JPS58156173A - Method of separating air - Google Patents

Method of separating air

Info

Publication number
JPS58156173A
JPS58156173A JP3834782A JP3834782A JPS58156173A JP S58156173 A JPS58156173 A JP S58156173A JP 3834782 A JP3834782 A JP 3834782A JP 3834782 A JP3834782 A JP 3834782A JP S58156173 A JPS58156173 A JP S58156173A
Authority
JP
Japan
Prior art keywords
air
argon
oxygen
polymer membrane
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3834782A
Other languages
Japanese (ja)
Inventor
英昭 中村
日比 裕之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIYOUDOU SANSO KK
KYODO SANSO
Original Assignee
KIYOUDOU SANSO KK
KYODO SANSO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIYOUDOU SANSO KK, KYODO SANSO filed Critical KIYOUDOU SANSO KK
Priority to JP3834782A priority Critical patent/JPS58156173A/en
Publication of JPS58156173A publication Critical patent/JPS58156173A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、深冷法により分離される空気の成分組成の
比率を予めgえて供給することによシ所望する気体を効
率的に回収する空気分離方法に関する、 現在、m木、−嵩、アルゴンは1秦用ガスとして輸広い
鑵種にわたり12用されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air separation method in which a desired gas is efficiently recovered by supplying the air to be separated by a deep cooling method with the ratio of the component composition determined in advance. Argon is used in a wide range of exports as a gas for the Qin Dynasty.

これらのガスのほとんどは、空気を原料とする深冷分離
法による空気分離装置により製造されている。このIf
i’II&分喝法によシ分離の分層を行う場合、製造で
きる酸素、g素、アルゴンの磁的割合は、原料である空
気に含有する酸素、j1素、アルゴンの容量−の比、す
なわち21ニア8:lによりおのずから限定される・ しかし、酸素、童素、アルゴンの需要は製造されるガス
の量と一致することは少なく、常に**に見合った生産
をすることはできない。例えば。
Most of these gases are produced by air separation equipment using cryogenic separation using air as a raw material. This If
When performing layer separation using the i' II & fractionation method, the magnetic ratio of oxygen, g element, and argon that can be produced is determined by the volume ratio of oxygen, j element, and argon contained in the raw material air, In other words, it is naturally limited by 21Near 8:l. However, the demand for oxygen, hydrogen, and argon rarely matches the amount of gas produced, and it is not always possible to produce enough to meet **. for example.

アルゴンは生産したいが、酸素、l!素は生産したくな
いと思っても、アルゴンのみの製造は不可能である。そ
のため、従来は原料の空気量を増加して所要量のアルゴ
ンを分離−収すると共に酸素。
I want to produce argon, but oxygen, l! Even if you don't want to produce argon, it is impossible to produce only argon. Therefore, in the past, the amount of air in the raw material was increased to separate and collect the required amount of argon and oxygen.

粛素をむだに生産して−た。I produced Sukso in vain.

この発明は、かかる生産上のむだを排ML、アルゴン等
の含有比率の小さなガスを劫率よく回収するための空気
分離方法を提案するものである。
This invention proposes an air separation method for eliminating such waste in production and recovering gas with a low content ratio of ML, argon, etc. with a high conversion rate.

すなわち、この発明は *冷性により酸素1厘素、アル
ゴン等の空気中の成分気体を分離する方法において S
冷空気分離装置の入側に高分子膜を有する透過装置を設
け、この透過装置内を通して成分組成の比率を髪えた空
気を#!冷空気分JIS装置に供給する空気分離方法を
要旨とする。
That is, this invention is based on *a method for separating component gases in the air, such as oxygen, argon, etc.
A permeation device with a polymer membrane is installed on the inlet side of the cold air separation device, and air with a highly balanced composition is passed through this permeation device. The gist of this paper is an air separation method for supplying cold air to a JIS device.

混合気体を一分子膜に通すと気体を分離できることは鳩
知のことであるが、この発明は空気を高分子−に通すこ
とにより、所望する成分気体の濃度を^めるように成分
組成の比率を変えた空気を原料として深冷空気分離装置
に供給して分離することを特徴とする。
It is well known that gases can be separated by passing a mixed gas through a monomolecular membrane, but in this invention, by passing air through a polymer, the component composition can be changed to increase the concentration of the desired component gas. It is characterized by supplying air with a different ratio as a raw material to a cryogenic air separation device and separating it.

高分子膜としては、シリコンゴム、ポリカーボネート、
天然ゴム、ポリスチレン、ポリエチレン、ポリ弗化ビニ
ル等数多くのものが知られているが。
Polymer membranes include silicone rubber, polycarbonate,
Many materials are known, including natural rubber, polystyrene, polyethylene, and polyvinyl fluoride.

酸素生産にはw1素富化用の高分子膜を、11素生産に
F11素富化用の高分子膜を、さらにアルゴン生産には
アルゴン富化用の高分子−を選んで使用するのである。
For oxygen production, a polymer membrane for W1 element enrichment is selected, for 11 element production a polymer membrane for F11 element enrichment, and for argon production, a polymer membrane for argon enrichment is selected and used. .

J:記のごとく、生産すべき気体に適合した高分子膜を
迫すことにより、空気の成分を容量チで酸素15〜40
%、g@85〜60%、アルゴン0.5〜3囁の軸回で
組成を変えることができる。
J: As mentioned above, by applying a polymer membrane suitable for the gas to be produced, the air components can be reduced to 15 to 40% oxygen by volume.
%, g@85-60%, argon 0.5-3 whispers.

高分子膜を通して所望気体の含有比率を富化した原料空
気シま、一般に使用されて−る深冷空気分離装置に供給
して分離し所望する気体を回収するのである、 次に、この@明の実施例を図面に基いて説明する。
The raw air stream enriched with the desired gas content through a polymer membrane is supplied to a commonly used cryogenic air separation device, where it is separated and the desired gas is recovered. An example will be described based on the drawings.

第1図は高分子膜(1)を有する透過装置(2)と深冷
空気分備装置(4)を圧縮機(3)を介して接続したこ
の発明を実施するための装置である、 今、空気を透過装置(2)の供給口(5)より送入する
と高分子膜(1)を透過し、成分IIA成の比率を変え
られた空気は圧縮1it(3)で十分に圧縮されて深冷
空気分離装置(4)に送られ、ここで酸素、窒素、アル
ゴンの各ガスに分離され、所要ガスは回収される。
Figure 1 shows an apparatus for carrying out this invention, in which a permeation device (2) having a polymer membrane (1) and a deep-chilled air separation device (4) are connected via a compressor (3). When air is introduced from the supply port (5) of the permeation device (2), it permeates through the polymer membrane (1), and the air, whose ratio of component IIA has been changed, is sufficiently compressed by the compression unit (3). It is sent to a cryogenic air separation device (4), where it is separated into oxygen, nitrogen, and argon gases, and the required gases are recovered.

なお、I%S!1分子膜(1)を透過し全かりた非透過
性分子は排出口(6)より排出される。
In addition, I%S! All non-permeable molecules that have passed through the monomolecular membrane (1) are discharged from the discharge port (6).

上記圧縮11(3)は深冷空気分離装置(4)の入側直
前に設置した場合を示したが、透過装置(2)の入側に
設けてもよく、又透過装置(2)と深冷空気分離装置(
4)のそれぞれの入側に設けてもよい。
Although the above compressor 11 (3) is installed just before the inlet side of the cryogenic air separation device (4), it may also be installed at the inlet side of the permeation device (2), or it can be connected to the deep permeation device (2). Cold air separation equipment (
4) may be provided on each entrance side.

次に、この幽明の具体的実施例として#素を製造した場
合について説明する。
Next, as a specific example of this method, a case where # element is manufactured will be described.

次の条件のシリコン系複合膜を用いた透過装置に空気を
通して酸素を富化した原料空気を圧縮して摩冷分$11
1!置に送って酸素を分離回収した。
Air is passed through a permeation device using a silicone-based composite membrane under the following conditions, and the oxygen-enriched raw air is compressed and cooled for $11.
1! The oxygen was separated and recovered.

(1)、シリコン系複合膜 膿 厚:0.1μm (単位d−cs/−魯・C国Hg) 酸素(DIE過%lk  :  3.0〜6.0xlO
−”虞嵩の透過係数:1.8〜3.5 X I G−’
(1)原料空気 送入量: l 4 Q vd/m1ll出    @:
S呻/ctsG (■)製品酸素 回収量: 50 rrt/Win この際のrs過装置の1後にお1プる空気の組成をF表
に示す。
(1), Silicon-based composite membrane pus Thickness: 0.1 μm (Unit: d-cs/-Lu-C Hg) Oxygen (DIE per cent lk: 3.0-6.0xlO
-"Transmission coefficient of bulk: 1.8~3.5 X I G-'
(1) Raw material air feed rate: 1 4 Q vd/ml output @:
S/ctsG (■) Product oxygen recovery amount: 50 rrt/Win Table F shows the composition of the air that is pumped after the RS filter at this time.

又酸素1m’当りの電力原単位は、XS過装置を有しな
い従来法によれば0.45 KWhであるに対し。
In addition, the electric power consumption per 1 m' of oxygen is 0.45 KWh using the conventional method that does not have an XS filter.

本願発明の実施によれば0.41KWhでめり、004
KWh有利である。
According to the implementation of the present invention, 0.41KWh is achieved, 004
KWh is advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施するための装置例を示した説明
図である。 出願人 共同酸素株式会社
FIG. 1 is an explanatory diagram showing an example of an apparatus for carrying out the present invention. Applicant Kyodo Sanso Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 深冷法により酸素 it素、アルゴン等の空気中の成分
気体を分離する方法において、tR冷冷空気分11置置
入側に高分子膜を有する透過装置を設け、このS−装置
内を通して成分組成の比率を変えた空気を深冷2J!気
分離装置に供給することを特徴とrる空気分離方法・
In a method of separating component gases in air such as oxygen, argon, etc. by cryogenic cooling, a permeation device with a polymer membrane is installed on the tR chilled air component 11 placement side, and the components are passed through this S-device. Deep cooling 2J of air with different composition ratio! An air separation method characterized by supplying air to a gas separation device.
JP3834782A 1982-03-11 1982-03-11 Method of separating air Pending JPS58156173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3834782A JPS58156173A (en) 1982-03-11 1982-03-11 Method of separating air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3834782A JPS58156173A (en) 1982-03-11 1982-03-11 Method of separating air

Publications (1)

Publication Number Publication Date
JPS58156173A true JPS58156173A (en) 1983-09-17

Family

ID=12522741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3834782A Pending JPS58156173A (en) 1982-03-11 1982-03-11 Method of separating air

Country Status (1)

Country Link
JP (1) JPS58156173A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595405A (en) * 1984-12-21 1986-06-17 Air Products And Chemicals, Inc. Process for the generation of gaseous and/or liquid nitrogen
JPS61217671A (en) * 1985-01-14 1986-09-27 ザ・ビ−オ−シ−・グル−プ・ピ−エルシ− Separation from gas mixture
JP2018095527A (en) * 2016-12-15 2018-06-21 Jfeスチール株式会社 Oxygen feeding device in iron manufacture process and method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595405A (en) * 1984-12-21 1986-06-17 Air Products And Chemicals, Inc. Process for the generation of gaseous and/or liquid nitrogen
JPS61171523A (en) * 1984-12-21 1986-08-02 エアー.プロダクツ.アンド.ケミカルス.インコーポレーテツド Separation of gas
JPS61217671A (en) * 1985-01-14 1986-09-27 ザ・ビ−オ−シ−・グル−プ・ピ−エルシ− Separation from gas mixture
JP2018095527A (en) * 2016-12-15 2018-06-21 Jfeスチール株式会社 Oxygen feeding device in iron manufacture process and method thereof

Similar Documents

Publication Publication Date Title
US4597777A (en) Membrane gas separation processes
US4717407A (en) Process for recovering helium from a multi-component gas stream
EP0266745A2 (en) Process for separating components of a gas stream
EP0213525B1 (en) Hybrid membrane/cryogenic process for hydrogen purification
US5482539A (en) Multiple stage semi-permeable membrane process and apparatus for gas separation
US4190424A (en) Gas separation
NO981921L (en) Integrated solid-electrolyte, ionic conductor separator cooler
MXPA04002049A (en) High-pressure separation of a multi-component gas.
CA2042852A1 (en) Process for removing oxygen from crude argon
JPS61171523A (en) Separation of gas
EP0329962A3 (en) Method of separating organic compounds from air/permanent gas mixtures
JPH08173749A (en) Method for film separation of hydrogen through cascade of film increased in selectivity
EP1043558A3 (en) Integrated apparatus for generating power and/or oxygen enriched fluid, and process thereof
CN103140571A (en) Two-stage membrane process
US5306427A (en) Low pressure feed membrane separation process
DE59811013D1 (en) ARRANGEMENT FOR REMOVING WATER VAPOR FROM GASES OR GAS MIXTURES CONTAINING PRESSURE FROM HYDROCARBON
US4733526A (en) Separation of gas mixture
EP0110858A1 (en) Membrane gas separation process
JPS58156173A (en) Method of separating air
AU2003279662A1 (en) Method for separating a membrane and device for separating a membrane for enriching at least one gas component in a gas flow
EP0400823A3 (en) Method of separating a mixed hydrogen/hydrogen selenide vapor stream
CN109437200A (en) A kind of device and process of thick carbon monoxide purification
PL371266A1 (en) A separation method and separation apparatus of isotopes from gaseous substances
DE50106958D1 (en) Three-column system for the cryogenic separation of air
DE69622893T2 (en) METHOD FOR PURIFYING TETRAETHOXYSILANE