80f/へNH4No315 y7tlIKH,PO
410q/l s Mg5o4−7H,、o 5 Vt
 sFe S 04 ・7 HqO10’f/L、Mn
SO4・7 H,010W/l 、 CaC1,2*2
 H2O2Ill 、アデニン0 、2 Ill 、大
豆蛋白加水分解液40sl/l、 p H6,5(K 
OHで調製))を2゜IIeずつ分注し、115℃で1
0分間加圧殺菌した後、予め斜面培地で培養して得た各
種菌体を接種後、34℃で72時間振盪培養することに
より行った。
Each strain A J 11813 obtained as above,
AJ 11814, AJ 11815, AJ 118
16, AJ11817, AJ11818, AJ 118
Table 1 shows the results of culturing No. 19. The culture was carried out using 51-inosinic acid production medium (glucose 80f/NH4No315y7tlIKH, PO
410q/l s Mg5o4-7H,, o 5 Vt
sFe S 04 ・7 HqO10'f/L, Mn
SO4・7 H,010W/l, CaC1,2*2
H2O2Ill, adenine 0,2Ill, soybean protein hydrolyzate 40sl/l, pH 6,5 (K
Prepared with OH)) was dispensed into 2°IIe portions and incubated at 115℃
After pressure sterilization for 0 minutes, various bacterial cells previously cultured on a slant medium were inoculated, followed by shaking culture at 34° C. for 72 hours.

第1表 特許出願人 味の素株式会社Table 1 Patent applicant: Ajinomoto Co., Inc.

Claims (1)

【特許請求の範囲】[Claims] バチルス属のプリンアナログに耐性を有する変異株の染
色体より得たプリンアナログ耐性に関与する遺伝子領域
が組み込まれているベクターを、バチルス属のアデニン
要求性の変異株に含有せしめた51−イノシン酸生産性
微生物を培養し、培地中に蓄積された51−イノシン酸
を採取することを特徴とする51−イノシン酸の製造法
51-inosinic acid production in which adenine auxotrophic mutant strain of Bacillus genus contains a vector incorporating a gene region involved in purine analog resistance obtained from the chromosome of a mutant strain of Bacillus genus that is resistant to purine analogs. 1. A method for producing 51-inosinic acid, which comprises culturing a sexually active microorganism and collecting 51-inosinic acid accumulated in a culture medium.
JP57040365A 1982-03-15 1982-03-15 Preparation of 5'-inosic acid by fermentation process Granted JPS58158195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57040365A JPS58158195A (en) 1982-03-15 1982-03-15 Preparation of 5'-inosic acid by fermentation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57040365A JPS58158195A (en) 1982-03-15 1982-03-15 Preparation of 5'-inosic acid by fermentation process

Publications (2)

Publication Number Publication Date
JPS58158195A true JPS58158195A (en) 1983-09-20
JPH0333317B2 JPH0333317B2 (en) 1991-05-16

Family

ID=12578608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57040365A Granted JPS58158195A (en) 1982-03-15 1982-03-15 Preparation of 5'-inosic acid by fermentation process

Country Status (1)

Country Link
JP (1) JPS58158195A (en)

Also Published As

Publication number Publication date
JPH0333317B2 (en) 1991-05-16

Similar Documents

Publication Publication Date Title
JPH0142676B2 (en)
FR2459286A1 (en) PROCESS FOR PRODUCING L-PHENYLALANINE BY FERMENTATION
FR2484448A1 (en) PROCESS FOR PRODUCING L-ARGININE BY FERMENTATION
JPS63233798A (en) Production of 5'-guanylic acid
JPS59156292A (en) Preparation of tryptophan
JPH0333318B2 (en)
JPS622797B2 (en)
JPS5931691A (en) Preparation of l-threonine by fermentation
JPH0515434B2 (en)
JPH0428357B2 (en)
JPH0755155B2 (en) Amino acid manufacturing method
JPS58158195A (en) Preparation of 5'-inosic acid by fermentation process
JPH08168383A (en) Production of hucleic acid-related substance
JPH0459877B2 (en)
JP2587764B2 (en) Method for producing N-acylneuraminic acid aldolase
JPS61202686A (en) Novel microorganism, and production of biotin by fermentation using same
JPH0630583B2 (en) DIA and its uses
JPH0511960B2 (en)
EP0179025A1 (en) Method for the production of neutral protease
JPS62232392A (en) Production of l-thereonine and l-isoleucine
JPS6066984A (en) Production of phenylalanine by fermentation method
JPS58134994A (en) Preparation of l-phenylalanine by fermentation
JPS58216694A (en) Preparation of hypoxanthine by fermentation method
JPS58175492A (en) Preparation of guanosine-5'-monophosphoric acid by fermentation process
JP2656329B2 (en) Method for producing flavin nucleotides