JPS58158189A - Preparation of beta-hydroxypropionic acid - Google Patents

Preparation of beta-hydroxypropionic acid

Info

Publication number
JPS58158189A
JPS58158189A JP57042360A JP4236082A JPS58158189A JP S58158189 A JPS58158189 A JP S58158189A JP 57042360 A JP57042360 A JP 57042360A JP 4236082 A JP4236082 A JP 4236082A JP S58158189 A JPS58158189 A JP S58158189A
Authority
JP
Japan
Prior art keywords
acid
hydroxypropionic acid
propionic acid
microorganism
hydroxypropionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57042360A
Other languages
Japanese (ja)
Other versions
JPS6257313B2 (en
Inventor
Junzo Hasegawa
淳三 長谷川
Masahiro Ogura
小倉 正博
Hajime Kawarada
川原田 肇
Kiyoshi Watanabe
清 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP57042360A priority Critical patent/JPS58158189A/en
Publication of JPS58158189A publication Critical patent/JPS58158189A/en
Publication of JPS6257313B2 publication Critical patent/JPS6257313B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To prepare beta-hydroxypropionic acid in high yield, by using a variant belonging to the genus Candida, having reduced dehydrogenase activity against beta-hydroxypropionic acid. CONSTITUTION:A fungus belonging to the genus Candida, capable of converting acrylic acid or propionic acid to beta-hydroxypropionic acid, is subjected to variation treatment to give a variant such as Candida rugosa IFO0750 having dehydrogenase activity against beta-hydroxypropionic acid reduced to <= half of the parent strain. This variant is introduced to Candida rugosa KT8201, which is brought into contact with acrylic acid or propionic acid or a substrate such as propyl alcohol, propionic anhydride, etc. which can be converted to propionic acid or beta-hydroxypropionic acid by the fungus.

Description

【発明の詳細な説明】 本発明は微生物によるβ−ヒドロキシプロピオン酸の製
造法に関する。さらに詳しくは、キャンテイダ属に属し
、アクリル酸またはプロピオン酸をβ−ヒドロキシプロ
ピオン酸に変換する能力を有し、かりβ−ヒドロキシプ
ロピオン酸脱水素酵しうる基質と接触反応させ、生成す
るβ−ヒドロキシプロピオン酸を採収することを特徴と
するβ−ヒドロキシプロピオン酸の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing β-hydroxypropionic acid using microorganisms. More specifically, it belongs to the genus Cantida, has the ability to convert acrylic acid or propionic acid into β-hydroxypropionic acid, and is produced by contact reaction with a substrate capable of dehydrogenating β-hydroxypropionic acid. The present invention relates to a method for producing β-hydroxypropionic acid, which comprises collecting propionic acid.

β−ヒドロキシプロピオン酸は、2つの異なる官能基を
もつ化合物であるところから医薬・農薬等の合成原料と
して好都合な物質である。微生物によるβ−ヒドロキシ
プロピオン酸の製造法に関して1,3−プロパンジオー
ルを原料にして酢酸菌、あるいはHansenula 
 属による酸化法(K、ケルステル等;バイオケミカル
・バイオフィジカル・アクタ 71巻、311頁 19
63年、原しD等;アグリ力ルチュアル−バイオロジカ
ル・ケミストリー 32巻、1’L75頁 1968年
)、あるいはアクリル酸からフサリクムーメリスモイデ
スによりβ−ヒドロキンプロピオン酸に変換できた(原
1目専;ジャーナル・オプ・ファメンテーション・テク
ノロジー 52巻、388頁 1974年)という報告
等があるが、いづhも晶債址、収率共に低く、工業的に
利用するには難点が多いと考えられる。
Since β-hydroxypropionic acid is a compound having two different functional groups, it is a convenient substance as a raw material for the synthesis of medicines, agricultural chemicals, and the like. Regarding the production method of β-hydroxypropionic acid using microorganisms, using 1,3-propanediol as a raw material, acetic acid bacteria or Hansenula
Oxidation method according to the genus (K, Kerstel et al.; Biochemical Biophysical Acta Vol. 71, p. 311 19
1963, Harashi D et al.; Agricultural Rutual-Biological Chemistry, Vol. 32, p. 1'L75, 1968), or acrylic acid could be converted to β-hydroquine propionic acid by Fusaricum melisumoides (Harashi D et al., 1968); There are reports such as 1974), Journal of Fermentation Technology, Vol. 52, p. 388, but Izuh also has low crystal yield and low yield, and there are many difficulties in using it industrially. it is conceivable that.

木発明者等は安価なプロピオン酸等を原1!+にし、β
−ヒドロキシプロピオン酸の微生物による生産のω[究
を行った結果、プロピオン酸資化能の強いi生4tlの
β−ヒドロキシプロピオン酸脱水素酵素fIrl性を低
下させhば、β−ヒドロキシプロピオン酸が、11収率
で蓄積されることを兄い出した。すなわち、プロピオン
酸資化性微生物を変異させ、β−ヒドロキシプロ″ピオ
ン酸脱水素酊未活性が規株の2分の1以下である変異株
に♂9導し、この変異とを接融反応させることによシl
’+’j収十でβ−ヒドロキシプロピオン酸を生産しう
ろことを見い出した。変顕株を使用する利点としてはβ
−ヒドロキシ−y”ロヒオン酸の生産性の高いことであ
る。
Wood inventors are using cheap propionic acid etc. Set to +, β
- As a result of investigating the production of hydroxypropionic acid by microorganisms, it was found that if the activity of β-hydroxypropionic acid dehydrogenase fIrl of i-4tl, which has a strong ability to assimilate propionic acid, is reduced, β-hydroxypropionic acid , it was shown that it was accumulated at a yield of 11. That is, a propionic acid-assimilating microorganism was mutated to create a mutant strain with β-hydroxypropionate dehydrogenation activity less than half that of the original strain, and this mutation was subjected to a fusion reaction. Let's make it happen
It was discovered that β-hydroxypropionic acid can be produced at a high yield of '+'j. The advantage of using variable stocks is β
-Hydroxy-y''rohionic acid is highly productive.

本発明に使用するキャンデイダL・ハの酵母の況株とし
では、プロピオン酸資化性菌、例えばキャンテイダe 
/L/ゴ2ザ(Candトda rugosa )  
I FO0750、同IFO1542、同IFO059
1、キャンテイダOバラプシロシス(CandidaP
arapsilosis ) I F 0 0708お
よび天然から分離したキャンテイダ属VC%するプロピ
オン酸資化性菌もこhに含まれる。
The yeast strains of Candida L. and Ha used in the present invention include propionic acid-assimilating bacteria such as Cantida
/L/Go2za (Cand da rugosa)
IFO0750, IFO1542, IFO059
1. Candida O balapsilosis (Candida P
This also includes propionic acid-assimilating bacteria of the genus Cantida VC% isolated from nature.

ij−ヒドロキシプロピオン酸脱水素酵素活性の低−ド
した菌株をつるために変異を利用する。変異には人工変
異と自然変異とがあシ、いづれも利用しうるが、通常は
変異効率の良い人工変異が利用される。人工変異の方法
としてX線照射、紫外線照射、T線処理およびN−メチ
ル−I−ニトロ−N−ニトロソグアニジン(NTG)な
どの変異誘起剤による処理が用いられる。例えば、具体
的な例として本発明者等がβ−ヒドロキシプロピオン酸
脱水素酵素活性の低い株を得るために行なったNTGに
よる変異の方法の一例を示すと次のとおシである。たた
し、目的とする性質の変異株が得らhtば良いのであっ
てこの方法に限定されるものではない。
The mutation is utilized to create a strain with reduced ij-hydroxypropionate dehydrogenase activity. Although either artificial mutation or natural mutation can be used for mutation, artificial mutation with high mutation efficiency is usually used. As methods for artificial mutation, X-ray irradiation, ultraviolet irradiation, T-ray treatment, and treatment with a mutagenic agent such as N-methyl-I-nitro-N-nitrosoguanidine (NTG) are used. For example, as a specific example, an example of a mutation method using NTG that the present inventors conducted to obtain a strain with low β-hydroxypropionate dehydrogenase activity is as follows. However, the method is not limited to this method, as long as a mutant strain with the desired properties can be obtained.

保(f用スラント(キャンデイダ・ルゴーザIF0 0
750)よシ1白金耳をグルコース40g1(NH4)
2HPO413g、 KH2PO47g、、Mg家)4
・7H200,8g、 ZnSO47H2060m+f
、FeSO4・7H2090q、CuSO4・5H20
5q、MnSO4・4 H2010’f % N a 
C/!  o、 1 g %  ピオチンlq1チアミ
ン2〜、水11! −、p H7,2の組1戊からなる
S培地30屑tを500肩を容フラスコに入れ接種し、
30°C120時間振とう培養した。その培養液1.5
mlを0.5Mリン酸緩衝液(pH7,0)で洗浄後、
0.5勢/nttNTG溶液3肩lに懸濁し、4°C1
60分放置した。その後、ji′iiじ緩衝液で3回洸
浄し、次の組成からなる固型平板C培地(グルコース2
0g1イーストエキス5g、肉エキス10g、ペプトン
lug、寒天20g1水11XpH7,0)に塗41し
、コロニーを出fflさせた。このコロニー−8培地の
グルコースの代りにプロピオン酸10g、寒天20gを
加えたpH7,0のP培地にレプリカした。このP培地
上で生育不良な菌株(プロピオン酸非資化性菌)を選ん
だ。この様な方法で得たプロピオン酸非資化性菌を実施
例IVc示す条件で培養反応を行ない、β−ヒドロキシ
プロピオン酸高1農度蓄積株を選んだ。この様にして選
択した変異株は、いづれも親株に比べβ−ヒドロキシプ
ロピオン酸脱水素酵素活性が捨しく低下しておシ、すべ
て本発明に利用できる。上記酵素活性は本発明者の一人
であ−る長谷用がアグリ力ルチャル・バイオロジカル・
グミストリー3u (Agricultural Bi
ological Chemistry )  45巻
、2899頁(1981)1”報告しているβ−ヒドロ
キシイソ醋酸脱水素酵素活性測定と同様な条件で基質を
β−ヒドロキシイソ酪酸の代シにβ−ヒドロキシプロピ
オン酸を用いねば実施できる。
Ho (slant for f (Candida Rugoza IF0 0
750) 1 platinum loop of glucose 40g1 (NH4)
2HPO413g, KH2PO47g, Mg family) 4
・7H200,8g, ZnSO47H2060m+f
, FeSO4・7H2090q, CuSO4・5H20
5q, MnSO4.4 H2010'f % Na
C/! o, 1 g % piotin lq1 thiamine 2~, water 11! -, 500 tons of S culture medium consisting of 1 set of pH 7.2 was placed in a volume flask and inoculated.
Culture was carried out with shaking at 30°C for 120 hours. The culture solution 1.5
After washing ml with 0.5M phosphate buffer (pH 7,0),
0.5 cells/nttSuspended in 3 liters of NTG solution and heated at 4°C.
It was left for 60 minutes. Afterwards, it was washed 3 times with ji'ii buffer solution, and solid plate C medium (glucose 2
0g1 yeast extract 5g, meat extract 10g, peptone lug, agar 20g1 water 11X pH 7.0) was coated on 41 to extrude colonies. A replica of this Colony-8 medium was made into P medium of pH 7.0 to which 10 g of propionic acid and 20 g of agar were added instead of glucose. A strain (bacterium that cannot assimilate propionic acid) that grows poorly on this P medium was selected. The propionic acid non-assimilating bacteria obtained in this manner were subjected to a culture reaction under the conditions shown in Example IVc, and a strain accumulating a high β-hydroxypropionic acid yield was selected. All of the mutant strains selected in this way have significantly lower β-hydroxypropionate dehydrogenase activity than the parent strain, and can all be used in the present invention. The above enzyme activity was reported by Haseyo, one of the inventors, at Agricultural Biological Laboratory.
Gummistry 3u (Agricultural Bi
45, p. 2899 (1981) 1" using β-hydroxypropionic acid instead of β-hydroxyisobutyric acid as a substrate under the same conditions as the β-hydroxyisoacetate dehydrogenase activity measurement reported in It can be implemented if necessary.

本発明を実施するため、上記の方法で得た変異株の例と
してキャンティダ・ルゴーザKT8201株がある。こ
の変異株の菌学的性質としては第1表に示す如く親株と
殆んど差は認められないが、プロピオン酸資化性、β−
ヒドロキシプロピオン酸脱水素酵素活性およびβ−ヒド
ロキシイソ酪酸脱水素酵素活性に著しい差が認められる
。01L本発明での変異株の性質でβ−ヒドロキシイソ
醋酸脱水素酵素の活性の低いことは必須条件ではない。
An example of a mutant strain obtained by the above method for carrying out the present invention is Cantida rugosa KT8201 strain. As shown in Table 1, there is almost no difference in the bacteriological properties of this mutant strain from the parent strain, but there is a difference in propionic acid assimilation ability, β-
Significant differences are observed in hydroxypropionate dehydrogenase activity and β-hydroxyisobutyrate dehydrogenase activity. 01L It is not an essential condition that the mutant strain of the present invention has low activity of β-hydroxyisoacetate dehydrogenase.

表  1 術院微生物工業研究所へ微生物保管釜jモ申請書受理番
昭第 110号として寄託しであるー。
Table 1: Application form for microorganism storage kettle has been deposited with the Institute of Microbial Industry at the Institute of Medical Sciences as receipt number 110.

本発明におけるβ−ヒドロキシプロピオン酸のL 例り
ばプロピルアルコール、プロピオンアル□デヒド等の中
から選ばれた基質と炭素源、窒素源、無極塩類および適
当な栄養源を含む培地中で上記の微生物を好気的に培養
する方法、または予め適当な培地で微生物を培養し得た
培養液そのまま、あるいは菌体のみを集め、適当な熱板
塩等を含む液に懸濁したものに、上記プロピオン酸等の
基質を添加し、好気的に接触1反応させ、β−ヒドロキ
シプロピオン酸を1積させる方法等がある。また多量に
β−ヒドロキシプロピオン酸を蓄積させるためには、培
養徒手あるいは菌体との接触反応時に該微生物が利用し
つるエネルギー源を補給する意味から、グルコースまた
はグリセロースまたはエタノールまたは酢酸等の適当な
利用しうる炭酸源を添加するのが好ましい。
L of β-hydroxypropionic acid in the present invention, for example, the above microorganisms in a medium containing a substrate selected from propyl alcohol, propional □dehyde, etc., a carbon source, a nitrogen source, an apolar salt, and a suitable nutrient source. aerobically cultivating the microorganisms, or using the culture solution obtained by culturing the microorganisms in an appropriate medium in advance, or collecting only the microbial cells and suspending them in a solution containing suitable hot plate salt, etc. There is a method of adding a substrate such as an acid, carrying out an aerobic contact reaction, and producing one product of β-hydroxypropionic acid. In addition, in order to accumulate a large amount of β-hydroxypropionic acid, it is necessary to use a suitable material such as glucose, glycerose, ethanol, or acetic acid, in order to supply the energy source that the microorganism uses during the culture or contact reaction with the microorganism. Preferably, an available source of carbonic acid is added.

本発明に使用する培地はグルコース、グリセリン博の炭
素源、アンモニア、尿素、硫安、ペプトン、カザミノ酸
等の無機、有機の含窒素化合物の生育に必要な無機塩類
、更にビオチン、チアミン等のビタミン類、その池必要
に応じて通常微生物の培養に用いられる種々の栄養源を
適宜配合して用いることができる。
The medium used in the present invention contains glucose, glycerin, carbon sources, ammonia, urea, ammonium sulfate, peptone, inorganic salts necessary for the growth of organic nitrogen-containing compounds such as casamino acids, and vitamins such as biotin and thiamine. If necessary, various nutrient sources commonly used for culturing microorganisms can be appropriately mixed and used in the pond.

培養は殺菌した培地に菌を接種し、20〜45°Cの温
度でpHを6〜9に保ちツク1〜10日間、通気攪拌培
養、振とう培養などで好気的に行なう。
The culture is carried out aerobically by inoculating the bacteria into a sterilized medium and maintaining the pH at 6 to 9 at a temperature of 20 to 45° C. for 1 to 10 days using aerobic agitation culture, shaking culture, etc.

培養の初期は菌体の生育が行なわれ、その後β−ヒドロ
キシプロピオン酸の生産が行なわれる。β−ヒドロキシ
プロピオン酸の生産時、更にプロピオン酸等の基質とグ
ルコース等前記のエネルギー源を補給すれば効率よく、
多量にβ−ヒドロキシプロピオン酸を蓄積させることが
できる。また目的によっては上記微生物の静止菌体、あ
るいは各種ポリマー等を用いて固定化した菌体を使用す
ることもできる。
At the initial stage of culture, bacterial cells grow, and then β-hydroxypropionic acid is produced. During the production of β-hydroxypropionic acid, if the substrate such as propionic acid and the above-mentioned energy sources such as glucose are further supplied, it can be efficiently produced.
A large amount of β-hydroxypropionic acid can be accumulated. Depending on the purpose, stationary cells of the above-mentioned microorganisms or cells immobilized using various polymers or the like may also be used.

培養物または静止菌体反応液よシβ−ヒドロキシプロピ
オン酸を回収するには、通常のヒト°ロキシカルポン酸
の回収に用いられる手段を用いることができる。例えば
、菌体除去後のβ−ヒドロキシプロピオン酸含有液をa
縮し、硫酸でpH2とし、エーテル、酢酸エチル等で抽
出し、溶剤を除去すればβ−ヒドロキシプロピオン酸を
得ることができる。
To recover human β-hydroxypropionic acid from a culture or a static bacterial cell reaction solution, methods commonly used for recovering human β-hydroxycarboxylic acid can be used. For example, the β-hydroxypropionic acid-containing solution after bacterial cell removal is
β-hydroxypropionic acid can be obtained by condensing, adjusting the pH to 2 with sulfuric acid, extracting with ether, ethyl acetate, etc., and removing the solvent.

以下実施例によシ本発明を具体的に説明するが、本発明
は実施例のみに限定されるものではない。
The present invention will be specifically explained below using examples, but the present invention is not limited only to the examples.

実施例1 グルコース40 g、(NH4)2HPO413g、。Example 1 Glucose 40g, (NH4)2HPO413g.

KH2PO47g、 MgSO4,・7H200,8g
、  ZnSO4・7H2060q、FeSO4・7H
2090119、CuSO4”5H205,If、Mn
SO4・4H201011g、NaC10,1g、イー
ストエキス5gs プロピオン酸20g(11当シ)か
らなる培地をカセイソーダでpH7,2とし、30tx
tを500+g/容フラスコに入れ殺菌後、キャンディ
ダ・ルゴーザIFO0750゜およびその変異株KT8
201株を接種し、3゜’028間、振トり培養した。
KH2PO47g, MgSO4,・7H200,8g
, ZnSO4・7H2060q, FeSO4・7H
2090119, CuSO4”5H205, If, Mn
A medium consisting of 11 g of SO4.4H, 10.1 g of NaC, 5 g of yeast extract, 20 g (11 g) of propionic acid was adjusted to pH 7.2 with caustic soda, and 30 tx
Candida rugosa IFO0750゜ and its mutant KT8
201 strain was inoculated and cultured with shaking for 3°.

pHld N aOHテア、 0に維持した。培養終了
後、生成したβ−ヒドロキシプロピオン酸をガスクロマ
トグラフィー(長谷用等;ジャーナル・オグ・ファーメ
ンテ−ジョン・テクノロジー誌(Journal of
 FermentantionTecbnologY 
) 59巻、203頁 1981)で定量したところ表
2の如き結果を得た。
The pH was maintained at 0 with NaOH. After completion of the culture, the produced β-hydroxypropionic acid was analyzed by gas chromatography (for Hase, etc.; Journal of Fermentation Technology).
Fermentation Technology
) Vol. 59, p. 203, 1981), the results shown in Table 2 were obtained.

表  2 変異株を上記条件で多量に培養した培養液11を集め、
遠心分N1.によって菌体除去後、上侍を減圧下200
m/までに濃縮し、硫酸でpH2,5とした。これを酢
酸エチル500m1!で3回抽出した。
Table 2 Culture solution 11 obtained by culturing a large amount of the mutant strain under the above conditions was collected,
Centrifugation N1. After removing the bacterial cells, remove the upper samurai under reduced pressure for 200 minutes
The mixture was concentrated to a pH of 2.5 m/m and adjusted to pH 2.5 with sulfuric acid. Add this to 500ml of ethyl acetate! Extracted three times.

芒硝で脱水後、溶剤を減圧除去し、油状の黄褐色物を2
5g得た。このものをベンゼンで調製したシリカゲルカ
ラム(ワコーゲルC−200,,14X 30 cm 
) VC負荷し、ベンゼン:アセトン(3:l)で〆出
し、β−ヒドロキシプロピオン酸含有画分を集め、溶剤
を減圧下除去した結果、無色油状のβ−ヒドロキシプロ
ピオン酸14.3gを得た。
After dehydration with Glauber's salt, the solvent was removed under reduced pressure and the oily yellow-brown substance was
I got 5g. This was prepared using a silica gel column (Wakogel C-200, 14X 30 cm) with benzene.
) Loaded with VC, extracted with benzene:acetone (3:l), collected fractions containing β-hydroxypropionic acid, and removed the solvent under reduced pressure to obtain 14.3 g of β-hydroxypropionic acid as a colorless oil. .

木物質のNMRスペクトル、IRスペクトル、元素分析
、−屈折率等を測定したところβ−ヒドロキシプロピオ
ン酸の文献値と一致し、本生成物はβ−ヒドロキシプロ
ピオン酸と同定された。
Measurement of the NMR spectrum, IR spectrum, elemental analysis, refractive index, etc. of the wood material matched the literature values for β-hydroxypropionic acid, and the product was identified as β-hydroxypropionic acid.

実施例2 実施例1に示した培地よりプロピオン酸を除いた培地3
0txtを500m1容フラスコに入れ殺菌後、変異株
KT8201を植菌し、30°Cで24時間振とう培養
した。この培養液各々にアクリル酸600#、プロピル
アルコール6oowg、プロピオンアルデヒド150岬
添加し、支にグルコースを900q+添加し、pHをカ
セイソーダで7.0に合わせた。そして3日間培養した
。なおpHは毎日7. OK合わせ、かクグルコースを
1.2gづつ添加した。培養終了後、生成したβ−ヒド
ロキシプロピオン酸をガスクロマトグラフィーで分析し
た結果表3の結果を得た。
Example 2 Medium 3 obtained by removing propionic acid from the medium shown in Example 1
After sterilizing 0txt in a 500 ml flask, the mutant strain KT8201 was inoculated and cultured with shaking at 30°C for 24 hours. To each of the culture solutions were added 600 # of acrylic acid, 6 oowg of propyl alcohol, and 150 caps of propionaldehyde, 900 q+ of glucose was added, and the pH was adjusted to 7.0 with caustic soda. Then, it was cultured for 3 days. The pH is 7. When the mixture was OK, 1.2 g of sugar glucose was added. After the culture was completed, the produced β-hydroxypropionic acid was analyzed by gas chromatography, and the results shown in Table 3 were obtained.

表   3 実施例3 実施例1で用いた培地(但し、プロピオン酸は50g添
加)に変異株KT8201を接種し、30°CでpHを
7.0に維持しながら4日間機ぷり培養した。培養開始
後28,54.76時間目にエネルギー源としてグルコ
ース1g−!たはグリセロール’g’−4たは28j3
6,54,62.76時間毎にエタノール 0.3.H
l、まへは酢酸0.3mlを添加した。培養終了後、β
−ヒドロキシプロピオン酸の生成量を測定したところ表
4の結果を得た。
Table 3 Example 3 Mutant strain KT8201 was inoculated into the medium used in Example 1 (50 g of propionic acid was added) and pre-cultured at 30°C for 4 days while maintaining the pH at 7.0. 28,54.76 hours after the start of culture, 1 g of glucose as an energy source! or glycerol 'g'-4 or 28j3
Ethanol every 6,54,62.76 hours 0.3. H
1, and 0.3 ml of acetic acid was added. After culturing, β
The results shown in Table 4 were obtained when the amount of -hydroxypropionic acid produced was measured.

特許出願人  鐘淵化学工業株式会社 代理人 弁理士  浅 野 真 −Patent applicant Kanebuchi Chemical Industry Co., Ltd. Agent Patent Attorney Makoto Asano -

Claims (9)

【特許請求の範囲】[Claims] (1)キャンデイダ属に属す微生物で、アクリル酸また
はプロピオン酸をβ−ヒドロキシプロピオン酸に変換す
る能力を有し、且つβ−ヒドロキシプロピオン酸脱水素
酵素活性の低下した変異株をアクリル酸またはプロピオ
ン酸あるいは該微生物がプロピオン酸またはβ−ヒドロ
キシプロピオン酸に変換しうる基質と接触反応させ、生
成するβ−ヒドロキシプロピオン酸を採取することを特
徴とするβ−ヒドロキシプロピオン酸の製造法。
(1) A mutant strain of a microorganism belonging to the genus Candida that has the ability to convert acrylic acid or propionic acid to β-hydroxypropionic acid and has a decreased β-hydroxypropionic acid dehydrogenase activity, Alternatively, a method for producing β-hydroxypropionic acid, which comprises carrying out a contact reaction with the microorganism and a substrate that can be converted into propionic acid or β-hydroxypropionic acid, and collecting the produced β-hydroxypropionic acid.
(2)変異株かキャンデイダ・ルゴーザから誘導された
微生物である特許請求の範囲第1項記載の製造法。
(2) The production method according to claim 1, wherein the microorganism is a mutant strain or a microorganism derived from Candida rugosa.
(3)変異株の有するβ−ヒドロキシプロピオン酸脱水
素酵素活性が親株に比べ2分のl以下であることを特徴
とする特許請求の範囲第1項または第2項記載の製造法
(3) The production method according to claim 1 or 2, wherein the β-hydroxypropionate dehydrogenase activity of the mutant strain is less than half that of the parent strain.
(4)該微生物がプロピオン酸またはβ−ヒドロキシプ
ロピオン酸に変換しうる基質が、プロピルアルコール、
プロピオンアルデヒド、プロピオンアミド、無水プロピ
オン酸である特許請求の範囲第1項記載の製造法。
(4) The substrate that the microorganism can convert into propionic acid or β-hydroxypropionic acid is propyl alcohol,
The manufacturing method according to claim 1, which is propionaldehyde, propionamide, and propionic anhydride.
(5)微生物を栄養培地で培養し、得た培養液にプロピ
オン酸あるいはアクリル酸あるいは該微生物がプロピオ
ン酸またはβ−ヒドロキシプロピオン酸に変換しうる基
質を作用させる特許請求の範囲第1項記載の製造法。
(5) A method according to claim 1, wherein microorganisms are cultured in a nutrient medium, and propionic acid, acrylic acid, or a substrate that can be converted by the microorganisms into propionic acid or β-hydroxypropionic acid is applied to the obtained culture solution. Manufacturing method.
(6)プロピオン酸、アクリル酸あるいは該微生物がプ
ロピオン酸またはβ−ヒドロキシプロピオン酸に変換し
うる基質う11トチiφ暢÷化合吻幡添加した培地で培
養することにより、微生物をプロピオン酸、アクリル酸
あるいは該微生物がプロピオン酸に変換しうる基質に作
用させる特許請求の範囲第1項記載の製造法。
(6) By culturing microorganisms in a medium supplemented with propionic acid, acrylic acid, or a substrate that the microorganisms can convert into propionic acid or β-hydroxypropionic acid, Alternatively, the production method according to claim 1, in which the microorganism acts on a substrate that can be converted into propionic acid.
(7)微生物を栄養培地で培養し、得た培養液から、微
生物菌体を分離して菌体懸濁液を調製し、それをプロピ
オン酸、アクリル酸、あるいは該微生物がプロピオン酸
まだはβ−ヒドロキシプロピオン酸に変換しうる基質に
作用させる特許請求の範囲第1項記載の製造法。
(7) Cultivate microorganisms in a nutrient medium, isolate microbial cells from the obtained culture medium, prepare a bacterial cell suspension, and use propionic acid, acrylic acid, or - The manufacturing method according to claim 1, wherein the method acts on a substrate that can be converted into hydroxypropionic acid.
(8)微生物とプロピオン酸またはアクリル酸または該
微生物がプロピオン酸またはβ−ヒドロキシプロピオン
酸に変換しうる基質との接触反応時に、該微生物が利用
しうるエネルギー源を補給する特許請求の範囲第1項記
載の製造法。
(8) Claim 1 which supplies an energy source that can be used by the microorganism during a contact reaction between the microorganism and propionic acid or acrylic acid or a substrate that the microorganism can convert into propionic acid or β-hydroxypropionic acid. Manufacturing method described in section.
(9)微生物が利用しうるエネルギー源が、グルコース
、クリセロール、エタノール、マタハ酢酸である特許請
求の範囲第8項記載の製造法。
(9) The production method according to claim 8, wherein the energy source that can be used by the microorganisms is glucose, chrycerol, ethanol, or acetic acid.
JP57042360A 1982-03-16 1982-03-16 Preparation of beta-hydroxypropionic acid Granted JPS58158189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57042360A JPS58158189A (en) 1982-03-16 1982-03-16 Preparation of beta-hydroxypropionic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57042360A JPS58158189A (en) 1982-03-16 1982-03-16 Preparation of beta-hydroxypropionic acid

Publications (2)

Publication Number Publication Date
JPS58158189A true JPS58158189A (en) 1983-09-20
JPS6257313B2 JPS6257313B2 (en) 1987-11-30

Family

ID=12633862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57042360A Granted JPS58158189A (en) 1982-03-16 1982-03-16 Preparation of beta-hydroxypropionic acid

Country Status (1)

Country Link
JP (1) JPS58158189A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005521718A (en) * 2002-03-25 2005-07-21 カーギル,インコーポレイティド Process for producing derivatives of β-hydroxycarboxylic acid
KR100641281B1 (en) * 2004-10-19 2006-11-01 주식회사 엘지화학 Production of 3-hydroxypropionic acid by Rhodococcus erythropolis LG12
US8076120B2 (en) 2000-11-20 2011-12-13 Cargill, Incorporated 3-hydroxypropionic acid and other organic compounds
CN104232698A (en) * 2014-06-17 2014-12-24 徐州工程学院 Method for preparing 3-hydroxypropionic acid by utilizing immobilized candida rugosa cell
US10239819B2 (en) 2014-10-17 2019-03-26 Cargill, Incorporated Methods for producing an ester of an alpha, beta-unsaturated carboxylic acid
US10710955B2 (en) 2013-10-17 2020-07-14 Cargill, Incorporated Methods for producing alkyl hydroxyalkanoates
JP2022116246A (en) * 2017-10-26 2022-08-09 ノロオ アイシー シーオー.エルティーディー. Production and separation of 3-hydroxypropionic acid

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999700B2 (en) 2000-11-20 2015-04-07 Cargill, Incorporated 3-hydroxypropionic acid and other organic compounds
US9340803B2 (en) 2000-11-20 2016-05-17 Cargill, Incorporated 3-hydroxypropionic acid and other organic compounds
US8198066B2 (en) 2000-11-20 2012-06-12 Cargill, Incorporated 3-hydroxypropionic acid and other organic compounds
US8501455B2 (en) 2000-11-20 2013-08-06 Cargill, Incorporated 3-hydroxypropionic acid and other organic compounds
US8759059B2 (en) 2000-11-20 2014-06-24 Cargill, Incorporated 3-hydroxypropionic acid and other organic compounds
US8822197B2 (en) 2000-11-20 2014-09-02 Cargill, Incorporated 3-hydroxypropionic acid and other organic compounds
US8076120B2 (en) 2000-11-20 2011-12-13 Cargill, Incorporated 3-hydroxypropionic acid and other organic compounds
JP2005521718A (en) * 2002-03-25 2005-07-21 カーギル,インコーポレイティド Process for producing derivatives of β-hydroxycarboxylic acid
US8338145B2 (en) 2002-03-25 2012-12-25 Cargill, Incorporated Methods of manufacturing derivatives of β-hydroxycarboxylic acids
US8846353B2 (en) 2002-03-25 2014-09-30 Cargill, Incorporated Methods of manufacturing acrylic acid
JP2015187129A (en) * 2002-03-25 2015-10-29 カーギル,インコーポレイティド METHOD FOR PRODUCING DERIVATIVE OF β-HYDROXYCARBOXYLIC ACID
JP2015083568A (en) * 2002-03-25 2015-04-30 カーギル,インコーポレイティド METHOD FOR PRODUCING DERIVATIVE OF β-HYDROXY CARBOXYLIC ACID
KR100641281B1 (en) * 2004-10-19 2006-11-01 주식회사 엘지화학 Production of 3-hydroxypropionic acid by Rhodococcus erythropolis LG12
US11691941B2 (en) 2013-10-17 2023-07-04 Cargill, Incorporated Methods for producing alkyl hydroxyalkanoates
US10710955B2 (en) 2013-10-17 2020-07-14 Cargill, Incorporated Methods for producing alkyl hydroxyalkanoates
US11332428B2 (en) 2013-10-17 2022-05-17 Cargill, Incorporated Methods for producing alkyl hydroxy alkanoates
US11332429B2 (en) 2013-10-17 2022-05-17 Cargill, Incorporated Methods for producing alkyl hydroxyalkanoates
CN104232698A (en) * 2014-06-17 2014-12-24 徐州工程学院 Method for preparing 3-hydroxypropionic acid by utilizing immobilized candida rugosa cell
US10239819B2 (en) 2014-10-17 2019-03-26 Cargill, Incorporated Methods for producing an ester of an alpha, beta-unsaturated carboxylic acid
US10633326B2 (en) 2014-10-17 2020-04-28 Cargill, Incorporated Methods for producing an ester of an alpha, beta-unsaturated carboxylic acid
US10774026B2 (en) 2014-10-17 2020-09-15 Cargill, Incorporated Methods for producing an ester of an alpha, beta-unsaturated carboxylic acid
US11242308B2 (en) 2014-10-17 2022-02-08 Cargill, Incorporated Methods for producing an ester of an alpha, beta-unsaturated carboxylic acid
JP2022116246A (en) * 2017-10-26 2022-08-09 ノロオ アイシー シーオー.エルティーディー. Production and separation of 3-hydroxypropionic acid

Also Published As

Publication number Publication date
JPS6257313B2 (en) 1987-11-30

Similar Documents

Publication Publication Date Title
Ishizuka et al. Breeding of a mutant of Aureobasidium sp. with high erythritol production
DE2413963A1 (en) PROCESS FOR THE PRODUCTION OF 2-KETOL-GULONIC ACID AND THEIR SALTS BY MICROBIOLOGICAL WAYS
JPS58158189A (en) Preparation of beta-hydroxypropionic acid
JPS635044A (en) Cyclic dihydroxy compound
JPH05227980A (en) Production of vanillin and its related compound by fermentation
JPH03191794A (en) Production of r-(-)-3-halogeno-1,2-propanediol by microbial treatment
JP4303526B2 (en) (-)-2-Deoxy-shiro-inosose production method
WO2000049133A1 (en) Method for producing l-sorbose
KR102348818B1 (en) Process for preparing PHB using mixed microbs
CN113337433B (en) Pseudomonas capable of producing pyrroloquinoline quinone and application thereof
JPS58158190A (en) Preparation of d(-)-beta-hydroxybutyric acid
JP2002253295A (en) Method for producing (r)-1,2-propanediol by microbial culturing method
JPS58158188A (en) Preparation of d-beta-hydroxyisobutyric acid
JPS58224692A (en) Preparation of d(-)-beta-hydroxyfatty acid
WO1995033063A1 (en) Microorganism-containing composition and method for the production of xylitol
JPH0716403B2 (en) Kyandeida Boydini PC-31 stock
JP2001120296A (en) Method for producing optically active 4-halogeno-1,3- butanediol and derivative thereof with microorganism
JPS58224693A (en) Preparation of d(-)-beta-hydroxyvaleric acid
JPS60188085A (en) Production of l(+)-beta-hydroxyfatty acid
JPS5830038B2 (en) Production method of coenzyme Q↓1↓0
JPH0787988A (en) Culture of marine fine algae
JPH08294384A (en) Cultivation of seed of marine microalga
JPS6244915B2 (en)
JP2000078996A (en) Production of pyruvic acid
JPS61185193A (en) Production of l(+)-beta-hydroxyfatty acid