JPS5815680B2 - Liquefied petroleum gas vaporization equipment - Google Patents

Liquefied petroleum gas vaporization equipment

Info

Publication number
JPS5815680B2
JPS5815680B2 JP9269981A JP9269981A JPS5815680B2 JP S5815680 B2 JPS5815680 B2 JP S5815680B2 JP 9269981 A JP9269981 A JP 9269981A JP 9269981 A JP9269981 A JP 9269981A JP S5815680 B2 JPS5815680 B2 JP S5815680B2
Authority
JP
Japan
Prior art keywords
inner cylinder
liquefied petroleum
petroleum gas
cylindrical space
electric resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9269981A
Other languages
Japanese (ja)
Other versions
JPS57208396A (en
Inventor
坂本旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINMIKUNI KIKAI SEISAKUSHO JUGEN
Original Assignee
SHINMIKUNI KIKAI SEISAKUSHO JUGEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINMIKUNI KIKAI SEISAKUSHO JUGEN filed Critical SHINMIKUNI KIKAI SEISAKUSHO JUGEN
Priority to JP9269981A priority Critical patent/JPS5815680B2/en
Publication of JPS57208396A publication Critical patent/JPS57208396A/en
Publication of JPS5815680B2 publication Critical patent/JPS5815680B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0138Shape tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0304Heat exchange with the fluid by heating using an electric heater

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【発明の詳細な説明】 本発明は電気抵抗ヒータによる直接的加熱にてプロパン
、n−ブタン、i−ブタン等の液化石油ガスを気化させ
る液化石油ガスの気化装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquefied petroleum gas vaporization apparatus that vaporizes liquefied petroleum gas such as propane, n-butane, i-butane, etc. by direct heating with an electric resistance heater.

液化石油ガスはエネルギーの多様化時代を迎えるにいた
ってエネルギー源としての役割を広範囲に及ぼすように
なったが、これは液化石油ガスが液状態で貯蔵及び輸送
を行なえる点もその要因となっている。
As we enter the era of energy diversification, liquefied petroleum gas has come to play a widespread role as an energy source, partly due to the fact that liquefied petroleum gas can be stored and transported in a liquid state. ing.

従って液化石油ガスは燃料として使用するにあたっては
まず気化させねばならないのであるが、従来の気化装置
としては次のようなものがあった。
Therefore, before liquefied petroleum gas can be used as a fuel, it must first be vaporized, and conventional vaporization devices include the following.

すなわち温水や蒸気等の加熱媒体を介して液状態の液化
石油ガスを加熱し、気化させる間接加熱方式のものであ
る。
That is, it is an indirect heating method in which liquefied petroleum gas in a liquid state is heated and vaporized via a heating medium such as hot water or steam.

しかし、これは気化能力が1時間に数百から数千Kgと
いった大きなものには良好であるものの、小中容量のも
のであると、加熱媒体を介在させるが故に効率が悪くて
伝熱面積を大きくとらねばならず、不経済である上に小
型化できないという欠点を有する。
However, although this is good for large products with a vaporization capacity of several hundred to several thousand kilograms per hour, for small to medium capacity products, the efficiency is poor due to the intervening heating medium, which reduces the heat transfer area. It has the disadvantage that it must be large, is uneconomical, and cannot be miniaturized.

他の気化装置としては電気抵抗ヒータを用いる直接加熱
方式のものがある。
Other vaporizers include direct heating systems using electrical resistance heaters.

これは電気抵抗ヒータを液化石油ガスに浸漬させて気化
させるのである。
This involves immersing an electric resistance heater in liquefied petroleum gas and vaporizing it.

小中程度の気化能力を持つ装置としては経済的でありま
た小型化できる。
It is economical and can be miniaturized as a device with a small to medium vaporization capacity.

しかしこの直接加熱方式においては保安上危険があり、
また電気抵抗ヒータの液化石油ガスとの接触面が高温に
なると液化石油ガスの過剰な分解を招く。
However, this direct heating method has safety risks.
Moreover, if the contact surface of the electric resistance heater with the liquefied petroleum gas becomes high temperature, excessive decomposition of the liquefied petroleum gas will occur.

このために中程度以下の気化能力しか要求されないもの
においても、前述の間接加熱方式のものが用いられてい
るのが現状である。
For this reason, the above-mentioned indirect heating method is currently used even in products that require only a medium or lower vaporization capacity.

従ってこの中程度以下の気化能力をもつ気化装置におけ
る小型化及び高い経済性が強く求められている次第であ
る。
Therefore, there is a strong demand for miniaturization and high economic efficiency in vaporizers having medium or lower vaporization capacity.

本発明は上述の点に鑑み為されたものであり、その第1
の目的とするところは中程度以下の気化能力をもつもの
において高い経済性及び安全性を有し、しかも高効率で
小型化をなし得る液化石油ガスの気化装置を提供するに
あり、また第2の目的とするところは気化効率を更に高
く且つ均一に気化させることができて、より小型化を図
ることができる液化石油ガスの気化装置を提供するにあ
る。
The present invention has been made in view of the above points, and its first aspect is
The purpose of this is to provide a liquefied petroleum gas vaporization device that has a medium or lower vaporization capacity, is highly economical and safe, is highly efficient, and can be downsized. The object of the present invention is to provide a liquefied petroleum gas vaporization device that can achieve higher vaporization efficiency and more uniform vaporization, and can be made more compact.

以下本発明を図示実施例に基いて詳述する。The present invention will be explained in detail below based on illustrated embodiments.

図中1は内部に内筒2が配置された上下に長い円筒状の
外筒であり、圧力容器として形成され、下端には液化石
油ガスが供給される流入口5とドレンバルブ6とが設け
られ、上端には電磁弁Sを備えた排出口Iが設けられて
いる。
In the figure, reference numeral 1 denotes a vertically long cylindrical outer cylinder with an inner cylinder 2 disposed therein, which is formed as a pressure vessel, and an inlet 5 through which liquefied petroleum gas is supplied and a drain valve 6 are provided at the lower end. A discharge port I equipped with a solenoid valve S is provided at the upper end.

内筒2も円筒状であり、その外径は外筒1内面との間に
液化石油ガス及びその気化ガスの流路となる筒状空間8
が形成されるものとしである。
The inner cylinder 2 is also cylindrical, and its outer diameter defines a cylindrical space 8 between the inner surface of the outer cylinder 1 and the flow path for liquefied petroleum gas and its vaporized gas.
is formed.

内筒2は上端に設けられたフランジ9を外筒1上端のフ
ランジ10に固着することで筒状空間8の上端を閉じて
配設されるものであり、内筒2内にはこの内筒2の上端
開口からさし込まれる棒状のいわゆるシースヒータであ
る電気抵抗ヒータH(以下ヒータHと称す)と、残る空
間に密封充填された充填材3とが設けられている。
The inner cylinder 2 is arranged so that the upper end of the cylindrical space 8 is closed by fixing the flange 9 provided at the upper end to the flange 10 at the upper end of the outer cylinder 1. An electric resistance heater H (hereinafter referred to as heater H), which is a rod-shaped so-called sheath heater inserted from the upper end opening of 2, and a filler 3 hermetically filled in the remaining space are provided.

そして外筒1と内筒2との間の筒状空間8には外筒1及
び内筒2と同軸の螺旋状とされた放熱フィン4がその内
周縁を内部2外面に、外周縁を外筒1内面に接触させて
配置されている。
In the cylindrical space 8 between the outer cylinder 1 and the inner cylinder 2, a spiral heat dissipating fin 4 coaxial with the outer cylinder 1 and the inner cylinder 2 has its inner peripheral edge on the outer surface of the inner cylinder 2 and its outer peripheral edge on the outer surface. It is arranged in contact with the inner surface of the cylinder 1.

ここで放熱フィン4は筒状空間8の上下方向の略全長に
わたり配置されているのであるが、そのピッチは下方は
ど小さく、上方にいくほど大きくなるようにしである。
Here, the radiation fins 4 are arranged over substantially the entire length of the cylindrical space 8 in the vertical direction, and the pitch thereof is small at the bottom and becomes larger toward the top.

放熱フィン4や内筒2及び充填材3には熱伝導性の良好
なものを用いるのはもちろんであるが、充填材3は熱伝
導性の良好な固体、たとえばアルミニウムのような金属
を内筒2内に鋳込むことで形成する。
Of course, materials with good thermal conductivity are used for the radiation fins 4, the inner cylinder 2, and the filler 3, but the filler 3 is made of a solid material with good thermal conductivity, for example, a metal such as aluminum for the inner cylinder. Formed by casting into 2.

ただしヒータHはその絶縁材(シース)外周面に更に熱
良導体からなる筒をかぶせたり、絶縁材から発熱素子を
抜き出せるようにしたりして、ヒータ用ターミナルボッ
クス11から取替え可能としである。
However, the heater H can be replaced from the heater terminal box 11 by covering the outer circumferential surface of the insulating material (sheath) with a tube made of a good thermal conductor or by making the heating element extractable from the insulating material.

尚、充填材3を熱良導固体にて形成しであるのはヒータ
Hと内筒2及び放熱フィン4との熱的一体化を図り、熱
応答性を良好なものとするだけでなく、液体の場合のよ
うにヒータHの腐食並びに液不足による空焚きでのヒー
タHの損傷を招くことがないようにしたものであり、殊
に充填材3が液体であれば対流によって熱分布を均一と
するのが困難であるが、これを防止して後述する放熱フ
ィン4の構成とともに、液化石油ガスの気化ガスの温度
を均一化し、過熱及び過剰分解をなくしているものであ
る。
The reason why the filler 3 is made of a solid material with good thermal conductivity is not only to achieve thermal integration of the heater H, inner cylinder 2, and radiation fins 4, but also to improve thermal response. This is to prevent corrosion of the heater H and damage to the heater H due to dry heating due to lack of liquid, as would be the case with liquids, and in particular, if the filler 3 is liquid, the heat distribution will be uniform by convection. Although it is difficult to prevent this from happening, the structure of the heat dissipating fins 4, which will be described later, equalizes the temperature of the vaporized gas of the liquefied petroleum gas, thereby eliminating overheating and excessive decomposition.

図中ThL、ThM、ThHは夫々温度感知スイッチで
あり、外筒1外面に設けられた制御ボックス12内から
筒状空間8の上部にその温度感知素子が挿入配置されて
いる。
In the figure, ThL, ThM, and ThH are temperature sensing switches, respectively, and their temperature sensing elements are inserted into the upper part of the cylindrical space 8 from inside the control box 12 provided on the outer surface of the outer cylinder 1.

13は電源ケーブル、14はヒータH用ケーブル、15
は電磁弁S用ケーブルである。
13 is a power cable, 14 is a heater H cable, 15
is the cable for solenoid valve S.

第4図は上記装置の制御回路の一例を示すものであり、
以下この一例回路に基いて動作を説明する。
FIG. 4 shows an example of the control circuit of the above device,
The operation will be explained below based on this example circuit.

なお、温度感知スイッチThLは温度感知素子で検出す
る温度が、tL−を十α(tは液化石油ガスの所定圧力
下での沸点)以上で接点を閉じるものであり、温度感知
スイッチThM、ThHは温度感知素子で検出する温度
が夫々tM=t+β。
The temperature sensing switch ThL closes the contact when the temperature detected by the temperature sensing element exceeds tL- by 10α (t is the boiling point of liquefied petroleum gas under a predetermined pressure), and the temperature sensing switches ThM and ThH The temperature detected by the temperature sensing element is tM=t+β, respectively.

tH=t+γ以上になった時に接点を開くものである。The contact is opened when tH=t+γ or more.

ただしαくβ〈γであり、各値は保安、環境等の諸条件
により決定する。
However, α and β<γ, and each value is determined depending on various conditions such as safety and environment.

しかしてブツシュスイッチSWAを投入してリレーRA
を励磁させれば、温度感知スイッチThH及びリレーR
Aの接点ralを介してリレーR6,RDが共に励磁さ
れ、この励磁によりオンした接点rc2.rdlを通じ
てヒータHに通電されまたこの状態が接点rc1により
自己保持される。
However, by turning on the bush switch SWA, the relay RA
If energized, temperature sensing switch ThH and relay R
Relays R6 and RD are both energized through contact ral of A, and contacts rc2. The heater H is energized through the rdl, and this state is self-maintained by the contact rc1.

そして筒状空間8の上部の雰囲気温度がtLに達すると
、温度感知スイッチThLがオンし、リレーRBの接点
rb1゜リレー取の常閉接点ra2.リレーR,の接点
rC3のオンにより電磁弁Sが開き、正常運転に入る。
When the ambient temperature in the upper part of the cylindrical space 8 reaches tL, the temperature sensing switch ThL is turned on, and the contact rb1 of the relay RB and the normally closed contact ra2 . When contact rC3 of relay R is turned on, solenoid valve S opens and normal operation begins.

一方、流入口5から筒状空間8に導びかれる液化石油ガ
スは、ヒータHから第3図の熱伝導線Tから示される熱
を受けて加熱され、筒状空間8を放熱フィン4にて区切
られた螺旋状流路に沿って上昇しつつ気化される。
On the other hand, the liquefied petroleum gas guided from the inlet 5 to the cylindrical space 8 is heated by the heater H as shown by the heat conduction line T in FIG. It is vaporized while rising along the divided spiral flow path.

この気化ガスは排出口γから電磁弁Sを経て送出される
This vaporized gas is sent out from the outlet γ via the solenoid valve S.

ここで放熱フィン4は前述のように上方にいくほどピッ
チが大きくされているものであるが、これは伝熱面の拡
大と螺旋状流路を形成して液化石油ガスに撹流を与える
ことで気化ガスの温度分布を均一化するというだけでな
く、液化石油ガスを沸点まで加熱するのと気化させた後
とでは伝熱面における境膜伝熱係数が異なるのでこれに
放熱フィン4のピッチを対応させているものであり、液
化石油ガスの気化に対する熱効率をきわめて高いものと
し、装置の小型化を行なえるようにしているものである
Here, as mentioned above, the pitch of the heat dissipation fins 4 is increased as they go upward, and this is because the heat transfer surface is enlarged and a spiral flow path is formed to provide stirring to the liquefied petroleum gas. In addition to uniformizing the temperature distribution of the vaporized gas, the pitch of the radiation fins 4 is also important because the film heat transfer coefficient on the heat transfer surface is different between heating the liquefied petroleum gas to its boiling point and after vaporizing it. The thermal efficiency for vaporizing liquefied petroleum gas is extremely high, and the device can be made smaller.

上記運転中に筒状空間8の上部温度がtMに達すると、
温度感知スイッチThMがオフし、リレーRDが消勢さ
れて接点rd1がオフするためにヒータHへの通電が遮
断される。
When the upper temperature of the cylindrical space 8 reaches tM during the above operation,
Temperature sensing switch ThM is turned off, relay RD is deenergized, and contact rd1 is turned off, so that power to heater H is cut off.

温度が【Mより5度程度低くなればヒータHへの通電が
再び開始される。
When the temperature becomes about 5 degrees lower than M, power supply to the heater H is restarted.

そして何らかの要因によって保安上問題が生じる温度t
Hまで温度が上昇すれば、温度感知スイッチThHのオ
フ、リレーRc、RDの消勢接点rC2,rd1.rC
3の各オフにより、ヒータHへの通電が遮断されるとと
もに保安の為に電磁弁Sも閉じられる。
And the temperature t at which a safety problem occurs due to some factor.
When the temperature rises to H, the temperature sensing switch ThH is turned off, and the deenergizing contacts rC2, rd1 . rC
3, the power supply to the heater H is cut off and the solenoid valve S is also closed for safety.

この場合、リレーReの自己保持用の接点rclもオフ
するために、筒状空間8の上部温度が1M以下まで下が
った状態でブツシュスイッチSWAを手動投入すること
により、運転再開を行なえる。
In this case, since the self-holding contact rcl of the relay Re is also turned off, the operation can be restarted by manually turning on the bushing switch SWA when the upper temperature of the cylindrical space 8 has fallen to 1M or less.

また筒状空間8の上部温度がtL以下に下がるようなこ
とがあれば温度感知スイッチThLのオフ、リレーRB
の接点rb1のオフにより電磁弁Sが閉じられるので、
液化石油ガスが液状態のまま送出されることはない。
In addition, if the upper temperature of the cylindrical space 8 drops below tL, the temperature sensing switch ThL is turned off, and the relay RB is turned off.
Since the solenoid valve S is closed by turning off the contact rb1,
Liquefied petroleum gas is never delivered in a liquid state.

停電時のように電源が切れた場合も同様である。The same applies when the power is cut off, such as during a power outage.

ブツシュスイッチSWAの手動操作のみで他の操作は全
て電気的に自動制御され、殆ど瞬間的に無負荷から全負
荷まで負荷の変化に対し迅速に応答作動するものであり
、高い安全性を有するものである。
With only manual operation of the bushing switch SWA, all other operations are electrically and automatically controlled, and it responds quickly to changes in load from no load to full load almost instantaneously, offering high safety. It is something.

ブツシュスイッチSWBは緊急停止用であり、このブツ
シュスイッチSWBの操作で全回路が遮断されて運転が
停止する。
The bushing switch SWB is for emergency stop, and operation of this bushing switch SWB cuts off all circuits and stops the operation.

以上のように本発明にあってはヒータを納めた内筒と外
筒との間に放熱フィンを配置した筒状空間を設けてこの
筒状空間に下端部から液化石油ガスを供給し、筒状空間
の上端部から気化ガスを送出するようにしたものである
とともに、内筒内に熱良導固体からなる充填材を充填し
たものであるから、ヒータと放熱面とが熱的に一体化さ
れており、熱伝導性がきわめて良好で放熱面の各部の温
度差が小さくて液化石油ガスの気化効率が高く、小型化
することができるものであって、また加熱媒体を用いず
に直接的にヒータで加熱するにもかかわらず、ヒータを
充填材で覆っているために保安上の危険がなく、過剰分
解させてしまうこともないものであり、しかもヒータが
損傷するおそれもなく、小型高効率で安全性も高いもの
である。
As described above, in the present invention, a cylindrical space in which radiation fins are arranged is provided between the inner cylinder and the outer cylinder in which the heater is housed, and liquefied petroleum gas is supplied to this cylindrical space from the lower end. The vaporized gas is sent out from the upper end of the shaped space, and the inner cylinder is filled with a filler made of a solid material with good thermal conductivity, so the heater and the heat radiation surface are thermally integrated. It has extremely good thermal conductivity, small temperature differences between parts of the heat dissipation surface, high vaporization efficiency of liquefied petroleum gas, can be made compact, and can be directly heated without using a heating medium. Even though the heater is used for heating, there is no safety risk because the heater is covered with a filler material, and there is no risk of excessive decomposition.Furthermore, there is no risk of damage to the heater, and it is small and high-rise. It is highly efficient and safe.

殊に併合発明にあっては放熱フィンを螺旋状として筒状
空間に螺旋状流路を形成したからこの流路に沿って流れ
る液化石油ガス及びその気化ガスの温度分布の均一化を
より促進できるものであって、この点においても一部の
過熱及び過剰分解を防ぎ得る上に、螺旋状放熱フィンの
ピッチを連続回続可変としたので、液化石油ガスの昇温
と気化、更には膨張させることでの圧力上昇といった現
象に必要とされる筒状空間内での熱量分布に対応させる
ことができ、ヒータの放熱エネルギーの殆どすべてを効
率良く利用し得るものであり、損失エネルギーがきわめ
て小さく高効率でより小型化を図り得るものである。
In particular, in the combined invention, since the heat dissipation fins are spirally shaped to form a spiral flow path in the cylindrical space, it is possible to further promote uniformity of temperature distribution of the liquefied petroleum gas and its vaporized gas flowing along this flow path. In this respect, it is possible to prevent some overheating and excessive decomposition, and since the pitch of the spiral heat dissipation fins is continuously variable, it is possible to increase the temperature, vaporize, and further expand the liquefied petroleum gas. It is possible to deal with the heat distribution in the cylindrical space required for phenomena such as pressure rise due to heat exchange, and almost all of the heat radiation energy of the heater can be used efficiently, resulting in extremely low energy loss and high heat resistance. This makes it possible to achieve further miniaturization with efficiency.

尚、放熱フィンのピンチを連続可変とするに際して図示
例のように単に上方にいくほどピッチを大きくするだけ
でなく、たとえば液化石油がこの気化に対応する筒状空
間の一部においてピッチを無限大、つまり筒状空間の軸
方向にそったものとし、これより上方においてはまた螺
旋を形成するようにピッチを小さくするというようにし
てもよいものである。
In addition, when making the pinch of the radiation fins continuously variable, it is not only necessary to increase the pitch upward as shown in the example shown, but also to increase the pitch to infinity in a part of the cylindrical space where liquefied petroleum vaporizes. In other words, it may be arranged along the axial direction of the cylindrical space, and the pitch may be made smaller above this so as to form a spiral.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例の破断斜視図、第2図は同上の
破断圧面図、第3図は同上の熱伝導図、第4図は同上の
制御回路の一例を示す回路図である。 1は外筒、2は内筒、3は充填材、4は放熱フィン、5
は流入口、Tは排出口、8は筒状空間、Hは電気抵抗ヒ
ータを示す。
Fig. 1 is a cutaway perspective view of one embodiment of the present invention, Fig. 2 is a fracture pressure surface view of the same, Fig. 3 is a heat conduction diagram of the same, and Fig. 4 is a circuit diagram showing an example of the control circuit of the above. . 1 is an outer cylinder, 2 is an inner cylinder, 3 is a filler, 4 is a radiation fin, 5
1 indicates an inlet, T indicates an outlet, 8 indicates a cylindrical space, and H indicates an electric resistance heater.

Claims (1)

【特許請求の範囲】 1 電気抵抗ヒータが内装された内筒と、この内筒を囲
む外筒この間に下端部が流入口に、上端部が排出口に夫
々連通する筒状空間を形成し、液化石油ガス及びその気
化ガスの流路である筒状空間内に内筒に熱的に接続され
た放熱フィンを配置し、内筒内に電気抵抗ヒータと内筒
内周面との間の空隙を埋める熱良導固体よりなる充填材
を密封充填して成ることを特徴とする液化石油ガスの気
化装置。 2 放熱フィンは筒状空間内での必要とされる熱量分布
に応じて密度が変えられていることを特徴とする特許請
求の範囲第1項記載の液化石油ガスの気化装置。 3 電気抵抗ヒータが内装された内筒と、この内筒を囲
む外筒との間に下端部が流入口に、上端部が排出口に夫
々連通する筒状空間を形成し、液化石油ガス及びその気
化ガスの流路である筒状空間内に内筒に熱的に接続され
た螺旋状放熱フィンを配置して筒状空間内を螺旋状流路
に区画するとともに放熱フィンのピッチを連続可変ピッ
チとし、内筒内に電気抵抗ヒータと内筒内周面との間の
空隙を埋める熱良導固体よりなる充填材を密封充填して
成ることを特徴とする液化石油ガスの気化装置。
[Scope of Claims] 1. An inner cylinder in which an electric resistance heater is installed, and an outer cylinder surrounding the inner cylinder, forming a cylindrical space between which the lower end communicates with the inlet and the upper end communicates with the outlet, A radiation fin thermally connected to the inner cylinder is arranged in the cylindrical space that is the flow path for liquefied petroleum gas and its vaporized gas, and a gap between the electric resistance heater and the inner peripheral surface of the inner cylinder is arranged inside the inner cylinder. A vaporizing device for liquefied petroleum gas, characterized in that the liquefied petroleum gas vaporizer is formed by sealingly filling a filler made of a heat-conducting solid. 2. The liquefied petroleum gas vaporization device according to claim 1, wherein the density of the radiation fins is changed according to the required heat distribution within the cylindrical space. 3. A cylindrical space is formed between the inner cylinder in which the electric resistance heater is installed and the outer cylinder surrounding the inner cylinder, the lower end of which communicates with the inlet and the upper end of which communicates with the outlet. A spiral heat dissipation fin that is thermally connected to the inner cylinder is placed inside the cylindrical space that is the flow path for the vaporized gas, dividing the cylindrical space into a spiral flow path, and the pitch of the heat dissipation fin is continuously variable. 1. A liquefied petroleum gas vaporization device, characterized in that the inner cylinder is sealed with a filler made of a thermally conductive solid that fills the gap between an electric resistance heater and the inner peripheral surface of the inner cylinder.
JP9269981A 1981-06-15 1981-06-15 Liquefied petroleum gas vaporization equipment Expired JPS5815680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9269981A JPS5815680B2 (en) 1981-06-15 1981-06-15 Liquefied petroleum gas vaporization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9269981A JPS5815680B2 (en) 1981-06-15 1981-06-15 Liquefied petroleum gas vaporization equipment

Publications (2)

Publication Number Publication Date
JPS57208396A JPS57208396A (en) 1982-12-21
JPS5815680B2 true JPS5815680B2 (en) 1983-03-26

Family

ID=14061735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9269981A Expired JPS5815680B2 (en) 1981-06-15 1981-06-15 Liquefied petroleum gas vaporization equipment

Country Status (1)

Country Link
JP (1) JPS5815680B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457778B2 (en) * 1983-06-29 1992-09-14 Nissan Motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457778B2 (en) * 1983-06-29 1992-09-14 Nissan Motor

Also Published As

Publication number Publication date
JPS57208396A (en) 1982-12-21

Similar Documents

Publication Publication Date Title
US4255646A (en) Electric liquefied petroleum gas vaporizer
US2515835A (en) Fluid supply system
US4645904A (en) Liquefied gas vaporizer unit
US4438806A (en) Heat exchanger for transferring heat to a liquid
US2058769A (en) Heating apparatus and method of heating
US2432169A (en) Electric immersion heater
US4321421A (en) Vaporization cooled transformer having a high voltage
US2866885A (en) Automatic electric heater
US5247148A (en) Microwave fluid heater with capacitive plates
JP2000028199A (en) Water heater and heating element
US1974302A (en) Self-protecting immersion unit
US2894109A (en) Commercial water heater
JPS5815680B2 (en) Liquefied petroleum gas vaporization equipment
US2066190A (en) Apparatus for heating water
GB2053429A (en) Water heaters for mobile installations
US4593177A (en) Reduced differential, high limit thermostat system
US2454934A (en) Electrical oxygen vaporizer and protecting cover
GB2035764A (en) Electric water heater
US3809856A (en) Water heater
US2013914A (en) Electric water heater
US1862065A (en) Electric water heater
US2038476A (en) Water heater
US1849175A (en) Water heater
JP2002267102A (en) Electric evaporator
EP0127344A2 (en) A method and apparatus for heating liquid