JPS58157322A - Carrier protecting relay unit - Google Patents

Carrier protecting relay unit

Info

Publication number
JPS58157322A
JPS58157322A JP57040588A JP4058882A JPS58157322A JP S58157322 A JPS58157322 A JP S58157322A JP 57040588 A JP57040588 A JP 57040588A JP 4058882 A JP4058882 A JP 4058882A JP S58157322 A JPS58157322 A JP S58157322A
Authority
JP
Japan
Prior art keywords
relay
circuit
inspection
current
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57040588A
Other languages
Japanese (ja)
Inventor
和生 上野
勝 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57040588A priority Critical patent/JPS58157322A/en
Publication of JPS58157322A publication Critical patent/JPS58157322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電力系統を保護する搬送保護統電装置に係り
、特に点検手段を改良して装置の稼動率を向上させ得る
ようにした搬送保護継電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a transportation protection power distribution device for protecting an electric power system, and in particular to a transportation protection device that improves the operating rate of the device by improving inspection means. Regarding relay devices.

〔発明の技術的背景〕[Technical background of the invention]

従来、電力系統を保護する継電装置としては種々のもの
があるが電流差動FM搬送保護継電装置においては、F
M変調方式(周波数変調方式)を使用した伝送方式によ
り各端子の電流の瞬時値を互いに伝送収集し合い、電流
の総和が例えば外部故障または平常時の場合は零となり
継電器は動作しない。また内部故障の場合は、故障点に
相当する電流が流れて継電器が動作する。
Conventionally, there are various types of relay devices that protect power systems, but in current differential FM carrier protection relay devices, F
A transmission method using the M modulation method (frequency modulation method) mutually transmits and collects the instantaneous values of the currents at each terminal, and the sum of the currents becomes zero in the case of an external failure or normal operation, for example, and the relay does not operate. In the case of an internal failure, a current corresponding to the failure point flows and the relay operates.

第1図は、この種の継電器により2端子電力系統を保護
する場合の一般的な概略構成を示すもので、第1図にお
いてム電気所と藤電気所は送電線3によシ連系されてい
る。tず、A電気所側において、保護継電装置は母11
Jム、変流器xk、FM差動継電器1101その入力変
換器および判定回路11ノ、送信部112、受信部11
3、搬送端局装置120、無線装置130から図示の如
く構成されている。一方、B電気Wr側も同様に、母巌
IB、変流器7B、FM差動議電器2101その入力変
換器および判定(ロ)路211、送信部212、受信部
21S1搬送端局装置J J O,無線装置240から
図示の如く構成される。
Figure 1 shows a general schematic configuration when a two-terminal power system is protected by this type of relay. ing. On the A power station side, the protective relay device is connected to mother 11.
J, current transformer xk, FM differential relay 1101, its input converter and determination circuit 11, transmitter 112, receiver 11
3, a carrier end station device 120, and a wireless device 130 as shown in the figure. On the other hand, on the B electric Wr side, similarly, the main IB, the current transformer 7B, the FM differential voltage generator 2101, its input converter and the judgment (b) path 211, the transmitting section 212, the receiving section 21S1, the carrier end station device J J O , a wireless device 240 as shown in the figure.

第1図の構成において、送電線Sに内部故障が発生した
場合、ム電気所ではFMM動継電器110の送信部11
2よシ自端電流がFM変調され友後、搬送端局装置12
0を経て無巌装置136より相手端へ伝送される。まえ
、相手端よシ伝送された相手端電流に相当する高周波信
号は、受信部111にて復調され判定回路111に導入
される。この判定回路111において、目端電流ベクト
ル11と相手端電流ベクトルisとのペクトリ合成によ
り、 11+1.≧に・  K:定数 なる関係が成立すればFMM動継電器110が動作する
In the configuration shown in FIG. 1, when an internal failure occurs in the power transmission line S, the transmission section 11 of the FMM moving relay 110
After the self-end current is FM modulated, the carrier end station device 12
0, and is transmitted from the wireless device 136 to the other end. A high frequency signal corresponding to the current at the other end transmitted from the other end is demodulated by the receiving section 111 and introduced into the determination circuit 111 . In this determination circuit 111, 11+1. If the relationship ≧K: constant is established, the FMM dynamic relay 110 operates.

第2図は、上記FMM動継電器110の構成をブロック
的(1相分)に示し丸ものである。
FIG. 2 shows the configuration of the FMM dynamic relay 110 in block form (one phase).

第2図において、11は自端CT2次電流、12゜J 
5 、22は絶縁トランス、13は入力フィルタ、16
は目端伝送遅れ補償回路、14はFM変調回路、2ノは
搬送端局装置、2SはFM復−回路、24は復調フィル
タ、Slは和回路、32は判定回路、41bは点検中開
路動作を継続する常閉接点、62aは図示しない補助リ
レー52の接点で一端流入模擬時メータする常開接点、
52 bl e 52b鵞は同じく常閉接点、61は点
検回路、611&は自端相当点検入力印加時にメークす
る常開接点、611!*は相手端相当点検入力印加時に
メークする常開接点、61m。
In Fig. 2, 11 is the self-end CT secondary current, 12°J
5, 22 is an isolation transformer, 13 is an input filter, 16
14 is an FM modulation circuit, 2 is a carrier end station device, 2S is an FM demodulation circuit, 24 is a demodulation filter, SL is a summation circuit, 32 is a judgment circuit, 41b is an open-circuit operation during inspection 62a is a contact of an auxiliary relay 52 (not shown), and 62a is a normally open contact that measures the simulated inflow at one end.
52 BL e 52b is also a normally closed contact, 61 is a check circuit, 611& is a normally open contact that is closed when the self-end equivalent check input is applied, 611! * is a normally open contact that is closed when the opposite end equivalent inspection input is applied, 61m.

63mは点検入力制御用常開接点、42b、43bは常
閉接点、OR7,ORJ、ORJはオア回路である。
63m is a normally open contact for inspection input control, 42b and 43b are normally closed contacts, and OR7, ORJ, and ORJ are OR circuits.

以上の構成で、自端CT2次電流は入力フィルタ13を
経由し、自端伝送遅れ補償回路16にて伝送遅れ分を補
償し、常閉接点gzb、。
With the above configuration, the self-end CT secondary current passes through the input filter 13, and the self-end transmission delay compensation circuit 16 compensates for the transmission delay, and the normally closed contact gzb.

62b1オア回路OR2を介して和回路31に導かれる
。同時に、FM変調回路14によシFMfplされ、高
周波となって常閉接点41b1搬送端局装置21を経て
相手端へ伝送される。
62b1 is led to the sum circuit 31 via the OR circuit OR2. At the same time, the signal is FMfpl by the FM modulation circuit 14, becomes a high frequency signal, and is transmitted to the other end via the normally closed contact 41b1 and the carrier end station device 21.

を九、相手端からの高周波信号は搬送端局装置21を経
て、常閉接点51bl、オア回路0ELIを介してFM
復調回路2Sによ〕鋤用周波数に変換される。このFM
復調波は、復調フィルタ24、常閉接点63b1オア回
路ORJを経て和回路J1に入力される。和回路J1で
は、自端電流信号と相手端電流信号のベクトル和をとる
が、それは平常時または外部故障時において原理的に紘
零(実際に唸故障電流のみ)であって、内部故障時には
故障点に流れる電流に相当する量となる。和回路31出
力は判定回路J2ではこれらがある一定値以上または流
入電流と流出電気との比が所定値以上のとき動作となる
9. The high frequency signal from the other end passes through the carrier end station device 21, the normally closed contact 51bl, and the OR circuit 0ELI to the FM
It is converted into a plow frequency by the demodulation circuit 2S. This FM
The demodulated wave is input to the sum circuit J1 via the demodulation filter 24 and the normally closed contact 63b1 OR circuit ORJ. In the sum circuit J1, the vector sum of the current signal at its own end and the current signal at the other end is calculated, but it is theoretically a zero (actually only a whirring fault current) in normal times or in the event of an external fault, and it is a vector sum in the case of an internal fault. The amount corresponds to the current flowing at a point. The determination circuit J2 operates when the output of the sum circuit 31 exceeds a certain value or when the ratio of the inflow current to the outflow electricity exceeds a predetermined value.

また一般にFM電電流差縦継11Lkc置g!頼性向上
のために点検機能を有している。絡2図は、従来の点検
機能を備えたFMM流差動継電器である。この点検機能
は、ム電気所、B電気所ともにそれぞれ有しているが、
ここではA電気所を例にとって説明する。
In addition, generally FM electric current difference vertical joint 11Lkc setting g! It has an inspection function to improve reliability. Figure 2 shows an FMM style differential relay with a conventional inspection function. This inspection function is available at both Mu Electric Station and B Electric Station.
Here, electric station A will be explained as an example.

第2図においては、FMM動継電器110の点検につい
て説明する。点検は自端型Rあるいは相手端電流を模擬
し、この2つの電気量の大きさによシ第3図に示したI
ゾシ璽ンA、B。
In FIG. 2, inspection of the FMM dynamic relay 110 will be explained. For inspection, simulate the own end type R or the opposite end current, and check the I shown in Figure 3 depending on the magnitude of these two electrical quantities.
Zoshi Seal A, B.

C,D、Eでの点検を行う。なお、第3図はFMM動継
電器110の比率特性を示したもので、横軸を自端電流
(流入)、たて軸を相手端型fi(流出)とし、斜線部
が動作範曲である。
Perform inspections at C, D, and E. In addition, Fig. 3 shows the ratio characteristics of the FMM dynamic relay 110, where the horizontal axis is the own end current (inflow), the vertical axis is the other end type fi (outflow), and the shaded area is the operating range. .

ここで、いわゆる第3図のように1、比率抑制をもたせ
る理由は、外部故障が発生した場合、両端の変流器(C
T)JA、JB誤差による誤差電流の増大によシ動作量
が零でなくなってくるので、これによる誤動作を避ける
ためであシ、流入する電流の大きさに対応する抑制量を
付加することによって得られる。また、折線特性になっ
ているのは、小電流域において高感度にするためである
Here, the reason for having ratio suppression as shown in Fig. 3 is that when an external failure occurs, the current transformer (C
T) Since the amount of operation becomes non-zero due to the increase in error current due to JA and JB errors, this is to avoid malfunctions due to this, and by adding a suppression amount corresponding to the magnitude of the inflowing current. can get. Furthermore, the reason for the curved line characteristic is to provide high sensitivity in a small current range.

点検ポジシ曹ンAは、一端流入模擬で自端電流を1零”
として、図示しない切替器によって質流器11の2次側
から図示しない点検入力印MI回路に切替え、所定の大
きさの点検入力を印加して動作模擬を行なう。次に点検
lジシ■ンB、Cは自端電流を1零”とし、相手電流変
化で/?)シーンBを最少動作値の動作側、ポノシ曹ン
Cは不動作側の模擬を行なう、/ジシ■ンD、Eは自端
電流をある一定値に整定し、相手端電流の大きさを変化
してポジシ曹ンDは比率特性の動作側、−ジシ璽ンEは
不動作li1の模擬を行なう。そして、点検順序がA−
+B−+ (: −+ l)→Eとなるように点検回路
が構′成されている。
Inspection position A is simulating inflow at one end and the current at its own end is 1 zero.
Then, a switch (not shown) switches from the secondary side of the quality control device 11 to an inspection input signal MI circuit (not shown), and an inspection input of a predetermined magnitude is applied to simulate the operation. Next, for the inspection scenes B and C, set the self-end current to 1 zero, and as the other side current changes /?) simulate the operating side of scene B with the minimum operating value, and simulate the non-operating side of scene C. /signals D and E set the current at their own end to a certain constant value, and change the magnitude of the current at the other end.Position D is on the operating side of the ratio characteristic, and -position E is on the non-operating side of li1. Perform a simulation.Then, the inspection order is A-
The inspection circuit is configured so that +B-+ (: -+ l)→E.

第2図において、点検が開始されるとまず図示しない補
助リレー41が動作してその接点4Jbが開となる。よ
ってvyfWs回路14の出力拡相手端へ伝送されなく
なる。つまシ送信しベル断となるので、対向する相手端
では受信信号断となる。すなわち、自端リレ一点検中に
相手端リレーの不要応動を防止するために送信信号を断
(ロック信号送出)とすることで、相手端を自動ロック
させる。また、自動点検が終了すると相手端のロックは
解除されるように回路構成されている。一方、yy*l
111回路14の出力は一端流入時に開路したa接点6
2a1オア回路ORJを軽て、自端のFM復調回路21
へ導かれる。補助リレー52が駆動され九場合、相手端
よシ伝送されるFM波から、自端のfW14回路14の
出力を入力するように切替えられる。
In FIG. 2, when the inspection is started, the auxiliary relay 41 (not shown) is operated and its contact 4Jb is opened. Therefore, the output of the vyfWs circuit 14 is no longer transmitted to the expansion partner end. Since the transmission is interrupted and the bell is cut off, the receiving signal is cut off at the opposite end. That is, in order to prevent unnecessary response of the relay at the other end during inspection of the relay at the own end, the transmission signal is cut off (lock signal sent), thereby automatically locking the other end. Further, the circuit is configured such that the lock at the other end is released when the automatic inspection is completed. On the other hand, yy*l
The output of the 111 circuit 14 is the a contact 6 which is open at one end when the inflow occurs.
2a1 OR circuit ORJ, own end FM demodulation circuit 21
be led to. When the auxiliary relay 52 is driven, it is switched to input the output of the fW14 circuit 14 at its own end from the FM wave transmitted from the other end.

更に、接点52fによ〕自端電流を強制的に零分して和
回路31よシ判定回路32に加えることによシ、点検ポ
ジシ箇ンAでの一端流入模擬によ多動作を確認する。
Furthermore, by forcibly dividing the self-end current to zero and applying it to the summation circuit 31 and the judgment circuit 32, the multi-operation is confirmed by simulating one-end inflow at inspection position A. .

次に、比率特性の点検が開始されると補助リレー62.
63が動作し、その接点62b。
Next, when the ratio characteristic inspection is started, the auxiliary relay 62.
63 operates, and its contact 62b.

63bが開となって接点62m、6jaが閉となる。次
に、接点611m、612*の閉によシ、点検回路61
および自端和尚電流、相手端相当電流の点検入力が印加
される。自端和尚電流は接点611m、62h、オア回
路ORJを経て、また相手端相当電流は接点612m、
61m、オア回路ORJを経て、それぞれ和回路S1へ
導入される。和回路S1では、この2つの電気量のベク
トル和をとって判定回路S2で判定し、動作側、不動作
を確認する。
63b is open and contacts 62m and 6ja are closed. Next, close the contacts 611m and 612*, and check the inspection circuit 61.
Inspection inputs for the current at the own end and the equivalent current at the other end are applied. The own-end Osho current passes through contacts 611m and 62h, and the OR circuit ORJ, and the current equivalent to the other end passes through contacts 612m and 62h.
61m, and are introduced into the sum circuit S1 via the OR circuit ORJ. In the summation circuit S1, the vector sum of these two electrical quantities is determined, and a determination circuit S2 determines whether it is operating or not.

〔背景技術の問題点〕[Problems with background technology]

以上が従来のFM電流差動継電鋏装の概要説明であるが
、かかる継電装置の点検方法は各電気所ごとに単独で相
手端相当の電流を模擬して点検を実施し、自端点検時、
自端の点検電流によ〉相手端が不要応動するために、自
端点検開始から終了までの間相手端へロック信号を送出
する必要がある。このため点検中に故障が発生した時、
相手端リレーの動作が点検中必ず遅れるという問題が発
生する。また、FM継電装置で鉱、常時監視機能を有し
ておシ、一定時間不要が継続すれば装置不良とする。す
なわち、前述したように自端リレ一点検中は相手端のF
M送信レベルを断とするために、常時監視機能の一つで
あるLok −Liマ(受信FM波のレベルを監視する
機能)にて、不良と検出されるために、常時監視時間を
長くする必要があり、装置の不良を早急に発見するうえ
では大きな問題となる。
The above is a general explanation of the conventional FM current differential relay system, but the inspection method for such a relay system is to conduct an inspection at each electrical station by simulating the current equivalent to the other end, and During inspection,
In order for the other end to react unnecessarily due to the inspection current at the own end, it is necessary to send a lock signal to the other end from the start to the end of the own end inspection. Therefore, when a failure occurs during inspection,
A problem arises in that the operation of the relay at the other end is always delayed during inspection. In addition, the FM relay device has a constant monitoring function, and if it is not needed for a certain period of time, it is determined that the device is defective. In other words, as mentioned above, during the self-end relay inspection, the F of the other end is
In order to cut off the M transmission level, one of the constant monitoring functions, Lok-Li (a function that monitors the level of received FM waves), detects a defect, so the constant monitoring time is lengthened. This poses a major problem in quickly discovering device defects.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような問題点を解決する丸めに成された
もので、その目的は自端点検中の相手端リレーのロック
時間の軽減を図って装置の稼動率を高めることができる
搬送保躾継電装置を提供することにある。
The present invention has been developed to solve the above-mentioned problems, and its purpose is to reduce the locking time of the other end relay during self-end inspection, and to improve the operation rate of the device. Our purpose is to provide a training relay device.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明では、電力系杭から抽
出される電気量信号で変調された被変−波を伝送系を介
して対向する相手電気所へ送信し、この送信信号を受信
する上記各電気所では自端子信号および他端子からの受
信信号の復調信号をリレー判定部に導入して上配電力系
軟の故障区間の判定を行なう搬送保鏝継電装置において
、自端子リレーの点検時に相手端子へのロック信号を一
端流入模擬時のみに送出する点検機能を備えて相手端子
リレーのロック時間を幅減するようにしたことを特徴と
する特〔発明の実施例〕 以下に、本発明を図面に示す一実施例について説明する
。第4図線、本発明によるFM差動継電器(1相分)の
構成例をブロック的にホしたものであり、第2図と同一
部分には同一符号を付してその説明を省略する。つまシ
、第4図において、第2図に示した従来装置と異なる点
は、点検開始から点検終了まで動作を継続する常閉接点
4Jbを前除し、これに代えて一端流入模擬時に動作す
る補助リレー52の常閉接点51bsを設けるようにし
た点である。
In order to achieve the above object, the present invention transmits a variable wave modulated with an electrical quantity signal extracted from a power system pile to an opposing electric station via a transmission system, and receives this transmitted signal. At each of the above-mentioned electrical stations, the self-terminal relay is used in a conveyor protection relay system that inputs the demodulated signal of the self-terminal signal and the received signal from other terminals to the relay determination section to determine the fault section of the upper distribution power system. A feature [Embodiment of the invention] characterized in that the locking time of the mating terminal relay is significantly reduced by providing an inspection function that sends a lock signal to the mating terminal only when simulating inflow at one end during inspection. An embodiment of the present invention shown in the drawings will be described. The line in FIG. 4 is a block diagram of a configuration example of the FM differential relay (for one phase) according to the present invention, and the same parts as in FIG. In Fig. 4, the difference from the conventional device shown in Fig. 2 is that the normally closed contact 4Jb, which continues to operate from the start of the inspection to the end of the inspection, is removed in advance, and instead operates when simulating an inflow at one end. This is because a normally closed contact 51bs of the auxiliary relay 52 is provided.

次に、第4図の構成に基づく点検について説明する。な
お、この場合、両端子にはまったく同様の装置が配置さ
れているが、ここではA電気所について説明する。
Next, inspection based on the configuration shown in FIG. 4 will be explained. In this case, completely similar devices are arranged at both terminals, but electric station A will be explained here.

まず、いま点検が実施されるとトリップロック確g後に
図示しない補助リレーj2が動作し、一端流入模擬時メ
ークする。補助リレー62のa接点Jjjmは閉路し、
bfi’点52 bl、52b、。
First, when an inspection is carried out now, the auxiliary relay j2 (not shown) is operated after the trip lock is confirmed g, and one end is made when simulating an inflow. A contact Jjjm of the auxiliary relay 62 is closed,
bfi' points 52 bl, 52b,.

52b、が開路する。この接点52b3が開路するへ伝
送されなくなる。つまシ、送信信号を断する(ロック信
号送出)ことによシ、相手端のFMリレー210の出力
部が自動ロックされる・この様な状態にて、図示しない
点検入力印加回路によシ変流器1ノの2次側よシ所定の
点検電流が印加されると、この点検入力は入力フィルタ
ノ3を介して自端伝送遅れ補償回路16およびFM変調
回路14に導かれる。前者の出力は、接点52b、が開
で自端電流和尚は零である。また、後者のFM変調回路
14は相手端への伝送は前述の如く接点52bsで開路
されている。一方、FM変調器13の出力は閉路し九接
点52a1オア回路ORIを経て、自端のFM復調回路
23へ導かれる。補助リレー52が駆動された場合、接
点52blは開となるので、FM復調回路230入力は
、相手端から伝送されるFM波から、自端のFM変調回
路14の出力を入力するようになる。FM復調回路23
の出力L1復調フィルタ24、接点63b1オア回路O
RJを経て和回路S1でベクトル合成され、かつ判定部
32で判定され、一端流入模擬点検が終了し次に比率特
性の点検に移る。この時、一端流式模擬時に動作してい
た補助リレー52の励磁がとかれ、各接点は全て復帰す
る。
52b is opened. When this contact 52b3 is opened, no transmission occurs. By cutting off the transmission signal (sending a lock signal), the output section of the FM relay 210 at the other end is automatically locked.In such a state, the check input application circuit (not shown) When a predetermined inspection current is applied to the secondary side of the current flow device 1, this inspection input is guided to the own-end transmission delay compensation circuit 16 and the FM modulation circuit 14 via the input filter 3. In the former output, when the contact 52b is open, the self-end current is zero. Further, the latter FM modulation circuit 14 is opened at the contact 52bs as described above for transmission to the other end. On the other hand, the output of the FM modulator 13 is closed and guided to the FM demodulation circuit 23 at its own end via the nine-contact 52a1 OR circuit ORI. When the auxiliary relay 52 is driven, the contact 52bl is opened, so that the FM demodulation circuit 230 inputs the output of the FM modulation circuit 14 at its own end from the FM wave transmitted from the other end. FM demodulation circuit 23
Output L1 demodulation filter 24, contact 63b1 OR circuit O
After passing through the RJ, vectors are combined in the sum circuit S1 and judged in the judgment section 32, and once the inflow simulation inspection is completed, the next step is to inspect the ratio characteristics. At this time, the auxiliary relay 52 that was operating during the single-end flow simulation is de-energized, and all contacts are restored.

次に、比率特性の点検が開始されると、補助リレーix
、ixが動作して接点gJb、6iJbが開とな夛、接
点6 J a @ 63 mが閉となる。
Next, when the inspection of the ratio characteristics starts, the auxiliary relay ix
, ix are operated, contacts gJb and 6iJb are opened, and contact 6 J a @ 63 m is closed.

この接点izbが開となると、変流器11の2次側入力
とは無関係となるとともに、相手端への伝送信号にも不
要出力を与えることはない。
When this contact izb is opened, it becomes irrelevant to the secondary side input of the current transformer 11, and no unnecessary output is given to the transmission signal to the other end.

また、接点gSbが開することで相手端からのFM波も
無関係とし、目端の点検回路6ノにて自端相当電流、相
手端電流相当電流の点検入力が印加される。これにより
、自端電流相当電流は接点611*、6j a、オア回
路ORj t”Hて、また相手端相当電流は接点612
&e63&sオア回路OR3を経て、それぞれ和回路3
1へ尋人され和回路でベクトル合成し、判定回路J2で
判定されることになる。
Furthermore, by opening the contact gSb, the FM wave from the opposite end is made irrelevant, and inspection inputs of the current equivalent to the own end and the current equivalent to the opposite end are applied to the inspection circuit 6 at the end of the eye. As a result, the current equivalent to the current at the own end is passed through the contacts 611*, 6j a, and the OR circuit ORj t"H, and the current equivalent to the other end is sent to the contact 612.
&e63&s After the OR circuit OR3, each sum circuit 3
1, vector synthesis is performed in the sum circuit, and judgment is made in the judgment circuit J2.

このように、FM電流差動継電鋏装において、自端のF
Mリレーの点検時に相手端へのロック信号を、自端リレ
一点検で相手端へ不要信号を送出する。一端流式模擬時
のみに送出する点検機能を備えるようにしたので、比率
特性点検はロック信号を送信しないようにして相手端リ
レーのロック時間の軽減を図ることができ、よって装置
の稼動率を大いに高めることができる。
In this way, in the FM current differential relay system, the F
When inspecting the M relay, a lock signal is sent to the other end, and when the own end relay is inspected, an unnecessary signal is sent to the other end. Since it is equipped with an inspection function that sends out signals only when simulating one end flow type, it is possible to reduce the locking time of the other end relay by not sending a lock signal during ratio characteristic inspection, thereby increasing the operating rate of the equipment. It can be greatly improved.

尚、以上の説明では2端子系の場合について述べたが、
3端子以上の多端子系であっても実施することが可能で
ある。また、FM差動継電装置に適用した場合について
述べたが、PCM差動継電方式等にも適用することが可
能であることは言うまでもない。
In addition, although the above explanation deals with the case of a two-terminal system,
It is possible to implement even a multi-terminal system with three or more terminals. Further, although the case where the present invention is applied to an FM differential relay device has been described, it goes without saying that it is also possible to apply the present invention to a PCM differential relay system and the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、自端リレ一点検時
に相手端へのロック信号を一端流入模擬時のみに送出す
る点検機能を備えゐようにしたので、自端リレ一点検中
の相手端リレーのロック時間の軽減を図って装置の稼動
率を高めることかできる極めて信頼性の高い搬送保護継
電装置が提供できる。
As explained above, according to the present invention, an inspection function is provided that sends a lock signal to the other end only when simulating inflow at one end when inspecting the relay at its own end. It is possible to provide an extremely reliable transport protection relay device that can reduce the locking time of the end relay and increase the operating rate of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はFM差動継電装置のシステム構成を示す概要図
、第2図はFM差動継電器を示すブロック図、第3図は
FM差動継電器の比率特性を示す図、第4図は本発明の
一実施例を示す構成図である。 JA、JB・・・母線、2人、Jil・・・変流器、3
・・・送電線、110,210・・・FM差動継電器、
12.11,11・・・絶縁トランス、IJ・・・FM
復調回路、24・・・復調フィルタ、Sl・・・和回路
、J2・・・判定回路、61・・・点検回路、13・・
・入力フィルタ、14・・・FM変調回路、16・・・
伝送遅れ補償回路、I J O* J J O・・・搬
送端局装置。
Fig. 1 is a schematic diagram showing the system configuration of the FM differential relay device, Fig. 2 is a block diagram showing the FM differential relay, Fig. 3 is a diagram showing the ratio characteristics of the FM differential relay, and Fig. 4 is a diagram showing the ratio characteristics of the FM differential relay. FIG. 1 is a configuration diagram showing an embodiment of the present invention. JA, JB... Bus bar, 2 people, Jil... Current transformer, 3
...Power transmission line, 110,210...FM differential relay,
12.11,11...Isolation transformer, IJ...FM
Demodulation circuit, 24... Demodulation filter, Sl... Sum circuit, J2... Judgment circuit, 61... Inspection circuit, 13...
・Input filter, 14...FM modulation circuit, 16...
Transmission delay compensation circuit, I J O * J J O... Carrier terminal equipment.

Claims (1)

【特許請求の範囲】[Claims] 電力系統から抽出される電気量信号で変調された被変調
波を伝送系を介して対向する相手電気所へ送信し、この
送信信号を受信する電気所で紘自端子信号および他端子
からの受信信号の復調信号をリレー判定部に導入して前
記電力系統の故障区間の判定を行なう搬送係S継電装置
において、自端子リレーの点検時に#+端子へのロック
信号を一端流入模凝時のみに送出する点検機能を備えた
ことを特徴とする搬送保護継電装置。
The modulated wave modulated by the electrical quantity signal extracted from the power system is transmitted to the opposite electric station via the transmission system, and the electric station that receives this transmitted signal receives the Hiroji terminal signal and the other terminals. In a conveyor S relay device that inputs a demodulated signal of a signal to a relay determination unit to determine a fault section of the power system, a lock signal to the #+ terminal is applied only when one end is inflow during inspection of its own terminal relay. A transport protection relay device characterized by being equipped with an inspection function that sends out signals to the user.
JP57040588A 1982-03-15 1982-03-15 Carrier protecting relay unit Pending JPS58157322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57040588A JPS58157322A (en) 1982-03-15 1982-03-15 Carrier protecting relay unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57040588A JPS58157322A (en) 1982-03-15 1982-03-15 Carrier protecting relay unit

Publications (1)

Publication Number Publication Date
JPS58157322A true JPS58157322A (en) 1983-09-19

Family

ID=12584653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57040588A Pending JPS58157322A (en) 1982-03-15 1982-03-15 Carrier protecting relay unit

Country Status (1)

Country Link
JP (1) JPS58157322A (en)

Similar Documents

Publication Publication Date Title
US3868484A (en) Power feed arrangement for communication systems
US4329727A (en) Directional power distance relay
JPS5925525A (en) Protecting relay unit
JPS6030184B2 (en) Protective relay device
JPS60190118A (en) Current differential type protective relaying device
JPS58157322A (en) Carrier protecting relay unit
Chen et al. Field experience with a digital system for transmission line protection
CA1085952A (en) Unsupervised trip keying for phase comparison relaying apparatus
JPH0398321A (en) Method and apparatus for switching distribution line
JPH0139300B2 (en)
JPS6349072Y2 (en)
JPH0124010B2 (en)
JPS6082020A (en) Device for inspecting current difference relaying device
JPS58141626A (en) Protecting relay unit
Roohy-Laleh et al. Reliability and Quality Case Studies
JPS58190223A (en) Automatic monitor
JPS5992716A (en) Method of inspecting frequency modulation current differential relay
JPS607884B2 (en) Inspection method of ratio differential relay device
JPS5935519A (en) Method of inspecting frequency modulation current differential relay
JPH10243547A (en) Pcm current differential protection relaying scheme
JPH0342951A (en) Maintenance system for subscriber line repeater
JPS5989532A (en) Current variation phase comparison relay unit
JPS60180419A (en) Phase comparision carriage protecting relaying device
JPS62116038A (en) Remote supervisory and controlling equipment
JPH0334289B2 (en)