JPS58155845A - Ultrasonic contrast gas bubble generating method and apparatus - Google Patents

Ultrasonic contrast gas bubble generating method and apparatus

Info

Publication number
JPS58155845A
JPS58155845A JP3915082A JP3915082A JPS58155845A JP S58155845 A JPS58155845 A JP S58155845A JP 3915082 A JP3915082 A JP 3915082A JP 3915082 A JP3915082 A JP 3915082A JP S58155845 A JPS58155845 A JP S58155845A
Authority
JP
Japan
Prior art keywords
living body
blood
ultrasound
generating
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3915082A
Other languages
Japanese (ja)
Other versions
JPH0147179B2 (en
Inventor
三輪 博秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3915082A priority Critical patent/JPS58155845A/en
Publication of JPS58155845A publication Critical patent/JPS58155845A/en
Publication of JPH0147179B2 publication Critical patent/JPH0147179B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、超音波の反射により生体内部の計測や映像化
等を行なう際に、反射率の低い血液等に反射率の高い物
質として微少気泡を混入させる超音波用造影気泡発生方
法および装置に関する。
[Detailed Description of the Invention] Technical Field of the Invention The present invention relates to a method of mixing microbubbles as a substance with high reflectance into blood, etc. with low reflectance, when measuring or imaging the inside of a living body by reflecting ultrasonic waves. The present invention relates to a method and apparatus for generating contrast bubbles for ultrasound.

技術の背景 超音波反射による生体の断層像観察では、血液の反射係
数がその他の生体組織の反射係数に比して非常に低いた
めに心臓中の血流の情況例えば流速、流れの方向、流線
などを断層図上に映像化することが不可能に近い。又ド
プラー血流速測定でも同様の理由から誤差が生じやすい
。このためこの種の測定では反射率が高く且つ生体に無
害な物質を血液中に混入する造影操作(反射増強操作)
が行われる。造影物質としては、液体は殆ど超音波を反
射しないので、微小固体や微小気泡が用いられる。
Background of the technology When observing tomographic images of a living body using ultrasound reflection, the reflection coefficient of blood is very low compared to the reflection coefficient of other living tissues, so the blood flow in the heart, such as flow velocity, flow direction, flow rate, etc. It is almost impossible to visualize lines etc. on a tomographic map. Also, Doppler blood velocity measurement is prone to errors for the same reason. For this reason, in this type of measurement, a contrast operation (reflection enhancement operation) that mixes a substance with high reflectance and is harmless to living organisms into the blood.
will be held. As a contrast substance, a fine solid or a fine bubble is used since liquid hardly reflects ultrasonic waves.

従来技術と問題点 従来提案されている造影方法は、空気や炭酸ガスを熔解
した生理食塩水を静脈に注射し、これらの気体が血中で
反射率の高い微小気泡になることを利用したものである
。これを第1図で説明する。
Prior Art and Problems Conventionally proposed contrast imaging methods utilize the fact that physiological saline containing dissolved air or carbon dioxide gas is injected into a vein, and these gases form microbubbles with high reflectivity in the blood. It is. This will be explained with reference to FIG.

上記注射で造影された静脈血は静脈1を通って右心房に
返り、右心室に入る。これにより心臓右心系2の映像や
ドプラー計測が可能になる。しかしその後気泡は□肺動
脈3を通って肺4に達し、肺の毛細管4aでその管径(
はぼ8μm)以上の大きさの気泡は捕捉される。それ以
下の気泡は通過するものの、微小気泡はその微小な泡の
曲率半径による大きな表面張力に打ち勝つためその内圧
は非常に高く、このため泡中気体は血中に拡散溶解して
消失してしまい、結局微小気泡は肺静脈5から左心房の
途中で消失する。一般に微小気泡の寿命は短いので、上
牌等に静脈注射すると右心房に達する迄に8μm以下の
泡は既に消失している。このために左心系6の造影を行
えない。左心系6は肺4で酸素を摂取した血液を動脈7
を通して全身8の各種臓易8aに送り出す重要な部分で
あるからその撮像等が強く望まれる。左心系に入る肺静
脈5に上記注射を行なうと左心系の造影が可能になるは
ずであるが、肺静脈5は体表から深くにあり、且つ重要
な動脈7等と隣接しているのでここからの造影剤の注射
は非常に危険で実行不可能である。この様な理、由で従
来方法では肺静脈5〜心臓左心系6〜動脈7〜生体8と
いう経路の超音波による診断は不可能であった。
The venous blood contrasted by the injection returns to the right atrium through vein 1 and enters the right ventricle. This enables imaging and Doppler measurement of the right heart system 2 of the heart. However, the bubble then passes through the pulmonary artery 3 and reaches the lungs 4, where it enters the pulmonary capillary 4a with its tube diameter (
Bubbles larger than 8 μm are captured. Bubbles smaller than this will pass through, but the internal pressure of microbubbles is extremely high as they overcome the large surface tension due to the radius of curvature of the microbubbles, so the gas in the bubbles diffuses and dissolves into the blood and disappears. , the microbubbles eventually disappear midway from the pulmonary vein 5 to the left atrium. Generally, microbubbles have a short lifespan, so when intravenously injected into the upper lining, bubbles of 8 μm or less have already disappeared by the time they reach the right atrium. For this reason, contrast imaging of the left heart system 6 cannot be performed. The left heart system 6 transports blood that has taken in oxygen through the lungs 4 to the artery 7.
Since this is an important part of the body 8 that is sent to various organs 8a in the whole body 8, it is strongly desired to image it. If the above injection is performed into the pulmonary vein 5 that enters the left heart system, imaging of the left heart system should be possible, but the pulmonary vein 5 is located deep from the body surface and is adjacent to important arteries 7, etc. Therefore, injection of contrast agent from here is extremely dangerous and impractical. For these reasons, it has been impossible to diagnose the path from the pulmonary vein 5 to the left heart system 6 to the artery 7 to the living body 8 using ultrasound using conventional methods.

近年、この点を改善する方法として末梢静脈への注射で
血液に混入され、そして肺毛細管を通過してから発泡す
る物質で生体に無害なものの探索や、8μm以下の気泡
の消失を防ぐ超音波による附勢や表面活性剤の使用、或
いは気中分圧の操作等が提案されている(R,S、Me
ltzer他、Trans+wlssion   of
   Ultrasonic   Contrast 
  Through  theLungs 、 Ult
rasound  in  Med、&Bio1.+V
o17+ N。
In recent years, as a method to improve this point, efforts have been made to search for substances that are harmless to the living body, which are substances that are mixed into the blood when injected into peripheral veins and foam after passing through the pulmonary capillaries, and ultrasonic waves that prevent the disappearance of air bubbles smaller than 8 μm. The use of surfactants, the use of surfactants, and the manipulation of atmospheric partial pressure have been proposed (R, S, Me
ltzer et al., Trans+wlssion of
Ultrasonic Contrast
Through the Lungs, Ult
rasound in Med, &Bio1. +V
o17+N.

、4. pp377〜384.1981)。しかし、実
用化には未だ成功していない0例えば気泡をマイクロカ
プセルに入れて肺を通過させ、その後にカプセルを溶解
させて気泡を作るという方法では、8μm以下という微
小なマイクロカプセルの製作が困難である。また超音波
を与え、キャビテーションにより血液中に気泡を作ると
いう方法では、気泡を発生させる程の超音波は相当に強
力で、生体に有害である。又超音波による気泡発生と、
過酸化水素またはエーテルなどの発泡物質の静脈注射法
とを組合せることも提案されているが、これも実現して
いない。理由は、この方法では静脈1から心臓右心系2
、肺動脈3、肺毛細管4a、肺静脈5−−−−−という
複雑な過程を経なければならず、造影剤の性質に制約を
うける点と、生体の安全面からの制約も大きいからであ
る。
,4. pp377-384.1981). However, it has not yet been successfully put into practical use. For example, it is difficult to produce microcapsules smaller than 8 μm using the method of placing air bubbles in microcapsules and passing them through the lungs, and then dissolving the capsules to create air bubbles. It is. Furthermore, in the method of applying ultrasonic waves to create air bubbles in the blood by cavitation, the ultrasonic waves that generate air bubbles are quite powerful and are harmful to living organisms. Also, bubble generation due to ultrasonic waves,
A combination with intravenous injection of effervescent substances such as hydrogen peroxide or ether has also been proposed, but this has also not been realized. The reason is that in this method, vein 1 is connected to right heart system 2.
, the pulmonary artery 3, the pulmonary capillary 4a, and the pulmonary vein 5. This is because there are restrictions on the properties of the contrast agent, and there are also major restrictions from the standpoint of biological safety. .

本発明者等はこれらの制約を除去する超音波用造影気泡
発生方式を提案している。この方式の概略は、呼吸作用
により肺の毛細管から気体(蒸気を含む)の造影剤を血
中に取り込み、成分分圧の差や負圧形成によって血中に
微小気泡を生じさせようとするものである。この方式に
よれば生体全域で反射率の高い微小気泡が発生するので
、従来不可能とされていた左心系の造影も可能となる。
The present inventors have proposed an ultrasound contrast bubble generation method that eliminates these limitations. The outline of this method is that a gaseous contrast agent (including vapor) is taken into the blood through the capillaries of the lungs through the action of breathing, and microbubbles are created in the blood by differences in component partial pressures and the formation of negative pressure. It is. According to this method, microbubbles with high reflectance are generated throughout the living body, so it becomes possible to image the left heart system, which was previously considered impossible.

しかし生体の安全性を考慮すれば、静脈注射剤量、吸入
ガス成分量、吸入気の加圧度等はなるべく少ない方が望
ましく、又印加負静圧や超音波による負圧もなるべく低
いことが望ましい、又、従来の超音波だけによる負圧形
成では、心臓中血流の測定時等には肺中の空気によって
負圧形成用超音波の伝達が妨げられ有効に作用しない可
能性が強い。
However, considering the safety of the living body, it is desirable that the amount of intravenous injection, the amount of inhaled gas components, the degree of pressurization of inhaled air, etc. be as small as possible, and the applied negative static pressure and negative pressure due to ultrasound should also be as low as possible. Although it is desirable to create a negative pressure using only conventional ultrasound waves, there is a strong possibility that the transmission of the ultrasound waves for creating a negative pressure is not effective when measuring blood flow in the heart, etc., because the transmission of the ultrasound waves for creating a negative pressure is obstructed by the air in the lungs.

発明の目的 本発明は、電磁波や超音波等により生体中所望部位の血
液を加熱して血中に微小気泡を発生することにより血液
の反射率を増強するもので、静脈注射や呼吸等にる異物
の体内投与量を低減し、また負圧形成の場合の周囲雰囲
気負圧量や超音波強度を低減し、さらに肺内気体により
透過不能な負圧形成用超音波の代替方法をも提供するも
のである。
Purpose of the Invention The present invention increases the reflectance of blood by heating blood at a desired site in a living body using electromagnetic waves, ultrasonic waves, etc. and generating microbubbles in the blood. To reduce the amount of foreign substances injected into the body, to reduce the amount of negative pressure in the surrounding atmosphere and the intensity of ultrasound waves in the case of creating negative pressure, and to provide an alternative method to ultrasound waves for creating negative pressure, which cannot be penetrated by gas in the lungs. It is something.

発明の構成 本発明の超音波用造影気泡発生方法は、生体の所望部位
を電磁波及び又は超音波で加熱し、その血中に温度上昇
による微小気泡を発生させることを特徴とするものであ
り、またその装置は生体表面に配設される超音波振動子
および電磁場発生用電橋を備え、これらにより生体、に
加熱用電磁波及び負圧発生用超音波を加えるようにして
なることを特徴とするものである。
Structure of the Invention The method for generating contrast bubbles for ultrasound according to the present invention is characterized by heating a desired part of a living body with electromagnetic waves and/or ultrasonic waves, and generating microbubbles in the blood due to the temperature increase. Further, the device is characterized in that it is equipped with an ultrasonic transducer and an electric bridge for generating electromagnetic fields disposed on the surface of the living body, and is configured to apply electromagnetic waves for heating and ultrasonic waves for generating negative pressure to the living body. It is something.

発明の実施例 生体内の特定部位の加熱には従来ハイパー・サーミアと
して広(知られている技術を応用することができる。ハ
イパー・サーミアは超音波エネルギーの熱への変換やl
OMHzからマイクロ波領域の電磁波による誘導加熱等
によって生体中の発癌部を集中的に又はある広い範囲で
加熱し、癌細胞を死滅させるものである。つまり癌細胞
は熱に弱いが正常な細胞はそれ程弱くないという事実を
利用するものであるが、本発明でも正常な細胞を破壊し
ない程度の低いエネルギーで加熱する。
Embodiments of the Invention A technology conventionally known as hyperthermia can be applied to heat a specific site within a living body.Hyperthermia is a technology that converts ultrasonic energy into heat and
Cancer cells are killed by heating the carcinogenic site in the living body intensively or over a wide range by induction heating using electromagnetic waves in the OMHz to microwave range. In other words, the present invention utilizes the fact that cancer cells are sensitive to heat, but normal cells are not so weak, and the present invention also heats with low energy that does not destroy normal cells.

加熱による発泡現象は次の原理に基づくものである。即
ち■温度上昇による溶解度の減少:血液中に溶解してい
る各種気体は温度上昇により溶解度が減少し、過剰の気
体(空気、希ガス等)は遊離して気泡をつくる。■温度
上昇による低沸点物質の気化二面液中に溶解している各
種液体で低沸点物質(例えばエーテル)等が気化しガス
化して気泡をつくる。■温度上昇による分解:血液中に
熔解している物質、たとえばH2O2等が温度上昇で分
解し易くなり、分解生成物(H2O2では02)が気泡
をつくる。■温度上昇による化学反応促進:血液中に熔
解したある物質Aが血中成分、例えば酸素等と反応して
気体を生じ、その反応が加温により促進される場合は気
泡を生しる。予め二つ以上の物質A、B、−−−−・−
等を混入し、それら相互間だけで、又は血液成分と共に
反応する方法を用いることもできる。その−成分として
酵素等の触媒作用を有する物質を用いると特に有効であ
る。次に実施例を挙げる。
The foaming phenomenon caused by heating is based on the following principle. That is, (1) Decrease in solubility due to temperature rise: The solubility of various gases dissolved in blood decreases as temperature rises, and excess gases (air, rare gases, etc.) are liberated to form bubbles. ■ Vaporization of low boiling point substances due to temperature rise Low boiling point substances (such as ether) in various liquids dissolved in the two-sided liquid vaporize and gasify, creating bubbles. ■Decomposition due to temperature rise: Substances dissolved in blood, such as H2O2, become easier to decompose due to temperature rise, and the decomposition products (02 for H2O2) form bubbles. (2) Promotion of chemical reactions due to temperature rise: A certain substance A dissolved in blood reacts with blood components, such as oxygen, to produce gas, and if this reaction is accelerated by heating, bubbles are produced. Two or more substances A, B,------・-
It is also possible to use a method in which blood components are mixed together and react with each other alone or together with blood components. It is particularly effective to use a substance having a catalytic action such as an enzyme as the component. Next, examples will be given.

実施例1 生体の所望部位を電磁波または超音波で加熱するだけで
その血中に上記■〜■のいずれかまたはそれらの組合せ
により微小気泡を発生させる。
Example 1 Microbubbles are generated in the blood of a living body by any one of (1) to (4) or a combination thereof by simply heating a desired part of a living body with electromagnetic waves or ultrasonic waves.

実施例2 実施例1の加熱以外に、生体全体を負圧室内に入れたり
、超音波で局所的に負圧域を作ったりして血液中からの
気泡生成を促進する。
Example 2 In addition to the heating described in Example 1, the entire living body is placed in a negative pressure chamber or a negative pressure area is created locally using ultrasound to promote the generation of bubbles from the blood.

実施例3 実施例1または2の実施に先立ち、液状の反射増強用物
質を予め静脈等から血中に注射しておく。
Example 3 Prior to implementing Example 1 or 2, a liquid reflex-enhancing substance is injected into the blood via a vein or the like.

上述のエーテルやH2O2等はこの増強用物質に該当す
る。また加熱で分解又は化学反応を生じやすい物質を容
器壁とし、内部にCO2等の気体を有するマイクロカプ
セルのv、11生理食塩水等を用いることもできる。
The above-mentioned ether, H2O2, etc. correspond to this enhancing substance. Further, it is also possible to use a microcapsule V, 11 physiological saline solution, etc., which has a container wall made of a substance that easily decomposes or causes a chemical reaction when heated, and has a gas such as CO2 inside.

実施例4 実施例1または2の実施に先立ち、空気中の02以外の
成分(例えばN2)の一部又は全部をHe。
Example 4 Prior to implementing Example 1 or 2, some or all of the components other than 02 (for example, N2) in the air were replaced with He.

Ne、 Ar、 Kr+ Xe等やCO2,H2O,エ
ーテル等で置換した気体を呼吸により肺から摂取させる
ことで血液中に予め増強剤を導入しておく。
The enhancer is introduced into the blood in advance by ingesting gas substituted with Ne, Ar, Kr+Xe, etc., CO2, H2O, ether, etc. through the lungs.

実施例5 実施例1または2の実施に先立ち、実施例4の気体もし
くはそれを加圧した雰囲気、又は空気を加圧した雰囲気
中に生体を置き、呼吸作用による血中の増強剤濃度を高
めておく。加圧空気の場合は0 潜水病として知られる現象を逆に利用するものである。
Example 5 Prior to implementing Example 1 or 2, a living body is placed in the gas of Example 4 or an atmosphere in which it is pressurized, or in an atmosphere in which air is pressurized to increase the concentration of the enhancer in the blood due to respiratory action. I'll keep it. In the case of pressurized air, the phenomenon known as diving disease is used in reverse.

但し、その気泡径が毛細管を通過し得る程度(8μm位
)に加圧を抑える。
However, the pressure is kept to a level that allows the bubble diameter to pass through the capillary (approximately 8 μm).

実施例6 実施例4または5の雰囲気の形成領域を、吸排気用のマ
スクで呼吸器系(口、鼻、気管、肺部)に限定する。こ
のときその他の生体組織を常態におくことによって、肺
部で摂取した物質が他部で発泡し易くなるもので、連続
的な増強物質の取入と発泡を行なうことができる。
Example 6 The region where the atmosphere of Example 4 or 5 is created is limited to the respiratory system (mouth, nose, trachea, lungs) using a mask for intake and exhaust. At this time, by keeping the other living tissues in a normal state, the substance ingested in the lungs becomes easier to foam in other parts, and continuous intake and foaming of the reinforcing substance can be performed.

以上が本発明による超音波用造影気泡発生方法の各実施
例であるが、次に第2図を参照しながら本発明の超音波
用造影気泡発生装置の実施例を説明する。同図において
11はPZT等の電歪振動子板(または磁歪振動子板で
もよい)で、12゜13はその両面にメッキ等で形成さ
れた金属電極である。これらは負圧形成用の超音波発生
部を構成し、目的に応じて10KHz〜500KHzで
駆動される。振動子板11は凹面をなし、生体8中の目
的部位8aに集束した音場を与えて内部に1 負圧を形成する。実線領域Aはこの音場である。
The embodiments of the method for generating contrast bubbles for ultrasound according to the present invention have been described above. Next, an embodiment of the contrast bubble generating apparatus for ultrasound according to the present invention will be described with reference to FIG. In the figure, numeral 11 is an electrostrictive vibrator plate (or magnetostrictive vibrator plate may be used) such as PZT, and numerals 12 and 13 are metal electrodes formed by plating or the like on both surfaces thereof. These constitute an ultrasonic generator for creating negative pressure, and are driven at 10 KHz to 500 KHz depending on the purpose. The vibrator plate 11 has a concave surface and provides a focused sound field to the target region 8a in the living body 8, thereby forming a negative pressure inside. The solid line area A is this sound field.

15は超音波振動を生体8に伝える氷袋等の媒体である
。14は電極13と共に加熱電磁場Bを形成する対向電
極で、生体8に密着するように可撓性を持たせである(
コイルでもよい)。16は例えばセクタスキャン型の超
音波探触子で、Cはそのスキャン領域である。
15 is a medium such as an ice bag for transmitting ultrasonic vibrations to the living body 8. 14 is a counter electrode that forms a heating electromagnetic field B together with the electrode 13, and is made to have flexibility so as to be in close contact with the living body 8 (
(A coil may also be used.) 16 is, for example, a sector scan type ultrasonic probe, and C is its scan area.

負圧形成用の超音波と加熱用の電磁波とが同じ周波数で
よい場合は、電極12.14を接地して電極、13だけ
を駆動すればよい。異なる場合でも電極13を混合して
駆動してもよいが、電極13は接地し、電極12で負圧
形成用超音波の駆動を、また電極14で電磁場の駆動を
行うのが好ましい。独立した電磁場Bの駆動にはM H
z ” G Hzオーダーの周波数が用いられる。本例
は電磁場Bによる加熱と音場Aによる負圧形成の両面か
ら生体8内の血中に気泡を発生するものであるが、勿論
これに発泡物質の注入等を加えることもでき、逆に振動
子板11を省略して電磁場Bのみによる気泡発生とする
こともできる。また電磁場Bは超2 音波による加熱音場でもよい。
If the ultrasonic waves for forming a negative pressure and the electromagnetic waves for heating have the same frequency, it is sufficient to ground the electrodes 12 and 14 and drive only the electrodes 13. Although the electrodes 13 may be mixed and driven even in different cases, it is preferable that the electrode 13 be grounded, the electrode 12 be used to drive the ultrasonic waves for forming negative pressure, and the electrode 14 be used to drive the electromagnetic field. To drive the independent electromagnetic field B, M H
A frequency on the order of z'' GHz is used. In this example, bubbles are generated in the blood inside the living body 8 through both heating by the electromagnetic field B and negative pressure formation by the sound field A. Alternatively, the transducer plate 11 can be omitted and bubbles can be generated only by the electromagnetic field B. Furthermore, the electromagnetic field B may be a heating sound field by ultrasonic waves.

発明の効果 以上述べたように本発明によれば、加熱用の電磁場また
は音場により生体中任意の特定部位を加熱することで血
中に微小気泡を発生し、その反射率を増強できるので、
全身静脈系は勿論、全身動脈系の肺静脈、左心系、各種
動脈、各種臓器、各種末梢部等の血流の映像化や流速、
流量等の測定が可能となる。また、発泡物質を併用する
場合でもそれらの量を低減でき、また超音波による負圧
形成量等も低減できるので、安全性が高まる利点がある
Effects of the Invention As described above, according to the present invention, microbubbles can be generated in the blood by heating any specific part of the living body using a heating electromagnetic field or a sound field, and the reflectance thereof can be enhanced.
Visualization and flow velocity of blood flow not only in the systemic venous system, but also in the pulmonary vein of the systemic arterial system, the left heart system, various arteries, various organs, various peripheral parts, etc.
It becomes possible to measure flow rate, etc. Further, even when foaming materials are used in combination, the amount of foamed materials can be reduced, and the amount of negative pressure generated by ultrasonic waves can also be reduced, so there is an advantage of increased safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は生体内の循環系の説明図、第2図は本発明装置
の一実施例を示す説明図である。 図中、8は生体、11は負圧形成用電歪振動子、12.
13はその両面電極、14は電磁場形成用電極、Aは負
圧形成領域、Bは加熱電磁場である。 出願人 富士通株式会社 代理人弁理士  青  柳    稔 3
FIG. 1 is an explanatory diagram of a circulatory system in a living body, and FIG. 2 is an explanatory diagram showing an embodiment of the apparatus of the present invention. In the figure, 8 is a living body, 11 is an electrostrictive vibrator for forming negative pressure, and 12.
13 is an electrode on both sides thereof, 14 is an electromagnetic field forming electrode, A is a negative pressure forming area, and B is a heating electromagnetic field. Applicant Fujitsu Limited Representative Patent Attorney Minoru Aoyagi 3

Claims (8)

【特許請求の範囲】[Claims] (1)生体の所望部位を電磁波及び又は超音波で加熱し
、その血中に温度上昇による微小気泡を発生させること
を特徴とする超音波用造影気泡発生方法。
(1) A method for generating contrast bubbles for ultrasound, which is characterized by heating a desired part of a living body with electromagnetic waves and/or ultrasonic waves, and generating microbubbles in the blood due to the temperature increase.
(2)生体の周囲気圧を減じ及び又は負圧形成用の超音
波を照射して生体中に負圧を形成することにより、温度
上昇による微小気泡の発生を助長することを特徴とする
特許請求の範囲第1項記載の超音波用造影気泡発生方法
(2) A patent claim characterized in that the generation of microbubbles due to temperature rise is promoted by reducing the ambient pressure of the living body and/or irradiating ultrasonic waves for creating negative pressure to create negative pressure in the living body. The method for generating contrast bubbles for ultrasound according to item 1.
(3)予め発泡容易な物質を血中に注射しておくことを
特徴とする特許請求の範囲第1項または第2項記載の超
音波用造影気泡発生方法。
(3) The method for generating contrast bubbles for ultrasound according to claim 1 or 2, characterized in that an easily foamable substance is injected into the blood in advance.
(4)発泡容易な物質のガスを空気の酸素以外の成分の
一部又は全部と置換してなる空気を生体に呼吸させて該
ガスを予め血中に摂取しておくことを特徴とする特許請
求の範囲第1項または第2項記載の超音波用造影気泡発
生方法。
(4) A patent characterized in that the air obtained by substituting a gas of a substance that easily foams with some or all of the components other than oxygen in the air is breathed into a living organism, and the gas is ingested into the blood in advance. A method for generating contrast bubbles for ultrasound according to claim 1 or 2.
(5)予め空気を常圧より高く加圧し、またはその酸素
以外の成分の一部もしくは全部を発泡容易な物質のガス
に置換した空気を常圧より高く加圧し、その雰囲気中で
1生体に呼吸させることによって発泡物質の血中濃度を
高めておくことを特徴とする特許請求の範囲第1項また
は第2項記載の超音波用造影気泡発生方法。
(5) Air is pressurized in advance to a level higher than normal pressure, or some or all of the components other than oxygen are replaced with a gas of a substance that is easily foamable, and the air is pressurized to a level higher than normal pressure, and one living body is exposed to the air in that atmosphere. 3. A method for generating contrast bubbles for ultrasound according to claim 1 or 2, characterized in that the blood concentration of the foaming substance is increased by breathing.
(6)呼吸によって血中へ摂取する雰囲気の形成領域を
、マスクによって生体の呼吸器系に限定してなることを
特徴とする特許請求の範囲第4項または第5項記載の超
音波用造影気泡発生方法。
(6) Ultrasonic contrast imaging according to claim 4 or 5, characterized in that the formation region of the atmosphere ingested into the blood through breathing is limited to the respiratory system of the living body by means of a mask. How to generate bubbles.
(7)生体表面に配設される超音波振動子および電磁場
発生用電極を備え、これらにより生体に加熱用電磁波及
び負圧発生用超音波を加えるようにしてなることを特徴
とする超音波用造影気泡発生装置。
(7) An ultrasonic device comprising an ultrasonic transducer and an electromagnetic field generating electrode disposed on the surface of a living body, so that electromagnetic waves for heating and ultrasonic waves for generating negative pressure are applied to the living body. Contrast bubble generator.
(8)電磁波発生用電極の一方と負圧形成用超音波振動
子の駆動電極の一方が共用されることを特徴とする特許
請求の範囲第7項記載の超音波用造影気泡発生装置。
(8) The ultrasound contrast bubble generator according to claim 7, wherein one of the electromagnetic wave generation electrodes and one of the drive electrodes of the negative pressure generation ultrasound transducer are shared.
JP3915082A 1982-03-12 1982-03-12 Ultrasonic contrast gas bubble generating method and apparatus Granted JPS58155845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3915082A JPS58155845A (en) 1982-03-12 1982-03-12 Ultrasonic contrast gas bubble generating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3915082A JPS58155845A (en) 1982-03-12 1982-03-12 Ultrasonic contrast gas bubble generating method and apparatus

Publications (2)

Publication Number Publication Date
JPS58155845A true JPS58155845A (en) 1983-09-16
JPH0147179B2 JPH0147179B2 (en) 1989-10-12

Family

ID=12545075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3915082A Granted JPS58155845A (en) 1982-03-12 1982-03-12 Ultrasonic contrast gas bubble generating method and apparatus

Country Status (1)

Country Link
JP (1) JPS58155845A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024604A (en) * 2006-07-18 2008-02-07 Hitachi Ltd Foaming agent
WO2012132140A1 (en) * 2011-03-31 2012-10-04 パナソニック株式会社 Ultrasound contrast agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024604A (en) * 2006-07-18 2008-02-07 Hitachi Ltd Foaming agent
WO2012132140A1 (en) * 2011-03-31 2012-10-04 パナソニック株式会社 Ultrasound contrast agent

Also Published As

Publication number Publication date
JPH0147179B2 (en) 1989-10-12

Similar Documents

Publication Publication Date Title
US6585678B1 (en) Booster for therapy of disease with ultrasound and pharmaceutical IDLIQU composition containing the same
US5040537A (en) Method and apparatus for the measurement and medical treatment using an ultrasonic wave
JP5103180B2 (en) Intravascular ultrasound technology
Holt et al. Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material
Meltzer et al. Why do the lungs clear ultrasonic contrast?
JP3881007B2 (en) Inhalable contrast media
Burns et al. Microbubble contrast for radiological imaging: 1. Principles
US7081092B2 (en) Methods and apparatus for monitoring and quantifying the movement of fluid
US4316391A (en) Flow rate measurement
Miller et al. Gas-body-based contrast agent enhances vascular bioeffects of 1.09 MHz ultrasound on mouse intestine
Umemura et al. Enhancement of sonodynamic tissue damage production by second-harmonic superimposition: Theoretical analysis of its mechanism
JPH09505765A (en) Harmonic ultrasound imaging with microbubbles
JPH11509522A (en) Microbubble cavitation imaging induced by interrupted ultrasound
Dave et al. Noninvasive estimation of dynamic pressures in vitro and in vivo using the subharmonic response from microbubbles
Wu et al. Dual-frequency intravascular Sonothrombolysis: An in vitro study
Li et al. Bubble growth in cylindrically-shaped optical absorbers during photo-mediated ultrasound therapy
WO1999017810A1 (en) Methods of ultrasound imaging using echogenically persistent contrast agents
Dalecki WFUMB safety symposium on echo-contrast agents: Bioeffects of ultrasound contrast agents in vivo
Xu et al. Subharmonic scattering of sonovue microbubbles within 10–40-mmHg overpressures in vitro
Tickner Precision microbubbles for right side intracardiac pressure and flow measurements
JPS58155845A (en) Ultrasonic contrast gas bubble generating method and apparatus
Brown et al. Contrast enhanced sonography of visceral perfusion defects in dogs
Leodore et al. P5B-6 in vitro pressure estimation obtained from subharmonic contrast microbubble signals
JPS6055933A (en) Ultrasonic diagnostic apparatus
JPS58155846A (en) Ultrasonic contrast gas bubble generating method and apparatus