JPS58156513A - Carbon powder having thickly grown fine carbon cilia - Google Patents

Carbon powder having thickly grown fine carbon cilia

Info

Publication number
JPS58156513A
JPS58156513A JP57035266A JP3526682A JPS58156513A JP S58156513 A JPS58156513 A JP S58156513A JP 57035266 A JP57035266 A JP 57035266A JP 3526682 A JP3526682 A JP 3526682A JP S58156513 A JPS58156513 A JP S58156513A
Authority
JP
Japan
Prior art keywords
carbon
cilia
sulfur
substrate
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57035266A
Other languages
Japanese (ja)
Other versions
JPH0258203B2 (en
Inventor
Shohachi Kawakado
川角 正八
Makoto Egashira
誠 江頭
Hiroaki Katsuki
勝木 宏昭
Yasuki Ogawa
小川 泰樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP57035266A priority Critical patent/JPS58156513A/en
Publication of JPS58156513A publication Critical patent/JPS58156513A/en
Publication of JPH0258203B2 publication Critical patent/JPH0258203B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:A globular particulate carbon material like aegagropila, useful as a reinforcing material in preparing a composite material comprising a resin, metal, inorganic material, etc. as a parent material, having thickly grown fire carbon cilia on the surface. CONSTITUTION:A particulate carbon material having >=100 grown carbon cilia having <=10mu average fiber diameter per mm.<2> surface area on the surface of nearly spherical particulate carbon. The carbon material is prepared by heating a sulfur-containing carbon substrate (e.g., carbonized powder obtained by calcining fine powder of sulfonated polystyrene at high temperature) in an atmosphere of a carbon source(e.g., lower hydrocarbon such as methane, propylene, etc.) at about 700-1,500 deg.C, growing carbon formed by the thermal decomposition on the carbon substrate in a gaseous phase. When a carbon substrate containing no sulfur is used, sulfur (compound)(e.g., H2S) may be added to the atmosphere.

Description

【発明の詳細な説明】 本発明は、微粒状または微粉状の炭素基体の表面上に、
炭化水素の熱分解による気相成長法により高強度、高弾
性率の微小炭素繊毛を密生した海胆状(または毬藻状ま
たは毬栗状)の形態をもつ炭素材にかかわるものである
DETAILED DESCRIPTION OF THE INVENTION The present invention provides the following method:
It relates to a carbon material with a sea gall-like (or cone-like or cone-like) shape that is made of densely packed microscopic carbon cilia with high strength and high elastic modulus produced by a vapor phase growth method using thermal decomposition of hydrocarbons.

さきに本発明者らは炭化水素を非酸化性雰囲気中で70
0−1500”’Cで熱分解するに際して硫黄または硫
黄化合物を共存させ高強度・高弾性率の炭素繊維を高収
率で製造できることを見出した(特開昭56−1189
13号公報)。とくに炭化水素としてナフタレン、アン
トラセンなどの多芳香環化合物を炭素源として用いた場
合に、硫黄または硫黄化合物の共存下に気相成長反応を
行うと、炭素繊維がlO〜数10%の高い収率で得られ
ることを示した。本発明者らは、今回さ、らに気相成長
炭素繊維の基体として微粒状または微小粉状炭素材を選
び炭化水素として一酸化炭素、メタン、エタン、エチレ
ン、アセチレン、フロノξン乃至ベンゼンなど比較的炭
素数の少い低級炭化水素を用い、硫黄または硫黄化合物
の共存下に700−1500°Cで熱分解を行った場合
に、以下に説明するような優れた性能と用途をもち、と
くにプラスチックス・金属および無機材料を母材とする
複合材料用(分散)強化材として最適の毬藻状(または
海胆状または毬栗状)のり態をもつ微小炭素材が生成す
ることを見出した。
First, the present inventors prepared hydrocarbons in a non-oxidizing atmosphere at 70%
It has been discovered that carbon fibers with high strength and high modulus of elasticity can be produced in high yield by coexisting sulfur or sulfur compounds during thermal decomposition at 0-1500''C (Japanese Patent Laid-Open No. 56-1189
Publication No. 13). In particular, when a polyaromatic compound such as naphthalene or anthracene is used as a carbon source and a vapor phase growth reaction is carried out in the presence of sulfur or sulfur compounds, carbon fibers can be produced at a high yield of 10 to several 10%. We showed that it can be obtained with The present inventors further selected a fine granular or fine powder carbon material as the substrate of the vapor grown carbon fiber, and used hydrocarbons such as carbon monoxide, methane, ethane, ethylene, acetylene, chlorofluorinated carbon, and benzene. When thermal decomposition is performed at 700-1500°C in the coexistence of sulfur or sulfur compounds using lower hydrocarbons with a relatively small number of carbon atoms, it has excellent performance and uses as described below, especially We have discovered that a microcarbon material with a cone-like (or seaweed-like or cone-like) consistency can be produced, which is ideal as a (dispersion) reinforcing material for composite materials made of plastics, metals, and inorganic materials.

炭化水素の熱分解による、所謂気相成長法と呼ばれる炭
素繊維の生成は、たとえば100^前後の鉄粒子の共存
下に、炭素、シリカ、アルミナ、ムライト質などの耐熱
性基体上で1000−1100℃においてベンゼン蒸気
をH2などの還元性雰囲気中で熱分解する際に起ること
がよく知られている。このようにして得られた炭素繊維
の引張強度と弾性率は、ポリアクリロニトリル、レーヨ
ン、ピッチな、どの有機高分子繊維の焼成によって得ら
れる炭素繊維と略々間等の値を示すこともわかっている
。従って、気相成長法の炭素繊維も複合材料用強化材と
して有望視されているが、末だその製造法における炭素
収率が低く工業化されるまでに至っていない。
Carbon fibers are produced by the so-called vapor phase growth method by thermal decomposition of hydrocarbons. It is well known that this phenomenon occurs when benzene vapor is thermally decomposed in a reducing atmosphere such as H2 at ℃. It is also known that the tensile strength and elastic modulus of the carbon fibers obtained in this way are approximately between those of carbon fibers obtained by firing organic polymer fibers such as polyacrylonitrile, rayon, and pitch. There is. Therefore, carbon fiber produced by vapor phase growth is also seen as a promising reinforcing material for composite materials, but the carbon yield of the production method is low and it has not yet been commercialized.

本発明者らは優れた引張強度と弾性率を有する微小な気
相成長炭素繊毛を非常に高い生成密度で微小な炭素基体
の表面上に成長させた海胆状炭素微粒を製造しうる方法
を見い出した。これらの炭素材がプラスチックス・金属
および無機材料を母材とする複合材料用(分散)強化材
として、粒子強化性と繊維強化性の両性能を同時に発揮
できるだけでなく母材と強化材の接着性の点から単なる
炭素微粒子に較べて遥かに優れていることは明らかであ
る。
The present inventors have discovered a method for producing sea bile-like carbon microparticles in which microscopic vapor-grown carbon cilia with excellent tensile strength and elastic modulus are grown on the surface of a microscopic carbon substrate at a very high production density. Ta. These carbon materials can be used as (dispersed) reinforcing materials for composite materials with plastics, metals, and inorganic materials as base materials, and can not only exhibit both particle and fiber reinforcement properties at the same time, but also have excellent adhesion between the base material and the reinforcing material. It is clear that they are far superior to simple carbon particles in terms of properties.

本発明者らがすでに特開昭56−118913号公報に
おいて述べているように、硫黄乃至硫黄化合物の共存下
に、炭化水素を熱分解し、耐熱性基板の表面上に成長さ
せた炭素繊維は直径が通常lO乃至100μmを示し、
 一般に、たとえば基体として数μmから数100μm
の直径をもつ炭素粒を用いた場合には、炭素粒の直径と
略々間しかそれ以上の直径をもつ炭素繊維を生成する。
As the inventors have already described in Japanese Patent Application Laid-Open No. 56-118913, carbon fibers grown on the surface of a heat-resistant substrate by thermally decomposing hydrocarbons in the coexistence of sulfur or sulfur compounds are The diameter usually ranges from 10 to 100 μm,
Generally, for example, the substrate has a thickness of several μm to several 100 μm.
When using carbon grains having a diameter of , carbon fibers having a diameter approximately between or larger than the diameter of the carbon grains are produced.

従って本発明の目的に適した形態と仕様をもつ炭素繊毛
としては、その繊維の直径が過大である。また生成繊維
の長さも数龍より数硼、希には数10crnに達し、基
体としての炭素粒子の大きさに較べて過大である。従っ
てまた、直径と長さが比較的微小な繊維を生成させるこ
とができた場合でも炭素粒1個当りの生成炭素繊維の本
数も数本乃至1数10本に過ぎない。本発明の複合材料
用強化炭素材とは、平均直径が10μm以下の微小繊毛
が、数μmから数100μmの平均粒径をもつ炭素粒の
1個当り10〇−1000本(平均生成密度として炭素
粒の表面積1 ad当り100本以上)の割合で密生し
た海胆状微小炭素粒である。本発明者らは、このような
形態と仕様をもつ複合材料用強化炭素材を製造する目的
をもって各種の炭素材について実験条件に関する探索研
究をつづけた結果、本発明を完成させたものである。
Therefore, the fiber diameter is too large for carbon cilia having a form and specifications suitable for the purpose of the present invention. Furthermore, the length of the produced fibers reaches several lengths, sometimes several tens of crons, which is excessive compared to the size of the carbon particles as the base material. Therefore, even if it is possible to produce fibers with relatively small diameters and lengths, the number of carbon fibers produced per carbon grain is only a few to a few dozen. The reinforced carbon material for composite materials of the present invention has 100 to 1000 microcilia with an average diameter of 10 μm or less per carbon grain with an average particle size of several μm to several 100 μm (average production density of carbon They are sea bile-like minute carbon grains that are densely grown at a ratio of 100 carbon fibers or more per 1 ad of grain surface area. The present inventors completed the present invention as a result of continued exploration and research regarding experimental conditions for various carbon materials with the aim of producing a reinforced carbon material for composite materials having such a form and specifications.

本発明の複合材料用強化炭素材の製造が可能となったの
は、次のような基本的必要条件が満たされたからである
。すなわち、気相成長法による炭素繊維の炭素基体表面
における生成密度を高くするためには炭素繊毛の収率が
著しく高く且、各炭素繊毛の直径と長さが炭素基体に較
べて適当な大きさでなければならないことである。気相
成長法の炭素繊維の収率は、従来の製造方法では収率自
体の測定値が明確でなくこのことは従来の製造方法の収
率が極めて低いことを示すものに外ならない。
The production of the reinforced carbon material for composite materials of the present invention was made possible because the following basic requirements were met. In other words, in order to increase the production density of carbon fibers on the surface of a carbon substrate by the vapor phase growth method, the yield of carbon cilia must be extremely high, and the diameter and length of each carbon cilia must be appropriately large compared to the carbon substrate. It must be. With respect to the yield of carbon fiber produced by the vapor phase growth method, the measured value of the yield itself is not clear in the conventional production method, and this fact shows that the yield of the conventional production method is extremely low.

本発明者らは、鉄などの遷移金属が共存しなくても硫黄
および硫黄化合物の存在下に700−1500℃の各種
担体上で炭化水素を熱分解するとき従来の方法に較べて
炭素収率が非常に高い方法で炭素繊維を製造する方法を
見い出している。
The present inventors have demonstrated that when hydrocarbons are pyrolyzed on various carriers at 700-1500°C in the presence of sulfur and sulfur compounds even without the coexistence of transition metals such as iron, the carbon yield is lower than that of conventional methods. has found a way to produce carbon fiber in a very advanced manner.

本発明者らは、この方法を各種の炭素基体に適用し、比
較的、低級炭化水素を炭素源として用いた反応後の基体
表面を走査型電子顕微鏡で観察した場合に、表面上に平
均直径10μm以下、平均長さが100−150μmの
炭素繊毛が密生していた。
The present inventors applied this method to various carbon substrates, and found that when the surface of the substrate after a reaction using a relatively lower hydrocarbon as a carbon source was observed with a scanning electron microscope, an average diameter of Carbon cilia with a length of 10 μm or less and an average length of 100-150 μm were densely grown.

すなわち、従来の方法では本発明の形態と仕様をもつ炭
素繊毛を各種炭素基体の表面上に密生させることはでき
ないが、硫黄乃至硫黄化合物の共存下に炭化水素を熱分
解する方法により本発明の形態と仕様をもつ炭素繊毛を
密生させることが可能となった。
In other words, carbon cilia having the form and specifications of the present invention cannot be densely grown on the surface of various carbon substrates by conventional methods, but the method of the present invention can be achieved by thermally decomposing hydrocarbons in the coexistence of sulfur or sulfur compounds. It has become possible to grow dense carbon cilia with specific shapes and specifications.

本発明の製造条件において使用する炭素源としての炭化
水素の種類に制限はなく、メタン、エタン、アセチン/
、エチレン、プロピレンなど脂肪族炭化水素から、ベン
ゼン、トルエン、シクロヘキサン、ナフタレン、アント
ラセンなどの芳香族炭化水素に至る各種炭化水素が用い
られるが、微細繊毛の密生法の制御には、低級炭化水素
が好都合である。一般にハロゲンは炭素繊維の成長に対
し抑制効果があるのでハロゲンを含まない炭化水素の使
用が望ましい。
There are no restrictions on the type of hydrocarbon used as a carbon source under the production conditions of the present invention, including methane, ethane, acetin/
Various hydrocarbons are used, ranging from aliphatic hydrocarbons such as , ethylene, and propylene to aromatic hydrocarbons such as benzene, toluene, cyclohexane, naphthalene, and anthracene. It's convenient. Generally, halogen has an inhibitory effect on the growth of carbon fibers, so it is desirable to use a hydrocarbon that does not contain halogen.

本発明に用いられる炭素基体の種類にとくに限定すべき
条件はないが、本発明の海胆状炭素微粒が複合材料用の
強化材として用いられる場合には、その炭素基体はガラ
ス状炭素のような硬質炭素たとえば活性炭粉末あるいは
石炭酸樹脂などの各種熱硬化性樹脂とくにメルホン化ポ
リスチレン微粒子を高温で焼成した炭化粉末が適してい
る。
There are no particular conditions to limit the type of carbon substrate used in the present invention, but when the sea bile carbon fine particles of the present invention are used as a reinforcing material for composite materials, the carbon substrate may be a carbon substrate such as glassy carbon. Suitable are hard carbon, such as activated carbon powder, or various thermosetting resins such as carbonic acid resin, particularly carbonized powder obtained by firing fine particles of melphonated polystyrene at high temperatures.

その際、硫黄を含む炭素材ではとくに鉄などの金属微粒
子あるいはケイ素などの非金属微粒子を担持添加する必
要はないが、硫黄を含まない炭素基体では、これらの微
粒子を担持添加し、同時に原料炭化水素ガス中に硫黄ま
たは硫黄化合物を混合添加することが有効である。
At this time, with carbon materials containing sulfur, it is not necessary to add metal particles such as iron or non-metal particles such as silicon as a support, but with carbon substrates that do not contain sulfur, these particles are added as a support and at the same time, the material is carbonized. It is effective to mix and add sulfur or a sulfur compound to hydrogen gas.

またこれらの微粒子添加物は微粉末状あるいは金属カル
ボニルや有機金属化合物の蒸気を原料炭化水素ガス中に
混合添加してもよいことは勿論である。
It goes without saying that these particulate additives may be added in the form of a fine powder or in the form of a vapor of a metal carbonyl or organometallic compound mixed into the raw hydrocarbon gas.

本発明の炭素繊毛が生成している炭素基体の断゛面の走
査型電子顕微鏡写真は、炭素繊毛が炭素基体の表面上で
直接生成しているのではなく、基体上に沈積した析出炭
素の2−5μmの厚さの層よシ成長していることを示す
。この析出炭素層と基体間に全く空孔は認められないの
で、炭素繊毛の炭素基体との密着性は実用上、十分な強
度をもつものと考えられる。また炭素繊毛自体の断面写
真は、規則的に繊維軸に平行な同心円状の炭素層面より
成り、X線、電子回折の解析結果よりその層間距離(l
oo2は3.46〜3.48^である。
A scanning electron micrograph of a cross section of a carbon substrate on which the carbon cilia of the present invention are formed shows that the carbon cilia are not directly formed on the surface of the carbon substrate, but are instead of precipitated carbon deposited on the substrate. It shows that the layer is grown to a thickness of 2-5 μm. Since no pores were observed between this precipitated carbon layer and the substrate, it is considered that the adhesion of the carbon cilia to the carbon substrate has sufficient strength for practical use. In addition, a cross-sectional photograph of the carbon cilia itself shows that the carbon cilia consist of regularly concentric carbon layer planes parallel to the fiber axis, and the interlayer distance (l
oo2 is 3.46 to 3.48^.

本発明の炭素繊毛は長さが普通数10μm程度であるの
でその引張強度と弾性率を通例の引張試験機により測定
することはできないが、一般に炭素繊維の強度は、その
直径が小さくなる程、指数関数的に増大する傾向を示す
ので本発明の平均直径が数μmの炭素繊毛は、一般基板
上に慣例法によシ生成させた直径の比較的大きくて長い
炭素繊維と較べて、よシ優れた引張強度と弾性率を示す
ものと推論される。
Since the length of the carbon cilia of the present invention is usually about several tens of micrometers, its tensile strength and elastic modulus cannot be measured with a common tensile tester, but in general, the strength of carbon fibers increases as the diameter becomes smaller. Since the carbon cilia of the present invention exhibits a tendency to increase exponentially, the carbon cilia of the present invention with an average diameter of several micrometers have a higher strength than the relatively large and long carbon fibers with a relatively large diameter produced on a general substrate by a conventional method. It is inferred that it exhibits excellent tensile strength and elastic modulus.

本発明の炭素質海胆状粒子は同じ重量の炭素粒子と比較
して単位重量当りの表面積すなわち比表面積が大きいこ
とは明らかである。またその集合体は密充填されること
なく適当な空隙率をもつもので、触媒活性を向上させ接
触反応を円滑に進行させるための各種金属触媒の担持体
として、その他、充填剤、吸着剤、戸材などの各種用途
に好適な材料である。このように、特異な性能を発揮で
きる特殊な形状の炭素材はいままでに全く知られていな
い新規な材料である。
It is clear that the carbonaceous sea bile particles of the present invention have a larger surface area per unit weight, that is, a larger specific surface area than carbon particles of the same weight. In addition, the aggregate has an appropriate porosity without being tightly packed, and can be used as a support for various metal catalysts to improve catalytic activity and facilitate catalytic reactions. It is a material suitable for various uses such as door materials. In this way, a carbon material with a special shape that can exhibit unique performance is a completely new and completely unknown material.

以下具体的に実施例により、さらに本発明の詳細な説明
するが、本発明がこれらに限定されるものではない。
EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited thereto.

実施例−1 5%のジビニルベンゼンとスチレンの共重合体微粒的4
17 K So、を60チ含む発煙硫1130 mlと
硫酸30mJの混合液を加え攪拌しながら90°Cで1
時間反応させた。得られたスルホン化ポリスチレンを磁
製反応管中で窒素ガス流通下で昇温速度1°C/min
で1000℃まで上げ5時間保持して焼成炭化した。(
第1図)このようにして得られた粒子径が90〜140
μmの硬質炭素は硫黄3.33wt%と灰分0−05 
wt%を含み、灰分はけい光X線分析・原子吸光分析に
よれば大部分がSiとp、、llでFeは全く検出され
なかった。この炭素微粒10■をあらかじめ弗酸で処理
し金属成分を除去したムライト質ボート(幅16mm、
長さ150mm)に載せ、内径25m5長さ1ooO+
amの石英反応管の中央部に挿入した後1000°Cに
保ち、水素ガスとともに25 vo1%の濃度のプロピ
レンガス混合物を毎分4omlの速度で供給した。2時
間後に第2図に示すような海胆状炭素微粒子が得られた
。これらの微粒子の表面上に密生した炭素繊毛の平均生
成密度は1粒子当り400〜450本(炭素粒の表面積
l−当り13000〜14000本)各繊維の平均径は
5.0μm1平均長さは120μmであった。またBE
T法により測定した原料炭素微粒子の比表面積10〜1
5 d/9は、炭素繊毛あ密生後は約60 rr?/g
に増大した。
Example-1 5% divinylbenzene and styrene copolymer fine grain 4
Add a mixture of 1130 ml of fuming sulfur containing 60 g of 17 K So and 30 mJ of sulfuric acid and heat at 90°C with stirring.
Allowed time to react. The obtained sulfonated polystyrene was heated in a porcelain reaction tube under nitrogen gas flow at a heating rate of 1°C/min.
The temperature was raised to 1000°C and held for 5 hours to perform firing and carbonization. (
Figure 1) The particle size obtained in this way is 90-140.
μm hard carbon has sulfur 3.33wt% and ash content 0-05
According to fluorescence X-ray analysis and atomic absorption spectrometry, the ash content was mostly Si and p, and no Fe was detected. A mullite boat (width 16 mm,
(length 150mm), inner diameter 25m5 length 1ooO+
After inserting the tube into the center of a quartz reaction tube, the tube was kept at 1000° C., and a propylene gas mixture having a concentration of 25 vol. 1% was supplied together with hydrogen gas at a rate of 4 oml/min. After 2 hours, sea bile-like carbon fine particles as shown in FIG. 2 were obtained. The average production density of carbon cilia densely grown on the surface of these fine particles is 400 to 450 cilia per particle (13,000 to 14,000 cilia per liter of surface area of carbon particles).The average diameter of each fiber is 5.0 μm, and the average length is 120 μm. Met. BE again
Specific surface area of raw carbon fine particles measured by T method: 10-1
5 d/9 is about 60 rr after carbon cilia are packed? /g
It increased to

実施例−2 市販のスルホ/基を含む陽イオン交換樹脂(アンバーラ
イ)Ii’L−120■)を水素形に変え、窒素ガス雰
囲気中で実施例1と同様の条件下に焼成し、得られた粒
径が500〜600μm硬質炭素(第3図)は硫黄2.
89wtチと灰分0.10チを含み、灰分に鉄分が全く
検出されなかった。この炭素微粒上にプロピレンを流し
て実施例1と同様の操作と条件下に炭素繊毛を生成させ
た。第4図に示すような繊毛の平均直径4.6μm長さ
9−0μm1生成密度500〜550本/粒(650本
/−)゛の海胆状炭素微粒が得られた。
Example 2 A commercially available sulfo/group-containing cation exchange resin (Amberly Ii'L-120) was converted into hydrogen form and calcined under the same conditions as Example 1 in a nitrogen gas atmosphere to obtain a The hard carbon with a grain size of 500 to 600 μm (Figure 3) contains sulfur 2.
It contained 89 wt tchi and ash content 0.10 tc, and no iron content was detected in the ash. Propylene was flowed over the carbon particles to generate carbon cilia under the same operation and conditions as in Example 1. As shown in FIG. 4, sea bile-like carbon fine grains with cilia having an average diameter of 4.6 μm, a length of 9-0 μm, and a production density of 500 to 550 cilia/grain (650 cilia/-) were obtained.

参考例−1 粒子径が130〜170μmの呉羽化学工業(株)製c
arbon m1cro balloon(第5図)は
実施例1および2に用いた炭素粒と異なり、硫黄含有率
は0.88 wt%と少量である軟質炭素粒子である、
灰分は0.65wt%で鉄分は全く検出されなかった。
Reference example-1 C manufactured by Kureha Chemical Industry Co., Ltd. with a particle size of 130 to 170 μm
arbon mlcro balloon (Figure 5) is a soft carbon particle with a small sulfur content of 0.88 wt%, unlike the carbon particles used in Examples 1 and 2.
The ash content was 0.65 wt% and no iron was detected.

この炭素微粒上にプロピレンを実施例1と同様の操作と
条件下に流したが、第6図に示すように粒子表面はフィ
ルム状およびスス状炭素でおおわれただけで炭素繊毛の
生成は認められなかった。
Propylene was flowed over these carbon particles under the same operation and conditions as in Example 1, but as shown in Figure 6, the particle surfaces were only covered with film-like and soot-like carbon, and no carbon cilia were observed. There wasn't.

実施例−3 和光紬薬(株)製の活性炭微粉末を炭素基体とし、炭化
水素としてベンゼン蒸気を用い炭素繊毛を密生させた結
果を第7図に示す。先づ活性炭を粉砕、篩分けを行ない
粒径500〜1200μmの微粒を濃塩酸とフッ酸の混
合溶液(1:1)で洗浄して不純物を十分に除去した。
Example 3 The activated carbon fine powder manufactured by Wako Tsumugi Co., Ltd. was used as the carbon substrate, and benzene vapor was used as the hydrocarbon to form dense carbon cilia. The results are shown in FIG. First, the activated carbon was crushed and sieved, and the fine particles having a particle size of 500 to 1200 μm were washed with a mixed solution of concentrated hydrochloric acid and hydrofluoric acid (1:1) to sufficiently remove impurities.

次にこの活性炭粒子を0.5 mol/lの硝酸第二鉄
溶液中に浸した後戸別・乾燥しさらに水素雰囲気中で5
00℃で1時間と1100℃で1時間加熱処理を行なっ
た。この処理により鉄含有率0.82wt%の鉄担持活
性炭が得られた。この場合の鉄の粒径分布は330〜1
100^(平均粒径は660^)であった。
Next, the activated carbon particles were immersed in a 0.5 mol/l ferric nitrate solution, separated and dried, and further soaked in a hydrogen atmosphere for 5 mol/l.
Heat treatment was performed at 00°C for 1 hour and at 1100°C for 1 hour. Through this treatment, iron-supported activated carbon with an iron content of 0.82 wt% was obtained. The particle size distribution of iron in this case is 330-1
100^ (average particle size is 660^).

この鉄担持活性炭0.29を炭素基体とし実施例1と略
々同じ装置と操作により炭素繊毛を生成させた。ただし
炭化水素としてベンゼン蒸気を用い、べ/ゼ/濃度12
.1 vat%、水素85.4 vol %、H2S 
2−5 vol %の混合ガスを40 il/minの
流速で炭素基体上に供給して1100℃で30分間熱分
解を行なった。第7図および第8図に示すように繊維径
が0.1〜2μm、長さ数100μmの炭素繊毛が5〜
10 X 10’本/−の非常に高い生成密度で生成し
ている毬栗状分散強化材が得られた。
Using this iron-supported activated carbon (0.29 g) as a carbon substrate, carbon cilia were produced using substantially the same equipment and operation as in Example 1. However, using benzene vapor as the hydrocarbon,
.. 1 vat%, hydrogen 85.4 vol%, H2S
A mixed gas of 2-5 vol % was supplied onto the carbon substrate at a flow rate of 40 il/min, and thermal decomposition was performed at 1100° C. for 30 minutes. As shown in Figures 7 and 8, there are 5 to 5 carbon cilia with a fiber diameter of 0.1 to 2 μm and a length of several 100 μm.
A chestnut-shaped dispersion reinforced material was obtained which was produced at a very high production density of 10 x 10' pieces/-.

参考例−2 実施例3と活性炭微粒子に鉄を含浸させないで、不純物
を除去した活性炭微粒子をそのまま炭素基体とし、H2
Sも添加することなく 12.1 vo1%の々ンゼン
を含む水素ガスを401Ll!/minの流速で通し1
100℃で30分間熱分解させた場合に、活性炭粒子表
面上に実施例3と較べて大きい繊維径10〜15μm1
長さ1〜5crnの炭素繊維が20〜40本/−の非常
に低い密度で生成し、活性炭全表面が炭素繊毛で覆われ
るまでには至らなかった。
Reference Example-2 Example 3 and activated carbon fine particles were not impregnated with iron, and the activated carbon fine particles from which impurities were removed were used as a carbon base as they were, and H2
401 liters of hydrogen gas containing 12.1 vol 1% of hydrogen gas without adding S! Pass through at a flow rate of /min 1
When thermally decomposed at 100°C for 30 minutes, fibers with a larger diameter of 10 to 15 μm1 were found on the surface of activated carbon particles compared to Example 3.
Carbon fibers with a length of 1 to 5 crn were produced at a very low density of 20 to 40/-, and the entire surface of the activated carbon was not covered with carbon cilia.

次に実施例3の鉄を0.82wt%含浸させた活性炭微
粒子を炭素基体とし、同様にH3Sを添加する?ニー 
ト’l < 12.l vol ’4のベンゼン濃度の
水素ガスを4 Q mJ/minの流速で通し1100
°Cで30分間熱分解を行なった。この場合には炭素繊
毛の生成密度が、鉄を含浸させない場合に較べて2倍程
度に増加したが同様に活性炭全表面を覆うまでに密生さ
せることはできなかった。
Next, the activated carbon fine particles impregnated with 0.82 wt% iron of Example 3 are used as a carbon base, and H3S is added in the same manner. knee
t'l < 12. Hydrogen gas with a benzene concentration of l vol '4 was passed through at a flow rate of 4 Q mJ/min.
Pyrolysis was carried out at °C for 30 minutes. In this case, the density of carbon cilia produced was approximately twice as high as that in the case where no iron was impregnated, but similarly it was not possible to grow them densely enough to cover the entire surface of the activated carbon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1に用いた原料の微小炭素粒子、第2図
は第1図の微小炭素粒子上でプロピレンを熱分解して炭
素繊毛を密生させた1個の海胆状炭素微粒子の走査型電
子顕微鏡写真。 第3図は実施例2に用いた原料の微小炭素粒子、第4図
は第3図の微小炭素粒子上でプロピレンを熱分解して炭
素繊毛を密生させた1個の海胆状炭素微粒子の走査型電
子顕微鏡写真。 第5図は参考例1に用いた原料の微小炭素粒子、第6図
は第5図の微小炭素粒子上でプロピレンを熱分解した場
合の状態を示す走査型電子顕微鏡写真。 第7図および第8図は実施例3の活性炭微粉上でベンゼ
ンを熱分解して炭素繊毛を密生させた毬栗状炭素微粉の
走査型電子顕微鏡写真。
Figure 1 is a scan of the fine carbon particles used as the raw material in Example 1, and Figure 2 is a scan of one sea bile-like carbon fine particle obtained by thermally decomposing propylene on the fine carbon particle shown in Figure 1 and densely covered with carbon cilia. Electron micrograph. Figure 3 is a scan of the fine carbon particles that were the raw material used in Example 2, and Figure 4 is a scan of one sea bile-like carbon particle obtained by thermally decomposing propylene on the fine carbon particle in Figure 3 to form dense carbon cilia. Electron micrograph. FIG. 5 is a scanning electron micrograph showing the state when propylene is thermally decomposed on the fine carbon particles of the raw material used in Reference Example 1, and FIG. 6 is a photograph showing the state when propylene is thermally decomposed on the fine carbon particles of FIG. FIG. 7 and FIG. 8 are scanning electron micrographs of the cone-shaped carbon fine powder obtained by thermally decomposing benzene on the activated carbon fine powder of Example 3 and densely growing carbon cilia.

Claims (1)

【特許請求の範囲】[Claims] 球状または非球状の微小炭素粉体の表面に、平均直径が
10μm以下の微小炭素繊毛を表面積1−当9100本
以上の高密度で生成させたことを特徴とする微小炭素繊
毛が密生した炭素粉体。
Carbon powder densely populated with micro carbon cilia, characterized in that micro carbon cilia with an average diameter of 10 μm or less are produced on the surface of spherical or non-spherical micro carbon powder at a high density of 9,100 or more per surface area. body.
JP57035266A 1982-03-08 1982-03-08 Carbon powder having thickly grown fine carbon cilia Granted JPS58156513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57035266A JPS58156513A (en) 1982-03-08 1982-03-08 Carbon powder having thickly grown fine carbon cilia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57035266A JPS58156513A (en) 1982-03-08 1982-03-08 Carbon powder having thickly grown fine carbon cilia

Publications (2)

Publication Number Publication Date
JPS58156513A true JPS58156513A (en) 1983-09-17
JPH0258203B2 JPH0258203B2 (en) 1990-12-07

Family

ID=12436993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57035266A Granted JPS58156513A (en) 1982-03-08 1982-03-08 Carbon powder having thickly grown fine carbon cilia

Country Status (1)

Country Link
JP (1) JPS58156513A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248857A (en) * 1987-04-03 1988-10-17 Showa Denko Kk Conjugated granular material of fiber and resin and production thereof
JPS63177930U (en) * 1987-05-06 1988-11-17
JP2006320840A (en) * 2005-05-19 2006-11-30 Mazda Motor Corp Catalyst for cleaning exhaust gas and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248857A (en) * 1987-04-03 1988-10-17 Showa Denko Kk Conjugated granular material of fiber and resin and production thereof
JPS63177930U (en) * 1987-05-06 1988-11-17
JPH0745538Y2 (en) * 1987-05-06 1995-10-18 三菱重工業株式会社 Reactor for methane decomposition
JP2006320840A (en) * 2005-05-19 2006-11-30 Mazda Motor Corp Catalyst for cleaning exhaust gas and its manufacturing method

Also Published As

Publication number Publication date
JPH0258203B2 (en) 1990-12-07

Similar Documents

Publication Publication Date Title
KR900008329B1 (en) Carbon fibiles method for producing same and composions containing same
US5780101A (en) Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide
US4900483A (en) Method of producing isotropically reinforced net-shape microcomposites
US20080233402A1 (en) Carbon black with attached carbon nanotubes and method of manufacture
US5814290A (en) Silicon nitride nanowhiskers and method of making same
JP2008519679A (en) Catalyst for producing carbon nanotubes by decomposing gaseous carbon compounds with heterogeneous catalysts
KR20100056998A (en) COMPOSITE CONSISTING OF NANOTUBES OR NANOFIBRES ON A β-SIC FILM
KR100875861B1 (en) Catalyst for producing carbon nanocoils, its production method and method for producing carbon nanocoils
McLean et al. Catalytic CVD synthesis of boron nitride and carbon nanomaterials–synergies between experiment and theory
KR20040005676A (en) Silicon carbide fibers essentially devoid of whiskers and method for preparation thereof
US20210010132A1 (en) Method for preparing surface-active onion-like carbon nanospheres based on vapor deposition
JP4405650B2 (en) Carbonaceous nanotube, fiber assembly, and method for producing carbonaceous nanotube
JP3817703B2 (en) Method and apparatus for producing coiled carbon fiber
JPS58156513A (en) Carbon powder having thickly grown fine carbon cilia
JPS58156512A (en) Fibrous carbon material having thickly grown fine carbon cilium
KR100251294B1 (en) Preparation of carbon microfiber by using transition metal particle supported on alkaline earth metal oxide
JP2003518563A (en) Method for producing high surface area vapor grown carbon fiber with high surface energy using carbon dioxide
KR20010104262A (en) Carbon fibrils and method for producing same
JP3451339B2 (en) Method for producing single-walled carbon nanotube
JPH03104927A (en) Coil-like carbon fiber and carbon composite material
RU2546154C1 (en) Nanocomposite based on nitrogen-containing carbon nanotubes with encapsulated cobalt and nickel particles and method of obtaining thereof
JP4048138B2 (en) Coin-stacked nanographite, method for producing the same, and catalyst for the production thereof
JPH01119340A (en) Catalyst using superfine carbon fiber
KR101580928B1 (en) synthetic method of Si-CNFs based on Co-Cu catalysts
IE902439A1 (en) Monocrystalline silicon carbide fibres and process for their¹manufacture