JPS58157581A - Manufacture of forge welded tube - Google Patents

Manufacture of forge welded tube

Info

Publication number
JPS58157581A
JPS58157581A JP3993182A JP3993182A JPS58157581A JP S58157581 A JPS58157581 A JP S58157581A JP 3993182 A JP3993182 A JP 3993182A JP 3993182 A JP3993182 A JP 3993182A JP S58157581 A JPS58157581 A JP S58157581A
Authority
JP
Japan
Prior art keywords
forge
roll
stress
skelp
edge parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3993182A
Other languages
Japanese (ja)
Other versions
JPH0256994B2 (en
Inventor
Makoto Inoue
誠 井上
Kazutoshi Sakaguchi
阪口 和利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3993182A priority Critical patent/JPS58157581A/en
Publication of JPS58157581A publication Critical patent/JPS58157581A/en
Publication of JPH0256994B2 publication Critical patent/JPH0256994B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To reduce streaky defects generated in forge welding zone in a method that manufactures a forge welded tube by butting both edge parts and forge welding, by butting and forge welding while applying axial stress on both side edge parts. CONSTITUTION:A skelp is passed through a heating furnace, and both side edge parts are heated to forge welding temperature. It arrives at a forming roll 2 from a roller 15 in a state that distance of moving differs between the central part of the skelp and edge parts on both sides, and stronger axial tension is applied to the both edge parts than the central part. Further, axial stress is controlled by adjusting the height of the roll 15. Accordingly, in moving to the forming roll through the roll 15, the skelp arrives at a forge welding roll while being given circumferential stress and axial stress to the both side edge parts, and both edge parts are butted and forge welded.

Description

【発明の詳細な説明】 本孔F3Aは鍛接部に生じる微小な条欠陥の解消若しく
は@減を可能とした鍛接管の製造方法に関するものであ
る、 一般に鍛接管は素材たるスケルプを加熱炉に通し、スケ
ルプの両側エツジ部を鍛接に適した温度(以ド単に鉛接
謡反といワリに加熱した後、成形ロールに通して両側エ
ツジ部同士が相対向する円筒状に成形し、次いで鍛接ロ
ールにて両側エツジ部同士を衝合鍛接して製造されてい
る。ところでこのような過程を経て製造される鍛接管に
はクエルドクラツク、ロールマーク、ピット疵等種々の
欠陥の発生がみられ、るが、このような鍛接管の表面疵
の一つとして、鍛接部に深さ0.3mm程度の微小な溝
状に表われる条欠陥がある。この条欠陥は従来、殆んど
問題視されることはなかったが、近年鍛接管を例えば冷
間抽伸用素管等としての使用が増すにつれて、抽伸加工
を施した後、更に拡管。
Detailed Description of the Invention This hole F3A relates to a method for manufacturing forge-welded pipes that makes it possible to eliminate or reduce minute defects occurring in forge-welded parts.Generally, forge-welded pipes are made by passing the raw material skelp through a heating furnace. After heating the edges of both sides of the skelp to a temperature suitable for forge welding (simply referred to as lead welding), it is passed through a forming roll to form a cylindrical shape with the edges facing each other, and then passed through a forge welding roll. However, the forge welded pipes produced through this process are prone to various defects such as weld cracks, roll marks, and pit flaws. One of the surface defects of such forge-welded pipes is a streak defect that appears in the form of a minute groove with a depth of about 0.3 mm in the forge-welded part. Conventionally, this streak defect has rarely been considered a problem. However, in recent years, as the use of forge-welded pipes as blank pipes for cold drawing has increased, the pipes are expanded further after drawing.

扁平化等の2次加工を加えると、条欠陥によるノツチ効
果のために鍛接管が破壊することがあり、また交番荷重
を受ける部材として使用した時条欠陥部分に応力が集中
し、疲労限界が著しく低下する等の問題を生ずるに至っ
た。
If secondary processing such as flattening is applied, the forge-welded pipe may break due to the notch effect caused by the strip defects, and when used as a member that is subjected to alternating loads, stress will concentrate on the strip defect area, causing fatigue limits to be reached. This has led to problems such as a significant drop in performance.

本発明者等は上述した如き条欠陥の解消、若しくはその
軽減のための実験、研究を行った結果、次のような事実
を知見した。っ卸ち、一般に鍛接管製造過程における管
理項目は鍛接温度と下式で表わされるアプセット量とか
その主要なものとなっているが、この アプセット量=α(wo+πto)−πDmα:膨張率
 W。:スケルプ幅 t。:スケルプ厚Dm:鍛接ロー
ル平均径 アブセント量は結局スケルプに加えるべき側圧、換言す
ればスケルプに生せしめるべき局方向応力に集約される
。してみると鍛接管製造過程での管理項目の殆んどけ鍛
接温度と開方向り力が占めているということが出来るが
、この鍛接温度2周方向応力は条欠陥とも関連し、事実
鍛接温度1局方回応力を高めると条欠陥も軽減されるこ
とが確認さハている。しかし鍛接温度1周方向応力を高
め過ぎると鍛接部が盛り上って、ビードが形成されると
いう不都合があり、条欠陥の解消にはこれら以外の方法
が望まね、でいた。
The inventors of the present invention have conducted experiments and research to eliminate or reduce the above-mentioned strip defects, and have discovered the following fact. In general, the main control items in the forge welded pipe manufacturing process are the forge welding temperature and the amount of upset expressed by the following formula, where the amount of upset = α (wo + πto) - πDmα: expansion rate W. : Skelp width t. :Skelp thickness Dm: Average diameter of forge-welded roll Absent amount is ultimately summarized in lateral pressure to be applied to the skelp, in other words, local stress to be generated in the skelp. Therefore, it can be said that most of the control items in the forge welded pipe manufacturing process are the forge welding temperature and the opening direction stress, but this stress in the circumferential direction at the forge welding temperature is also related to the strip defect, and in fact, the forge welding temperature It has been confirmed that increasing the local rotation stress also reduces strip defects. However, if the stress in the circumferential direction at the forge welding temperature is increased too much, the forge weld part swells up and a bead is formed, which is an inconvenience.Therefore, methods other than these are desired to eliminate the strip defects.

本発明者等に上述した如き鍛接温度2局方向応力を高め
ることがスケルプ自体の塑性変形性を高めることを意味
することから、スケルプの塑性変形性を高めるのに寄与
すると考えらねる軸長方向総力に看目し、これと条欠陥
との関係につき実験を行った結果、条欠陥の解消、若し
くは軽減に軸長方向応力の制御が極めて有効であるとの
結論を得た。ただ従来においては条欠陥の解消、若しく
け軽減を目的として軸長方向応力を制御する考え方自体
は勿論全くないが、軸長方向応力そのものに零であった
わけではなく、スケルプに対する例オは加熱炉に入る前
のリターンドラムによる抵抗、加熱炉内での支λスキッ
ドとの摩擦抵抗、或いはエッジシエーピンを行う場合に
はこの切削抵抗等により、スケルプの全幅にわたり軸長
方向応力が作用していると考えられ、試算によねはスケ
ルプ自体の変形抵抗値に対する40チ程度のものである
Since increasing the stress in the two local directions at the forge welding temperature as described above by the present inventors means increasing the plastic deformability of the skelp itself, it is not considered that the stress in the axial direction contributes to increasing the plastic deformability of the skelp. As a result of conducting experiments on the relationship between total force and row defects, it was concluded that controlling stress in the axial length direction is extremely effective in eliminating or reducing row defects. However, in the past, there was of course no concept of controlling the stress in the axial direction for the purpose of eliminating row defects or mitigating the structure, but the stress in the axial direction itself was not zero, and the example for squelp is heating. Stress in the axial direction is exerted over the entire width of the skelp due to resistance from the return drum before entering the furnace, frictional resistance with the supporting lambda skid in the heating furnace, or cutting resistance when performing edge shaping. It is thought that the sag is approximately 40 inches relative to the deformation resistance value of the skelp itself.

しかし、この張力は設備によって一定の値を示し、1i
11 ml対象とはなっていないことは勿論である。
However, this tension shows a constant value depending on the equipment, and 1i
Of course, it is not targeted for 11 ml.

本発明はかかる知見に麹みなさhたものであって、その
目的とするところij鍛接温度1周方向応力に加えて軸
長方向応力、特に両側エツジ部に作用する応力をも管理
項目とし、条欠陥の大幅な軽減を可能とした鍛接管の製
造方法を提供するにある。
The present invention has been developed based on this knowledge, and its purpose is to manage the stress in the longitudinal direction of the axis, especially the stress acting on both edge portions, in addition to the stress in the circumferential direction at the forge welding temperature, and to An object of the present invention is to provide a method for manufacturing a forge-welded pipe that enables a significant reduction in defects.

本発明に係る鍛接管の製造方法灯加熱したスケルプを、
その両側エツジ部が相対向するよう湾曲せしめ、両側エ
ツジ部同士を衝合鍛接して鍛接管を製造する方法におい
て、鍛接部に発生する条欠陥を軽減すべく両側エツジ部
に軸長方向応力を作用させつつ衝合鍛接することを特徴
とする。
Method for manufacturing a forge-welded pipe according to the present invention A lamp-heated skelp is
In the method of manufacturing a forge-welded pipe by curving the edges on both sides to face each other and forge-welding the edges on both sides, longitudinal stress is applied to the edges in the axial direction in order to reduce the streak defects that occur in the forge-weld. It is characterized by butt forge welding while being applied.

以下本発明をその実施例を示す図面に基いて具体的に説
明する、481図は本発明に係る鍛接管の製造方法(以
下本発明方法という)の実施a′匙を一部切欠して示す
模式的側面図、第2図はスケルプに対する軸長方向応力
の制御態様を示す拡大図であり、図中sitスケルプ、
lij加熱炉、2に成形ロール、3Fi鍜接ロール、4
a、4b・・−4n#−i絞りロール、5はホントソー
を示している。スケルプSはアンコイラ−等から引出さ
れ、白抜矢符方向に移送さh1先ず加熱炉IK通される
。加熱炉IHそのII成自体は公知のものであって、上
部にスケルプSを予備加熱するための予熱帯11が、ま
た下8I(に加熱帯12が形成されておシ、スケルプS
け加熱炉1の一端側から先ず予熱帯11内に導入さね、
他端側近傍に配したリターンドラム13に掛は回されて
U字形に折り返されて一端側から外方に引き戻され、次
いで加熱炉lの一端Sに配したターンアラウンド14に
沿って再びU字形に折り返さh1加熱帯12内に導入さ
れるようになっている。加熱帯12内を移動する過程で
スケルプSは少なくともその両側エツジ部が鍛接温度で
ある1300℃前後に迄加熱され、加熱帯12の出口側
近傍に妃したスケール除去及びサポートのためのローラ
15上を越えて成形ロール2側に向うこととなる。前記
ロール15から成形ロール2に至る過程で#−i$2図
に想像線で示す如く、通常スケルプSの中央部のパスラ
インは加熱炉1を出てそのまま水平移動しつつ°成形ロ
ール2に達するが、スケルプSの両側エツジ部のパスラ
インはロール15を過ぎた直後から両側エツジ部が成形
ロール2の影曽によって漸次下方に湾曲せしめられてゆ
く結果、緩やかな曲線を描いて管Pの略直径に等しい寸
法だけ下降移動せしめられて成形ロール2に達する。従
ってロール15から成形ロール2に至る間でのスケルプ
Sの中央部と両側エツジ部とではその移動距離が異り、
即ち軌跡差が生じ、両側エツジ部には中央部よりも強い
長手方向の張力を加えらねた状腓で成形ロール2に達す
ることとなる。このときの張力による両側エツジ部の長
手方向に作用する応力、即ち軸長前回応力は、既述した
E<、0.4 K t (但しKf:素材の変形抵抗力
)程度である。本発明方法にあってはこれに加オて更に
前記ロール15を利用して軸長前回応力を望ましくFi
o、5Kf〜0.9Kf程度となるように制御する。制
御のための具体的手段は、例えば第2図に実線で示す如
くにロール15の高さを移替1調節することによって行
う。
The present invention will be specifically explained below based on drawings showing embodiments thereof. Fig. 481 shows a partially cut away spoon a' for carrying out the method for manufacturing a forge-welded pipe according to the present invention (hereinafter referred to as the method of the present invention). A schematic side view, and FIG. 2 is an enlarged view showing the control mode of axial longitudinal stress on the squelp, and in the figure, the sit squelp,
lij heating furnace, 2 forming rolls, 3Fi welding rolls, 4
a, 4b...-4n#-i Squeezing roll, 5 indicates the real saw. Skelp S is pulled out from an uncoiler or the like, transferred in the direction of the white arrow, h1, and first passed through the heating furnace IK. The configuration of the heating furnace IH itself is well known, with a preheating zone 11 for preheating the Skelp S in the upper part, and a heating zone 12 in the lower part (8I) of the Skelp S.
First, introduce it into the preheating zone 11 from one end side of the heating furnace 1.
The hook is turned around a return drum 13 placed near the other end, folded back into a U-shape, pulled back outward from one end, and then reshaped into a U-shape along a turnaround 14 placed at one end S of the heating furnace l. The heating zone h1 is folded back and introduced into the heating zone 12. During the process of moving in the heating zone 12, the scale S is heated at least at its edges on both sides to around 1300° C., which is the forge welding temperature. It crosses over to the forming roll 2 side. In the process from the roll 15 to the forming roll 2, as shown by the imaginary line in Figure #-i$2, the pass line at the center of the squelp S usually leaves the heating furnace 1 and moves horizontally until it reaches the forming roll 2. However, the pass line of the edge portions on both sides of the squelp S is gradually curved downward by the shadow of the forming roll 2 immediately after passing the roll 15, and as a result, the path line of the edge portions on both sides of the squelp S draws a gentle curve and forms It is moved downward by a dimension approximately equal to the diameter and reaches the forming roll 2. Therefore, the moving distance is different between the central part and both edge parts of the squelp S from the roll 15 to the forming roll 2,
In other words, a difference in trajectory occurs, and the sheet reaches the forming roll 2 in a state in which no stronger longitudinal tension is applied to the edge portions on both sides than in the center portion. At this time, the stress acting in the longitudinal direction of both edge portions due to the tension, that is, the stress before the axial length, is approximately E<, 0.4 K t (Kf: deformation resistance force of the material) as described above. In the method of the present invention, in addition to this, the roll 15 is also used to adjust the stress before the axial length to a desired Fi.
o, controlled to be about 5Kf to 0.9Kf. A specific means for the control is, for example, by adjusting the height of the roll 15 by one shift as shown by the solid line in FIG.

いま第2図においてロール15が想像線で示す従来一般
の位置から上方に寸法dだけ移動したとすると、これに
よってスケルプSのパスラインは同じく実線で示す如く
に変化する。そこでロール15が想像線で示す位置にあ
るときと、実線で示す位置にあるときとにおけるスケル
プSの両側エツジ部の軌跡差1−求めてみると次のよう
になる。
Now, in FIG. 2, if the roll 15 is moved upward by a distance d from the conventional general position shown by the imaginary line, the pass line of the squelp S changes as shown by the solid line. Therefore, when the trajectory difference 1 between the edge portions on both sides of the squelp S is determined when the roll 15 is at the position shown by the imaginary line and when it is at the position shown by the solid line, the following is obtained.

なお説明を簡単にするため、いずれの場合もエツジ部は
ロール15と接する位置X、 、 X2から両側エツジ
部同士が近接し、スケルプSの中央部と両側エツジ部と
が略平行移動状組となる位WItYを通りスケルプSの
移動方向と@交する垂直面迄の移動路11t、f直線と
みなすものとする。先ずロール15か想像線で示す位置
にあるときについてみると、Xlを中心にして、X、か
ら前記鉛直面とスケルプSの中央部との交点Z迄の距離
R1を半径とする円弧a?描き、この円弧aとエツジ部
との交点をMlとするとM、YだけスケルプSのエツジ
部が中央部よりもより伸長されていることが解る。次に
ロール15か実線で示す位置にあるときについてみると
、Xz?中心にしてXlから前記Z迄の距離R2を半径
とする円弧b′(i−描き、この円弧すとエツジ部との
交点をM2とするとM、YだけスケルプSのエツジ部が
中央部よりも伸長されていることとなる。そこでM、Y
とM、Yとを比較すると前者よりも後者の方がMI M
、 、即ちΔlたけエツジ部がより多く伸長されている
こと、換言すればより強い張力を受けていることが解る
In order to simplify the explanation, in each case, the edge portions on both sides approach each other from the positions X, , X2 where the edge portions contact the roll 15, and the central portion of the squelp S and the edge portions on both sides form a substantially parallel movement pair. The moving path 11t, f passing through WItY to the vertical plane intersecting the direction of movement of the squelp S is assumed to be a straight line. First, when the roll 15 is in the position shown by the imaginary line, an arc a? with Xl as the center and distance R1 from X to the intersection Z of the vertical plane and the center of the squelp S is formed. If the intersection of this circular arc a and the edge portion is Ml, it can be seen that the edge portion of the scalp S is more elongated than the center portion by M and Y. Next, if you look at roll 15 or the position shown by the solid line, it will be Xz? If we draw an arc b' (i-) whose radius is the distance R2 from Xl to Z with the center as the center, and let M2 be the intersection point of this arc with the edge part, then the edge part of the Skelp S will be wider than the center part by M and Y. Therefore, M, Y
Comparing M and Y, the latter is more MI M than the former.
, , that is, it can be seen that the edge portion is stretched more by Δl, in other words, it is under stronger tension.

前記Δlけロール15の移動寸法dと関連して変化する
から、予め両者の関保f求めておくことにより、エツジ
部に作用させるべき軸長前回応力dzfo、5Kf〜0
.9Kfの間で適宜設定制御し得ることとなる。
Since the Δl difference changes in relation to the moving dimension d of the roll 15, by calculating the bond f of both in advance, the axial length pre-stress dzfo to be applied to the edge portion can be calculated from 5Kf to 0.
.. This means that the setting can be controlled as appropriate between 9 Kf.

軸長方向Lカを0.5Kf以上としたのけ、これ以下で
は条欠陥の軽減効果が殆んど期特出沫ないことになる。
Although the axial force L in the longitudinal direction is set to 0.5 Kf or more, if it is less than this, the effect of reducing strip defects will hardly be noticeable.

また0、9 K f以下としたのけスケルプSが破断す
るおそれがあることによる。
Furthermore, if the temperature is set to 0.9 K f or less, there is a risk that the Skelp S will break.

而してスケルプsViロール15を経て成形ロール2に
至る過程においてその両側エツジ部に内方向応力と共に
0,5 K f〜0.9Kf相当の軸長前回応力を付与
さねつつ鍛接ロール3に達し、両側エツジ部同士が衡合
鍛“接されることとなる。
In the process of passing through the Skelp sVi roll 15 and reaching the forming roll 2, it reaches the forge welding roll 3 while applying an inward stress and an axial length pre-stress equivalent to 0.5 Kf to 0.9 Kf to the edge portions on both sides. , the edge portions on both sides are brought into contact with each other by equal forging.

鍛接ロール3の絞り効果によりスケルプSの周方向に作
用する周方向応力は従来と同様であり、−3Kf〜−1
,7K f程度である。
The circumferential stress acting on the Skelp S in the circumferential direction due to the squeezing effect of the forge welding roll 3 is the same as the conventional one, and ranges from -3Kf to -1.
, 7K f.

上述の如き鍛接条件を従来方法と比較して示したのが第
3図のグラフである。第3図のグラフに横軸に周方向応
力(通常負の値として示す)す。
The graph in FIG. 3 shows the forge welding conditions as described above in comparison with the conventional method. In the graph of FIG. 3, the horizontal axis indicates circumferential stress (usually shown as a negative value).

縦軸に軸方向応力Itをとって示しており、グラフ中斜
線の領域はスケルプSK塑性変形が生じ得る範囲であり
、本発明方法による鍛接条件領v、、は白抜きの状態で
示しである。点で示す領域は従来方法による場合である
っなお線gは単純降伏応力が最大主応力と最小主応力と
の差であるとする7resca降伏式を表わしたもので
あって、練りと縦、横の座標軸とで囲ま力る領域内では
降伏、即ち塑性変化は生じない。
The axial stress It is plotted on the vertical axis, and the shaded region in the graph is the range where Skelp SK plastic deformation can occur, and the forge welding condition region v, according to the method of the present invention is shown in outline. . The area indicated by dots corresponds to the conventional method.The line g represents the 7resca yield formula in which the simple yield stress is the difference between the maximum principal stress and the minimum principal stress. Yielding, that is, no plastic change occurs within the region of force surrounded by the coordinate axes of .

次に本発明方法と従来方法との比較試験結果について説
明する。試験は炭素鋼(C: 0.08チ、Mn:0.
50%)を素材とするスケルプを直径60.14mnの
鍛接ロールを用いて製管し、出口径28.19mmの最
終レデューサにて絞り圧延し、更[3スタンドのサイザ
ーにて直径27.89mmの鍛接管に仕上げる過程にお
いて、夫々本発明方法、即ち鍛接過程で鍛接温度、IN
方回応力と共に軸長前回応力を所定の範囲に設定制御す
る方法と、従来方法、Illち#接温度1局方向応力の
みを管理項目とする方法とを適用し念。
Next, the results of a comparative test between the method of the present invention and the conventional method will be explained. The test was conducted using carbon steel (C: 0.08 cm, Mn: 0.
50%) was made into a pipe using a forge-welded roll with a diameter of 60.14 mm, and then reduced and rolled with a final reducer with an exit diameter of 28.19 mm, and further [with a 3-stand sizer to form a pipe with a diameter of 27.89 mm]. In the process of finishing a forge welded pipe, the forge welding temperature, IN
We applied a method of setting and controlling the axial longitudinal stress together with the directional stress within a predetermined range, a conventional method, and a method of controlling only the local directional stress at contact temperature.

試験条件 ■鍛接温度:1300℃ ■周方向応力、軸方向応カニいすねも第3し1のグラフ
にA、B、C,Dで示すとおりである。
Test conditions - Forge welding temperature: 1300°C - Circumferential stress and axial stress are also as indicated by A, B, C, and D in the 3rd and 1st graphs.

第3図のグラフは横軸に局方回耐カケ、縦軸に軸方向応
力をとって示しており、グラフ中A 、 Bij本発明
方法の、またC、Dけ従来方法の条件を示している。
In the graph of Figure 3, the horizontal axis shows the localized cracking resistance and the vertical axis shows the axial stress. There is.

結果は表IK示すとおりである。The results are shown in Table IK.

表1から明らかな如く、溶接ピード高さ自体は従来方法
に比較して本発明方法に依った場合には茗干高くなる傾
向がみられるが、条欠陥の深さけ本発明方法に依った場
合には従来方法によった場合に比較して略半分近く迄大
幅に低減されていることか解る。なお上述の実施例では
スケルプSのエツジ部に軸長方向応力を加える手段とし
てスケルプS表面のスケール除去及びサポートのために
設けられている既存のロール15を利用する構成を示し
たか、特にこれにのみ限るものではなく別に張力付与の
ためのロール等を別設してもよいことは勿論である。
As is clear from Table 1, the welding pead height itself tends to be higher when the method of the present invention is used compared to the conventional method, but the depth of the row defect is also higher when the method of the present invention is used. It can be seen that the amount has been significantly reduced to almost half compared to the case using the conventional method. In addition, in the above-mentioned embodiment, a configuration is shown in which the existing roll 15 provided for removing scale and supporting the surface of the Skelp S is used as a means for applying stress in the axial direction to the edge portion of the Skelp S. Of course, the present invention is not limited to this, and a roll or the like for applying tension may be separately provided.

以上の如く本発明方法にあっては加熱したスケルプの両
側エツジ部に張力を付与しつつ両側エツジ片−同士を衝
合鍛接することとしているから、鍛接孔に形成される条
欠陥が著[2く軽減さね、鍛接1代としての品質の何重
は勿論、条欠陥によるノツチ効果が軽減される結果、各
種加工用素管としての←接骨の用途拡大も図りるなど、
本発明は優れた効果を奏するものである。
As described above, in the method of the present invention, tension is applied to both edge portions of the heated skelp while the edge pieces on both sides are butt-welded to each other, so that the streak defects formed in the forge-welded holes are significant [2]. As a result of reducing the notch effect caused by row defects, it is possible to expand the use of bone fitting as raw pipe for various processing, as well as the quality of forge welding.
The present invention has excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施状Sを示す模式図、第2図は
要部の脱F!A図、第3図はスケルプに加えらhる周方
向廓力と軸方向応力との関係を示すグラフである。 1・・・加熱炉 2・・・成形ロール 3・・・鍛接ロ
ール4a、4b*e鴫n・・・絞りロール 5・・・ホ
ットソー 11・・・予熱帯 12・・・加熱帯 13
・・・リターンドラム14・・・ターンアラクンド 1
5・・・ロール S・・・スケルプ 特許出願人  住友金属工業株式会社 代理人 弁理士 河  野  登  犬手続補正書(自
発) 昭和571daP28日 特許庁長官 殿 /、 事件の表示 昭和57都特許−第39931号2
 発明の名称 鍛接管の製造方法 J 補正をする者  特許出願人 ダ代理人 j 補正の対象 明細書の「発明の詳細な説明」の橢及び「図面」g、補
正の内容 6−1 発明の詳細な説明 ill  明細書の第9頁11行目に「ことになる。−
とあ2、添付書類の目録 訂正図面        1通
Fig. 1 is a schematic diagram showing the implementation state S of the method of the present invention, and Fig. 2 is a schematic diagram showing the main part of the method S! Figures A and 3 are graphs showing the relationship between the circumferential force applied to the squelp and the axial stress. 1... Heating furnace 2... Forming roll 3... Forge welding rolls 4a, 4b*e-drawing roll 5... Hot saw 11... Pre-preparation zone 12... Heating zone 13
... Return drum 14 ... Turn Arachundo 1
5...Roll S...Skelp Patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Noboru Kono Dog Procedural Amendment (Spontaneous) 571 da P28, Commissioner of the Japan Patent Office /, Indication of Case Showa 57 Metropolitan Patent - No. 39931 No. 2
Title of the invention Method for manufacturing forge-welded pipes J Person making the amendment Patent applicant/agent j Exclusion of "detailed description of the invention" and "drawings" of the specification to be amended g Contents of the amendment 6-1 Details of the invention Explanation: On page 9, line 11 of the specification, it says, ``It becomes a thing.-
Toa 2, 1 copy of the catalog correction drawing of attached documents

Claims (1)

【特許請求の範囲】 1、加熱したスケルプを、その両側エツジ部が・相対向
するよう湾曲せしめ、両側エツジ部同士を衝合鍛接して
鍛接管を製造する方法において、鍛接部に発生する条欠
陥を軽減すべく両側エツジ部に軸長方向応力を作用させ
つつ衝合鍛接することを特徴とする鍛接管の製造方法。 2、両側エツジ部に作用させる軸長方向応力はスケルプ
の変形抵抗力の50〜90多である特許請求の範囲第1
項記載の鍛接管の製造方法。
[Scope of Claims] 1. In a method of manufacturing a forge-welded pipe by bending a heated skelp so that its edge portions on both sides face each other and forge-welding the edge portions on both sides, A method for manufacturing a forge-welded pipe, characterized by performing butt forge welding while applying stress in the axial direction to both edge portions in order to reduce defects. 2. The axial longitudinal stress applied to both edge portions is 50 to 90 times greater than the deformation resistance force of the skelp.Claim 1
2. Method for manufacturing forge-welded pipes as described in Section 1.
JP3993182A 1982-03-12 1982-03-12 Manufacture of forge welded tube Granted JPS58157581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3993182A JPS58157581A (en) 1982-03-12 1982-03-12 Manufacture of forge welded tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3993182A JPS58157581A (en) 1982-03-12 1982-03-12 Manufacture of forge welded tube

Publications (2)

Publication Number Publication Date
JPS58157581A true JPS58157581A (en) 1983-09-19
JPH0256994B2 JPH0256994B2 (en) 1990-12-03

Family

ID=12566683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3993182A Granted JPS58157581A (en) 1982-03-12 1982-03-12 Manufacture of forge welded tube

Country Status (1)

Country Link
JP (1) JPS58157581A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50102557A (en) * 1974-01-17 1975-08-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50102557A (en) * 1974-01-17 1975-08-13

Also Published As

Publication number Publication date
JPH0256994B2 (en) 1990-12-03

Similar Documents

Publication Publication Date Title
US2062875A (en) Method of and apparatus for making sheet metal
US2959849A (en) Method and apparatus for making pipe
US4796798A (en) Method of and apparatus for continuous production of seam-welded metal tubing
US4945743A (en) Apparatus for manufacturing electric welded pipes under hot conditions
JP4306079B2 (en) ERW steel pipe manufacturing method and equipment row
JPS58157581A (en) Manufacture of forge welded tube
US4771931A (en) Continuous production of seam-welded metal tubing
JP2008100261A (en) Method of manufacturing ribbed spiral steel tube
JP4250849B2 (en) ERW steel pipe manufacturing method and equipment row
US5005395A (en) Method of manufacturing electric welded pipes under hot conditions
JPH05228533A (en) Method and device for manufacturing welded tube
JPH0910829A (en) Manufacture of welded pipe
JP4723163B2 (en) Manufacturing method of hot dipped steel pipe
JPH037474B2 (en)
JP2852313B2 (en) Method and apparatus for manufacturing large diameter square steel pipe including hot forming
JP4114667B2 (en) Manufacturing method and manufacturing apparatus for welded steel pipe
JP3157989B2 (en) Angle material manufacturing method
JP3157988B2 (en) Angle material manufacturing method
JPH0466202A (en) Manufacture of channel bar
JP5401926B2 (en) Slab width reduction mold and slab width reduction method using the same
JPH10258312A (en) Manufacture of welded tube excellent in roundness
JPH0788545A (en) Manufacture of large diameter square steel tube to improve corner r part material
JPS58165913A (en) Cutting method of weld bead in electrically seamed pipe
JP3946534B2 (en) Manufacturing method of ERW steel pipe with excellent outer diameter shape
JP3610824B2 (en) Manufacturing method of thin welded pipe