JPS58157927A - Manufacture of composite material - Google Patents

Manufacture of composite material

Info

Publication number
JPS58157927A
JPS58157927A JP57039492A JP3949282A JPS58157927A JP S58157927 A JPS58157927 A JP S58157927A JP 57039492 A JP57039492 A JP 57039492A JP 3949282 A JP3949282 A JP 3949282A JP S58157927 A JPS58157927 A JP S58157927A
Authority
JP
Japan
Prior art keywords
alloy
metal
composite material
molten metal
neutron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57039492A
Other languages
Japanese (ja)
Other versions
JPS6227144B2 (en
Inventor
Tetsuo Minemura
哲郎 峯村
Isao Ikuta
生田 勲
Noboru Ishihara
襄 石原
Tateo Tamamura
玉村 建雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57039492A priority Critical patent/JPS58157927A/en
Publication of JPS58157927A publication Critical patent/JPS58157927A/en
Publication of JPS6227144B2 publication Critical patent/JPS6227144B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a composite material having superior uniformity and workable easily into a thin plate by melting a metal or alloy, dispersing solid powder having higher neutron absorbing power and a higher m.p. than said metal or alloy in the molten metal or alloy, and solidifying the molten metal or alloy by rapid cooling. CONSTITUTION:A matrix phase metal or alloy having high neutron absorbing power and high B concn. is melted, and solid powder having higher neutron absorbing power and a higher m.p. than said metal or alloy, e.g. BN powder is dispersed in the molten metal or alloy. The molten metal or alloy is then spouted on a roll rotating at a high speed through a nozzle by means of a highly compressed gas, and it is solidified by rapid cooling in the form of a thin plate. The resulting composite material is especially suitable for use as a thin neutron absorber having high neutron absorbing power.

Description

【発明の詳細な説明】 本宛@は複合材の製造方法に係p、籍に中性子吸収能の
高い薄帯状中性子吸収材料の製造に好適な方法に関する
−のである。
DETAILED DESCRIPTION OF THE INVENTION This article is directed to a method for producing composite materials, and more particularly to a method suitable for producing a ribbon-shaped neutron absorbing material with high neutron absorption capacity.

近年、使用ずみ核燃料棒の貯Rラックにおける放射能纏
へい材に用−る優れた中性子吸収材料がiiまれている
。この材$に請求される性質としては第一に^い中性子
吸収−1で69、第二にラックが水中に浸漬されるため
耐食性がある。ざらに謳三として強さがあげられる。
In recent years, excellent neutron absorbing materials have been developed for use as radioactive shielding materials in used nuclear fuel rod storage racks. The properties claimed for this material are firstly that it has a high neutron absorption of -69, and secondly that it is corrosion resistant since the rack is immersed in water. It is said to be strong as Zara-san.

従来O貯蔵ラックにはオーステナイトステンレス鋼81
0間仕切pを使用しているが、その中性子1lIIiL
鮨は&!az”/1001機度であp1能力としては全
く不十分であ、る、−万、B、Cとムtの複合41r1
77 mms” / 10 G IIとiう高%A歇収
総會持つが、材質がもろく、―げ加工が1jIIIA″
eある(米11’ルックスバーキンス、12−ル<ts
a名))、そこでステンレス鋼KBを添加して中性子徴
収−を増加させる試みも見られゐが、7.1原子量%(
以下、at%という)以上のBmm(中性子吸収舵@6
z”/100g)では圧延などの加工性が悪くなシ、実
用化が困難である。これt解決しようとする一点からB
e含むステンレス鋼を粉末化し、それを焼結する試みも
見られるが、十は9加工性の問題から1fA、4at%
のB量が限度である(%開@54 9@@96)*また
、仁れと同様な方法で、Bを含むステンレス鋼粉と含ま
ないステンレス鋼粉を混合焼結することによjj、Be
含まないステンレス鋼部分が加工性に有効に働き、−合
量としてB量t−34息t%まで鳥めることができる(
同)、シかし、この材料の組織はBe含む部分と含まな
い部分かはつきル分かれておp1中性子吸収能が不均一
であることが大亀な問題となってiる。iたj6s電池
が形成され、耐食性が低下すると−う問題も生ずる。
Conventional O storage racks are made of austenitic stainless steel 81
0 partition p is used, but its neutron 1lIIiL
Sushi is &! az”/1001 degrees, which is completely insufficient for p1 ability, - 41r1, a combination of 10,000, B, C, and Mut.
77 mms" / 10 G II, which has a high %A total return, but the material is brittle and the processing is 1JIIIA"
There is e (rice 11' looks Birkins, 12-ru <ts
Attempts have been made to increase neutron collection by adding stainless steel KB;
Bmm (hereinafter referred to as at%) or more (neutron absorption rudder @6
B.
Some attempts have been made to powder stainless steel containing e and sinter it, but due to workability problems, it has been reduced to 1fA, 4at%
The amount of B is the limit (% open @ 54 9 @ 96) Be
The stainless steel part that does not contain B has an effective effect on workability, and the total amount of B can be reduced to t-34t% (
However, the major problem is that the structure of this material is divided into parts that contain Be and parts that do not, and that the p1 neutron absorption capacity is non-uniform. Problems also arise when 6S batteries are formed and corrosion resistance is reduced.

このように看*鋳細法によって製造され九複合材には均
一性が欠ける他に、薄板化しにくiという間wIAもあ
る。
In addition to the lack of uniformity in the composite materials manufactured by the thin casting method, there are also some types of composite materials that are difficult to make into thin plates.

粉末焼結法以外の複合材の焼結法として、溶湯に固体粉
末を混合9分散した後、冷却させるものがあるが、薄板
化Fi困−である。また、粒子が冷却過楊にお−で沈降
又は浮上によって分離する、あるいは、凝固金属に偏析
が生じやすいという問題もある。
As a sintering method for composite materials other than the powder sintering method, there is a method in which a solid powder is mixed and dispersed in a molten metal and then cooled, but it is difficult to make a thin plate. Further, there is also the problem that particles tend to separate by sedimentation or flotation in a cooling filter, or that segregation tends to occur in solidified metal.

本発Ij110目的は上記従来の問題点【解決し、製造
された材料の均一性に優れ、かつ薄Ii製造も谷易な、
複合材の製造方法を提供するKある。
The purpose of the Ij110 of this invention is to solve the above-mentioned conventional problems, to achieve excellent uniformity of the manufactured material, and to easily manufacture thin Ii.
K provides a method for manufacturing composite materials.

本発#iは、この目的を達成するために、金属ま九は合
金の溶湯に固体の粉末を分散せしめた畿急冷凝mさせる
ようにしたものであゐ。
In order to achieve this objective, the present invention #i is designed to rapidly cool and solidify a solid powder dispersed in a molten metal alloy.

急冷aI園する方法としては8110.jj法が採用可
能であるが、その一つに回転体に#I湯1m触させる方
法がある。この方法は回転するF1板や円筒の外側又は
内側に溶融金属tm触冷却凝固させるもので、冷却速度
は約10”〜10@に/8と非常に速い、この方法は一
般に溶湯急冷法などと呼ばれ、得られる合金には従来法
によって製造される合金における固溶限以上の多量の元
素t−固溶させることができ、さらには靭性と強fを兼
ね備えた非晶質相にすることも可能である。
8110 is a method for rapid cooling aI garden. jj method can be adopted, one of which is a method in which the rotating body is brought into contact with 1 m of #I hot water. This method involves cooling and solidifying the molten metal by contacting it with the outside or inside of a rotating F1 plate or cylinder, and the cooling rate is extremely fast at approximately 10" to 10/8. This method is generally similar to the molten metal rapid cooling method. The resulting alloy can contain a large amount of the element t in solid solution, which is higher than the solid solubility limit in alloys produced by conventional methods, and can also be made into an amorphous phase that has both toughness and strong f. It is possible.

本ト明の一実施例においては、母相金属として中性子吸
収−の高いもの(例えば811度の高いもの)t−用い
、さらにIIIIK分散させる粉末として中性子吸収能
か母相金属11144%l−h物質を用いて、中性子吸
収用複合材を製造することがで自る1、この方法によれ
ば、母@に偏析等がなiとともに、固体粒子の分散性も
高く、全体として極めて均一で、かつ中性子吸収能も著
しく高い複合材が得られる。また、急冷凝固させるとこ
ろから前述のように母相を非晶質にすることも可能であ
1141に非晶質相ので龜る合金組成は、B、C,81
のような牛金属t#20at%會む共晶組成付近が多い
ため、融点が低く#1111の濡れ性が嵐い、従って、
B化合物のような粉末を園体状腸で混合することが容易
であ〕、凝−後の分IIk組織におiても分散粒子と母
相との界面が非常Vcv!!である。その丸め、引張強
さは分散粒子の複合強化が働いて上昇するという利点が
ある。まえ、母相が非晶質相の場合、耐食性の面でも非
晶質轡有O高耐食性を示す、すなわち、本発明によれば
従来の非晶質会合の利点を生かしながら、総量で非晶質
合金以上のBft−含む複合材@tt’pることかでき
る。
In one embodiment of the present invention, a material with high neutron absorption (for example, one with a high temperature of 811 degrees) is used as the matrix metal, and the powder to be dispersed with IIIK is 11144% l-h of the matrix metal with neutron absorption ability. It is possible to manufacture a composite material for neutron absorption using a substance1. According to this method, there is no segregation in the matrix, the dispersibility of the solid particles is high, and the material is extremely uniform as a whole. Moreover, a composite material with significantly high neutron absorption capacity can be obtained. In addition, it is possible to make the parent phase amorphous as described above by rapidly solidifying the alloy.
Since there are many eutectic compositions such as t#20at%, the melting point is low and the wettability of #1111 is strong, so
It is easy to mix powders such as compound B in a garden-like structure], and even in the IIk structure after coagulation, the interface between the dispersed particles and the matrix is very Vcv! ! It is. It has the advantage that its rounding and tensile strength are increased by the composite reinforcement of the dispersed particles. First, when the parent phase is an amorphous phase, it shows high corrosion resistance in terms of corrosion resistance. In other words, according to the present invention, while taking advantage of the conventional amorphous association, the total amount of amorphous It is possible to create a composite material containing Bft of more than a quality alloy.

以下、本発明の爽施例會I11表及び第1−によna明
する。本夷麿例に示し次複合急冷合金は一般に知られて
iる早ロール急冷装置に19作製した。すなわち、溶湯
を高速に回転する・ロール上にノズルを通して高圧ガス
によp噴出して薄板状に急冷a園させる方法であ−る0
本実施例では200sll径の鋼製ロールを3100O
rpmで回転させた条件で急冷し、ノズルには石英管を
加工したものを用いた。試料としてはあらかじめ母相組
成の合金tSS後後粉砕したものと、300メシシエ以
下の中性子吸収能の^い高融点役末−質tS合したもの
を用意した。中性子吸収能の高%A11%融点粉末物質
としてはB、C及びBNt用いた。これらをノズル内に
挿入し、高周波鱒導加熱によって加熱溶解した。ノズル
内部には攪拌用のセラ、建ツクス(A401 )棒を取
p付け、試料が溶解後攪拌し、できるだけ迅速に高圧A
rガスによp噴出した。
Examples of the present invention will be explained below in Table I11 and Section 1-1. The composite quenched alloy shown in Example 1 was prepared using a generally known rapid roll quenching apparatus. In other words, it is a method in which the molten metal is rapidly cooled into a thin plate by being spouted with high-pressure gas through a nozzle on a roll.
In this example, a steel roll with a diameter of 200sll was heated to 3100O
Rapid cooling was performed under conditions of rotation at rpm, and a processed quartz tube was used as the nozzle. Samples were prepared in advance: one that had been ground after the alloy tSS had a matrix composition, and the other that had been combined with a high-melting point alloy tSS that had a neutron absorption capacity of 300 mesh or less. B, C, and BNt were used as powder materials with a high neutron absorption capacity and a melting point of 11%. These were inserted into a nozzle and heated and melted by high frequency trout conduction heating. A stirrer and construction rod (A401) are installed inside the nozzle, and after the sample is dissolved, it is stirred and the high pressure A is applied as quickly as possible.
P was ejected due to r gas.

ll4illl1点験末物質は高周波鱒導攪拌と撹拌棒
によp治湯中に混合されるため、急冷合金中には均一に
分散した。これら合金につ−ての熱中性子吸収能、引張
強さ及び腐食1111表に示す、これらO急冷複合合金
の母相はいずれも非晶質相であった。腐食試験は80C
純水中に2400時間浸漬した試料#!山での銹の角生
有熊t−−ぺる方法によp行つた。なお粉末−質添加量
は母相に対する重量%である。ム1及び7合金は粉末物
質を添加してない非晶質相で中性子lll1Mit、*
l!反び腐食に優れた合金である。その合金KB、Cあ
るいはBNt複合させたJI62〜6及び18〜9合金
の中性子吸収能はB4CあるいはBNO添加量と共に増
大し、引張強さ4同41に増加する傾向が見られる。譬
に轟5合金は中性子吸収能で従来材の10倍近く、複合
しない母相合金に比べ2倍以上という非常に優れた効果
を示した。
ll4illl1 The final substance was mixed into the hot water using high-frequency agitation and a stirring rod, so that it was uniformly dispersed in the rapidly solidified alloy. Thermal neutron absorption capacity, tensile strength, and corrosion of these alloys The parent phase of these O-quenched composite alloys shown in Table 1111 was an amorphous phase. Corrosion test is 80C
Sample # immersed in pure water for 2400 hours! I went to the mountain by the method of t-pel. Note that the amount of powder added is % by weight relative to the parent phase. Alloys 1 and 7 are in an amorphous phase with no added powder material and have a neutron 111Mit, *
l! It is an alloy with excellent warping and corrosion resistance. The neutron absorption capacity of the alloys KB, C or JI 62-6 and 18-9 composited with BNt increases with the amount of B4C or BNO added, and the tensile strength tends to increase to 4.41. For example, the Todoroki 5 alloy showed extremely superior neutron absorption ability, nearly 10 times that of conventional materials and more than twice that of the non-composite matrix alloy.

ts1図は複合物質B4Cの添加量によるNi、・C’
v、a Pt@Ba・合金の引張強さの変化を示し九も
のである。Jllllからも判るように複合合金の引!
lN強さri銅添加一1t粉末物質O量の増加に伴い増
大し、複合の効果が引!jlIilIKさにおいても有
効であることが分かる。しかし、添加量を増加しすぎる
と複合物質のM集が見られ分散粒子が粗大化し、分散の
均一度も低下する。それにより引張強さも低下するので
複合物質の添加量は25%以下とするのが好ましい。
The ts1 diagram shows Ni, ・C' depending on the amount of composite material B4C added.
v,a shows the change in tensile strength of Pt@Ba alloy. As you can see from Jllll, it is a composite alloy pull!
1N strength increases as the amount of copper added to the powder material O increases, and the combined effect decreases! It can be seen that it is also effective in the case of jlIilIK. However, if the addition amount is increased too much, M clusters of the composite material will be observed, the dispersed particles will become coarse, and the uniformity of the dispersion will also decrease. Since this also reduces the tensile strength, the amount of the composite material added is preferably 25% or less.

以上の通9本発明によれば均一性に唆れた複合材を製造
する仁とができる。また薄41製造も容易であるととも
に、母相金属の非晶質化も可能である。さらに、母相金
属O組繊1m顔なものとし、高!ffIII&とするこ
ともできる。
According to the present invention, it is possible to manufacture a composite material with high uniformity. In addition, the thin film 41 can be manufactured easily, and the matrix metal can also be made amorphous. Furthermore, the matrix metal O composite fiber is 1m long, and it is high! It can also be ffIII&.

図面の簡単なa#4easy drawing a#4

Claims (1)

【特許請求の範囲】 1、金属または合金0滴湯中に同体粉末を分散せしめ’
rt−俵、急冷S固すること1−*做とする複合材の製
造方法。 2、合金+18は中性子1lik収能會有する合金の溶
湯である特許III求の範8纂1項記載の方法。 3、固体粉末は、前記合金19も、中性子吸収能が^く
かつ一点も高い特許請求のassga項記載の方法。 4、合金#I湯はホ9嵩を含有する特許請求のI1回第
8項またはHs婁記載O方機。 5、固体粉末はホク嵩化金物からなる特許請求の範S纂
4a記載の方法。 6 m合材中の金属または合金は非晶質である譬許晴求
りIl四$111a1%/%し第5項〇−ずれか1項に
記載の方法。 7、複合材は薄板状である特許Ifl11求0@園第1
項ないし籐6項のいずれかIaK記蛎O方法。
[Claims] 1. Dispersing the homogeneous powder in 0 drops of metal or alloy hot water.
rt-bale, quenching S hardening 1-* A method for producing a composite material. 2. The method described in Section 8, Section 1 of Patent III, wherein Alloy +18 is a molten alloy having a neutron capacity of 1 lik. 3. The method according to the assga claim, in which the solid powder and the alloy 19 also have a high neutron absorption capacity and are even higher in neutron absorption capacity. 4. Alloy #I hot water contains H9 volume. 5. The method according to claim S4a, in which the solid powder is made of bulky metal. 6. The metal or alloy in the composite material is amorphous. 7. The composite material is in the form of a thin plate.Patent Ifl11 Request 0 @ Garden No. 1
Any one of Section 6 to Section 6 IaK method.
JP57039492A 1982-03-15 1982-03-15 Manufacture of composite material Granted JPS58157927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57039492A JPS58157927A (en) 1982-03-15 1982-03-15 Manufacture of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57039492A JPS58157927A (en) 1982-03-15 1982-03-15 Manufacture of composite material

Publications (2)

Publication Number Publication Date
JPS58157927A true JPS58157927A (en) 1983-09-20
JPS6227144B2 JPS6227144B2 (en) 1987-06-12

Family

ID=12554545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57039492A Granted JPS58157927A (en) 1982-03-15 1982-03-15 Manufacture of composite material

Country Status (1)

Country Link
JP (1) JPS58157927A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662962A (en) * 2020-12-01 2021-04-16 常州晶业液态金属有限公司 Block amorphous alloy fastener and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489906A (en) * 1977-12-22 1979-07-17 Allied Chem Strip of nonncrystalline metal containing embeded particles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489906A (en) * 1977-12-22 1979-07-17 Allied Chem Strip of nonncrystalline metal containing embeded particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662962A (en) * 2020-12-01 2021-04-16 常州晶业液态金属有限公司 Block amorphous alloy fastener and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6227144B2 (en) 1987-06-12

Similar Documents

Publication Publication Date Title
US4834942A (en) Elevated temperature aluminum-titanium alloy by powder metallurgy process
JPH03257133A (en) High strength heat resistant aluminum-based alloy
JP2000514552A (en) Metal matrix composition applied to neutron shielding
JPH03502346A (en) Superplastic compacts of rapidly solidifying magnesium-based alloys
JPH03236442A (en) High strength alloy based on rapidly hardened magnesium
US6602314B1 (en) Aluminum composite material having neutron-absorbing ability
JP2007533851A (en) Improved neutron absorption efficiency of boron-containing aluminum materials
KR20010050427A (en) Aluminum composite material, manufacturing method therefor, and basket and cask using the same
Li et al. Microstructure and mechanical properties of Al2O3 dispersed fine-grained medium heavy alloys with a superior combination of strength and ductility
US4865645A (en) Nuclear radiation metallic absorber
RU2509818C1 (en) Method of making composite material
US5624475A (en) Copper based neutron absorbing material for nuclear waste containers and method for making same
JP6811768B2 (en) Composite material with improved mechanical properties at high temperatures
JPS58157927A (en) Manufacture of composite material
US20110165014A1 (en) Aluminium-based grain refiner
CN1219905C (en) Copper base lump non-crystalline alloy
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
Fang et al. Effects of tantalum on microstructure evolution and mechanical properties of high-Nb TiAl alloys reinforced by Ti2AlC
US3726722A (en) Nickel alloy product and method of making
CN112941367A (en) Nano-oxide dispersion-reinforced heat-resistant zirconium alloy and preparation method thereof
Harbur et al. STUDIES ON THE U--Pu--Zr ALLOY SYSTEM FOR FAST BREEDER REACTOR APPLICATIONS.
Babkin et al. Effect of oxygen on the mechanical properties of copper and copper-matrix composites hardened by melt-synthesized chromium carbides
Conlon et al. Processing and microstructural characterization of Al-Cu alloys produced from rapidly solidified powders
CN109182819A (en) A kind of smelting preparation method of graphene enhancing almag
Xu et al. Microstructures and grain refinement performance of Al–Ti–B–C grain refiner via powder metallurgy