JPS5815486A - High efficiently operating air conditioner - Google Patents

High efficiently operating air conditioner

Info

Publication number
JPS5815486A
JPS5815486A JP56112794A JP11279481A JPS5815486A JP S5815486 A JPS5815486 A JP S5815486A JP 56112794 A JP56112794 A JP 56112794A JP 11279481 A JP11279481 A JP 11279481A JP S5815486 A JPS5815486 A JP S5815486A
Authority
JP
Japan
Prior art keywords
load
tap
taps
efficiency
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56112794A
Other languages
Japanese (ja)
Inventor
Joji Ochi
越智 譲次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP56112794A priority Critical patent/JPS5815486A/en
Publication of JPS5815486A publication Critical patent/JPS5815486A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/04Single phase motors, e.g. capacitor motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To enable an air conditioner to operate at high efficiency without receiving influence of variation of load by a method wherein a tap corresponding to load is selected out of the plural number, of taps and is connected to an electric power source according to a command from a load detecting means. CONSTITUTION:The plural number of the taps containing tap 7, for example, the three taps 5-7, are led out from the main winding 2, the tap 5 is made as the heavy-load tap, the tap 6 as the middle-load tap, and the tap 7 is made as the light-load tap respectively. The load detecting means 8 is arranged at the proper place of a discharge pipe, etc., of a refrigerating circuit, and the tap corresponding to load is selected out of the taps 5-7 of the plural number of the signal phase motor 1 of air conditioner to be connected to the electric power source according to the command of the load detecting means 8 thereof.

Description

【発明の詳細な説明】 本発明は圧縮機用電動機を負荷の変動には影響されず常
に最高の効率の状態で運転せl〜めでエネルギー有効比
(EER)の向上をはかり得る高効率運転形空気調和機
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a high-efficiency operation type that allows a compressor motor to be operated at the highest efficiency without being affected by load fluctuations, thereby improving the effective energy ratio (EER). Regarding air conditioners.

エネルギー有効比が高い空気調和機は電力消費面での節
減効果が犬であるところから、省エネルギー形機械とし
て実情に即するものであるか、現状ではEER値は夏期
の標準的な温度条件に準じて規定されているので、高E
ER機と評価されたものであっても、必らずしも1年間
を通じて最善の省エネルギー効果が期待されるとは限ら
ない。
Air conditioners with a high effective energy ratio have a significant saving effect in terms of power consumption, so whether they are appropriate as energy-saving machines or not, the current EER value is based on standard temperature conditions in summer. High E
Even if an ER machine is evaluated as an ER machine, it is not necessarily the case that the best energy saving effect can be expected throughout the year.

それは、空気調和機が凝縮温度、蒸発温度の変化によっ
て、圧縮機用電動機に加わる負荷は大きく変動すること
から、年間を平均して室内、外温度の変動が可成り大き
い状況の下で常に最高のEERを示すものではないから
であって、EER値を左右する各種要因のうちで電動機
の性能による変化は影響が大きい要素の一つであること
がわかっている。
Because the load applied to the compressor motor of an air conditioner fluctuates greatly depending on changes in condensing and evaporating temperatures, the load on the compressor motor of an air conditioner always reaches its maximum level under conditions where the average indoor and outdoor temperatures fluctuate considerably throughout the year. It is known that among the various factors that influence the EER value, changes due to the performance of the electric motor are one of the factors that have a large influence.

特に、EERに影響を与えるといわれる電動機の効率は
印加電圧を不変とした場合に軽負荷になる程悪くなり、
捷だ50ヘルツ、60ヘルツ交流電源を共用する汎用の
電動機を50ヘルツ地帯で運転するときには、電動機の
効率か最高値を示すときの負荷値よりも軽い状態で運転
さ八ることか多くなり、EER低下の影響は一層顕著と
なる。
In particular, the efficiency of the motor, which is said to affect EER, worsens as the load becomes lighter when the applied voltage remains unchanged.
When operating a general-purpose electric motor that shares a 50 Hz and 60 Hz AC power supply in the 50 Hz zone, it is often operated at a load lighter than the motor's efficiency or maximum value. The effect of the decline in EER will become even more significant.

か\る負荷の変動による効率増減の問題は、・一般家庭
用空気調和機に用いられている単相誘導電動機の場合に
大きくあられれるものであって、従来の空気調和機がE
ERの改善効果は特定した負荷条件の場合においてのみ
発揮され、年間の全シーズンを通してのEER向上が期
されない事実に鑑みて、本発明はその改善をはかるべく
成されたものであって、特に空気調和機の圧縮機を駆動
するだめのコンテンザ形弔相誘導電動機を高効率形電動
機に形成して、これを負荷に対して常に最高効率の状態
で運転し得るようにしたところに特徴を有している。
The problem of increase or decrease in efficiency due to load fluctuations occurs greatly in the case of single-phase induction motors used in general household air conditioners, and conventional air conditioners
In view of the fact that the ER improvement effect is exhibited only under specified load conditions and that EER improvement cannot be expected throughout all seasons of the year, the present invention was made to improve this, and in particular, The feature is that the condenser-type induction motor that drives the compressor of the harmonizer is formed into a high-efficiency motor so that it can always operate at the highest efficiency for the load. ing.

しかして上述する如き高効率形電動機に形成するための
手段としては、主巻線と補助巻線のうち少くとも一方の
巻線から終端のタップを含み高負荷タップ、中負荷タッ
プ、低負荷タップ等負荷の稈度によって選択する複数の
タップを引き出して、一種の巻線について一つのタップ
を選択し定格電圧の電源に接続した場合に、停0Jトル
ク点速度よりも大きく同期速度よりも小さくて、かつ定
格速度に近い速度で駆動すると共に、相応する負荷に対
し最高効率の下で円方を発し得る如くなしたものである
Therefore, as a means for forming a high-efficiency motor as described above, a high-load tap, a medium-load tap, and a low-load tap including a terminal tap from at least one of the main winding and the auxiliary winding are used. If you draw out multiple taps selected according to the culm of equal load, select one tap for a kind of winding, and connect it to the power supply with the rated voltage, the stop 0J torque point speed is larger than the synchronous speed and smaller than the synchronous speed. , and is driven at a speed close to the rated speed, and is designed to be able to emit circular motion under maximum efficiency for a corresponding load.

さらに不発り]の内容を明らかにするために、添イ・1
図面に示す例を参照しながら以下詳細に説明する。
Furthermore, in order to clarify the contents of
A detailed explanation will be given below with reference to an example shown in the drawings.

第1図乃至第3図は本発明空気調和機の各側に係る電気
回路要部展開図であって、[1)は冷媒を圧縮するため
の圧縮機に連結したコンデンザ形単相誘導電@lJ機で
あり、特に固定子の巻線を等側内に示している。
Figures 1 to 3 are exploded views of the main parts of the electric circuit on each side of the air conditioner of the present invention, and [1] is a condenser type single-phase induction electric wire connected to a compressor for compressing refrigerant. It is a 1J machine, and in particular the stator windings are shown on the same side.

固定子の巻線−:主巻線(2)と補助巻線(3)とから
なり、主巻線(2)には定格電圧の交流電源を直接印加
し、補助巻線+3)Icは起動・運転コンデンサ(4)
を直列に介して前記交流電源を印加せしめるものである
Stator winding: Consists of main winding (2) and auxiliary winding (3), AC power at rated voltage is directly applied to the main winding (2), and auxiliary winding +3) Ic is activated.・Operation capacitor (4)
The alternating current power is applied through the two in series.

」二記コンデンサ形単相誘導電動機(1)(以下単相モ
ータ(1)と称す)における負荷と運転効率の関係は第
10図において曲線(I)で示すようになるものであっ
て100%負荷で効率が83%であるものが、軽負荷例
えば55%負荷では73%程度に約10%低下し、これ
が電力ロスにつながるものである。
The relationship between the load and operating efficiency of the capacitor type single-phase induction motor (1) (hereinafter referred to as the single-phase motor (1)) is as shown by the curve (I) in Figure 10, which is 100%. The efficiency is 83% under load, but it drops by about 10% to about 73% under light load, for example, 55% load, and this leads to power loss.

か\る特性(曲線■)の電動機に対して固定子巻線のイ
ンピーダンスを変えてゆき、曲線(rl)〜曲線(IV
>で示すような特性に変えることができたとすると、例
えば曲線(IV)の場合では55%負荷時でも電動機効
率が約83%となり、前述した曲線(I)の特性の場合
に比し効率が約10%向上したことになる。
By changing the impedance of the stator winding for a motor with the following characteristics (curve ■), curve (rl) to curve (IV
For example, in the case of curve (IV), the motor efficiency would be approximately 83% even at 55% load, and the efficiency would be lower than in the case of the characteristic of curve (I) described above. This is an improvement of approximately 10%.

一般の動力機械に用いる電動機では、常に定格一杯の最
高負荷で使用するように設計されているので問題は生じ
ないが、空気調和機の場合は、シーズン中を通じても、
さらに1日だけについてみても最高負荷で使用するとき
は極く僅かであって殆んどの場合が、最高効率を示す負
荷には未達の軽負荷になる状態で使用される特殊な運転
状態であり、従って圧縮機用発動機が常に最高の効率の
下で運転される如く制御されたとすると、高効率維持に
よる省エネルギー而での効果は甚だ大と云うべきであり
、本発明の意義はこの点に存するものである。
Electric motors used in general power machinery are designed to always be used at the maximum rated load, so this does not cause any problems, but in the case of air conditioners, even during the season,
Furthermore, even if you look at just one day, there are only a few times when the machine is used at maximum load, and in most cases, it is a special operating condition in which it is used at a light load that does not reach the load that shows maximum efficiency. Therefore, if the compressor engine is controlled so that it is always operated at the highest efficiency, the effect of energy saving by maintaining high efficiency can be said to be enormous, and the significance of the present invention lies in this point. It exists in

しかして、単相モータ(1)の巻数(インピーダンス)
を決定するに当り、負荷と効率の関係において最適な条
件を見出すべく本発明者等によって多くの実験を重ねだ
結果、60%負荷〜100 %負荷変動に対して最高の
効率の下で運転できる条件は、固定子巻線の巻数を最大
20%程度の範囲で増減する手段で解決できることがわ
かった。
Therefore, the number of turns (impedance) of the single-phase motor (1)
In determining this, the inventors conducted many experiments to find the optimal conditions in the relationship between load and efficiency, and as a result, it was possible to operate with the highest efficiency for 60% load to 100% load fluctuations. It has been found that this condition can be solved by increasing or decreasing the number of turns of the stator winding within a maximum range of about 20%.

しかも、この増減手段によると単相モータ(11の速度
(回転数)は実質的に変動しなく、停動トルク(最大ト
ルク)の点における速度よりも大きく同期速度よりも小
さくて、かつ定格速度に近い速度の間の変動に止まるも
のである。
Moreover, according to this increase/decrease means, the speed (rotation speed) of the single-phase motor (11) does not substantially change, is greater than the speed at the point of stall torque (maximum torque), is smaller than the synchronous speed, and is at the rated speed. The fluctuation remains between speeds close to .

この−合、固定巻線のうち主巻線(2)では巻数を減1
〜るにしたがりて停動トルクが大となり高負荷運転が可
能であると共に、モータ効率の最高点−、モータ出力の
大きい方に移行するものであり、一方、補助巻線(3)
では巻数を増す((シたかつて停動トルクが大となって
高負荷運転が可能であると共に、モータ効率の最高点は
モータ出力の大きい方に移行するものである。
In this case, the number of turns in the main winding (2) of the fixed windings is reduced by 1.
As the winding increases, the stall torque increases and high-load operation becomes possible, and the motor efficiency shifts to the highest point and the motor output increases.On the other hand, the auxiliary winding (3)
When the number of turns is increased ((), the stall torque increases and high load operation becomes possible, and the highest point of motor efficiency shifts to the side with a larger motor output.

このようにして得られた基本的条件にもとついて、捷ず
第1区々示の回路は、主巻線(2)から終端のタップ(
7)を含んで複数例えば3つのタップ(5)〜(7)を
引き出して、タップ(5)を100 %負荷に相当する
高負荷タップに、タップ(6)を80%負荷(で相当す
る中負荷タップに、タップ(7)を65%負荷に相当す
る軽負荷タップに夫々形成せしめている。
Based on the basic conditions obtained in this way, the circuit shown in the first section can be constructed from the main winding (2) to the terminal tap (
7), for example, three taps (5) to (7), tap (5) as a high-load tap corresponding to 100% load, and tap (6) as a medium-load tap corresponding to 80% load. Among the load taps, tap (7) is formed as a light load tap corresponding to 65% load.

一方、補助巻線(3)は特にタップを設けることなく、
コンデンサ(4)を介して電源が印加されるようにして
いる。
On the other hand, the auxiliary winding (3) does not require any taps.
Power is applied via a capacitor (4).

か\る構造となすことにより、汎用の単相モーフ(1)
全高効率形電動機に形成することができ、100 %負
荷時には高負荷タップ(5)を、80%負荷時には中負
荷タップ(6)を、捷だ65%負荷時には軽負荷タップ
(7)を、それぞれ主巻線(2)の一端側とさせて定格
電圧の電源に接続すれば、負荷の増減変動に左右されず
、約80%の高効率を維持した運転が可能となる(第4
図参照)。
By creating a structure like this, a general-purpose single-phase morph (1)
It can be configured into an all-high efficiency motor, with a high load tap (5) at 100% load, a medium load tap (6) at 80% load, and a light load tap (7) at 65% load. By connecting one end of the main winding (2) to a power supply with the rated voltage, it is possible to operate at a high efficiency of approximately 80% without being affected by fluctuations in load (No. 4)
(see figure).

、E配合タップ(5)〜(7)を選択するに際して、こ
れが自動的にかつ円滑に行わJ″Lるこ七が実用機とし
ての必要条件であり、従ってr4を相モータ(1)に関
連せしめて負荷検出手段(8)を設けている。
, when selecting the E combination taps (5) to (7), this is done automatically and smoothly.J''L ruko7 is a necessary condition for a practical machine, and therefore r4 is related to the phase motor (1). At least a load detection means (8) is provided.

この負荷検出手段+8) id: 1iff記圧縮機に
係る冷凍回路の適宜個所に、例えば吐出管に配設して、
圧縮機に力旧Jっる負荷の大きさを冷媒圧力あるい1は
温度の変化によって検出し得るようにしたものであり、
第1図々示例は圧力検出部を吐出管に配設して、凝縮圧
力が1.8.7 A:tl/cr! Gを超えたとき(
温度換算50°C超過)に閉成する出力接点(9)と、
同じく18、7 ktj/cd G以下で14.4 k
f7crl Gを超えた範囲(温度換算50°C≧t〉
40°C)で閉成する出力接点(10)と、同じ< 1
4.4 kv’crylG以下(温度換算40°C以下
)で閉成する出力接点(11)の3つの出力接点を圧縮
機に加わる負荷の程度によって選択的に作動せしめるよ
うに形成した構造をなしている。
This load detection means +8) id: 1iff is installed at an appropriate location in the refrigeration circuit related to the compressor, for example, in the discharge pipe,
The magnitude of the load on the compressor can be detected by changes in refrigerant pressure or temperature.
In the example shown in Figure 1, a pressure detection section is installed in the discharge pipe, and the condensation pressure is 1.8.7 A: tl/cr! When exceeding G (
an output contact (9) that closes when the temperature exceeds 50°C (temperature equivalent);
Also 14.4 k below 18.7 ktj/cd G
Range exceeding f7crl G (temperature conversion: 50°C≧t>
output contact (10) that closes at 40 °C) and the same < 1
4.4 It has a structure in which the three output contacts (11) that close at kv'crylG or less (temperature equivalent: 40°C or less) are selectively activated depending on the degree of load applied to the compressor. ing.

かく形成l−だ負荷検出手段(8)は、出力接点(9)
を電源の一極と高負荷タップ(5)との間に接続し、出
力接点(10)を電源の一極と中負荷タップ(6)との
間に接続し、出力接点(11)を電源の一極と軽負荷タ
ップ(7)との間に接続する。
The load detection means (8) thus formed has an output contact (9).
is connected between one pole of the power supply and the high-load tap (5), the output contact (10) is connected between one pole of the power supply and the medium-load tap (6), and the output contact (11) is connected to the power supply Connect between one pole and the light load tap (7).

次に第1図、第4図および第7図を参照しつつ空気調和
機の運転態様について説明する。
Next, the operating mode of the air conditioner will be described with reference to FIGS. 1, 4, and 7.

空気調和機において凝縮圧力と必要動力とは第7図の曲
線(WO)の如くなり、外気温度が下り凝縮圧力が下る
と必要動力が下ってくることは当然であり、これに対応
して電動機TI)に対する入力も下ってくる。
In an air conditioner, the condensing pressure and required power are as shown in the curve (WO) in Figure 7, and it is natural that the required power will decrease as the outside temperature decreases and the condensing pressure decreases. The input to TI) also decreases.

ここで、主巻線(2)と補助巻線(3)とに全電圧を印
加した効率制御を行わない運転の場合には、空調負荷が
下ってゆくにつれて、電動機(1)への入力は曲線(W
O)で示される曲線を電動機効率で割った曲線(wl)
の如く、途中捷では実線(イ)に沿って下りさらに破線
(ニ)に沿って下ってゆく。
Here, in the case of operation without efficiency control in which full voltage is applied to the main winding (2) and the auxiliary winding (3), as the air conditioning load decreases, the input to the motor (1) decreases. Curve (W
A curve obtained by dividing the curve indicated by O) by the motor efficiency (wl)
As shown, at the halfway point, the train goes down along the solid line (A) and then down along the broken line (D).

−力、第1図々示装置を有する本考案の場合においては
、凝縮温度が50°Cを超えている高負荷時には、出力
接点(9)が閉成して高負荷タップ(5)を電源に接続
している運転となって電lIJ機(1)への入力は曲線
(W、)のうちの線分(イ)に沿って変動し、この状態
では高効率(80%)運転を行っている。
- In the case of the present invention having the device shown in Figure 1, when the condensing temperature exceeds 50°C and the output contact (9) closes, the high load tap (5) is powered on. The input to the electric IJ machine (1) fluctuates along the line segment (A) of the curve (W, ), and in this state it operates with high efficiency (80%). ing.

この状態から負荷が軽くなって凝縮温度が50°C≧t
〉40°Cの範囲で一:出力接点(10)が閉成した状
態となって、電動機(1)への入力は線分(ロ)に沿っ
て変動し、依然として高効率(80%)運転を行う。
From this state, the load becomes lighter and the condensing temperature becomes 50°C≧t
〉1 in the range of 40°C: The output contact (10) is closed and the input to the motor (1) fluctuates along the line segment (b), still operating at high efficiency (80%). I do.

さらに負荷が軽くなって凝縮温度が40°C以下となる
と出力接点(11)が閉成するので電動機(1)への入
力は線分0・)K沿った変動をなし、この場合も高効率
(80%)運転を行う。
Furthermore, when the load becomes lighter and the condensing temperature falls below 40°C, the output contact (11) closes, so the input to the motor (1) fluctuates along the line segment 0·)K, and in this case too, high efficiency is achieved. (80%) Perform driving.

このように負荷の高低には左右されず高効率を保持した
運転が成されることから、第7図において線分(ロ)、
(−)、(ニ)で囲捷れる領域が電動機(+)K対する
入力の差に相当するところとなり、年間を通してこの領
域でとれだけの時間運転されたかて省エネルギーの値か
決定され、その分電力節減が果されたこととなるのであ
る。
In this way, operation is achieved that maintains high efficiency regardless of the load level, so in Fig. 7, line segment (b),
The area surrounded by (-) and (d) corresponds to the difference in input to the electric motor (+)K, and the energy saving value is determined by operating in this area for a certain amount of time throughout the year. This means that power savings have been achieved.

以上説明した例は単相モータ(1)の固定子巻線のうち
主巻線(2)K高効率運転のための処理を施したもので
あるか、次に第2図々示のものは補助巻線(3)から高
負荷タップ(15) (巻数大)と、中負荷タップ(1
6) (巻数中)と、軽負荷タップ(17) (巻数小
)との3つのタップを引き出して、各タップ(15)〜
(17)と111記ロシデンザ(4)との間に負荷検出
手段(8)を設けた構造である。
In the example explained above, the main winding (2) K of the stator winding of the single-phase motor (1) has been treated for high efficiency operation. From the auxiliary winding (3) to the high load tap (15) (large number of turns) and the medium load tap (1
6) Pull out the three taps (medium windings) and the light load tap (17) (small windings), and connect each tap (15) to
It has a structure in which a load detection means (8) is provided between (17) and the 111th loss detector (4).

この例は前述したように補助巻線(3)の巻数を増すこ
とによって停動トルクを大きくすることができると共に
、巻線数を減らすと、高効率点が低負荷方向に移動する
特性を示すものであって(第5図参照)、第8図に示す
如く省エネルギー効果を奏する高効率運転が第1図々示
のものと同様に行われる。
As mentioned above, this example shows that the stall torque can be increased by increasing the number of turns of the auxiliary winding (3), and when the number of turns is reduced, the high efficiency point moves toward low load. (See FIG. 5), and as shown in FIG. 8, high efficiency operation with an energy saving effect is performed in the same way as shown in FIG. 1.

さらに第3区々示のものは、第1図、第2図に各図示し
だものの複合てなり、主巻線(2)と補助巻線(3)と
のいずれからも高負荷タップ+5+ 、 (+5)、中
負荷タップ+6+ 、 (+6)、軽負荷タップ+7+
 、 (+7)を夫々引き出して各出力接点(9)〜(
11)、(19j〜(21)を前記各タップに対応させ
て接続してなる負荷検出手段(8)を設けたものであり
、タップの選択に当って一各巻線(2)(3)(でつい
てそれぞれ対応するものを1つつつ選ぶよってすると古
が必要であって、その特性は第6図および第9図に示さ
力、る如くなり、負荷の変化に応してより効果的に高効
率運転を果すことができる。
Furthermore, the one shown in the third section is a composite of those shown in FIGS. 1 and 2, and has a high load tap +5+ from both the main winding (2) and the auxiliary winding (3). (+5), medium load tap +6+, (+6), light load tap +7+
, (+7) respectively and connect each output contact (9) to (
11), (19j to (21)) are provided, and a load detection means (8) is provided in which each of the windings (2), (3) ( If we choose one corresponding one for each, we will need an old one, and its characteristics will be as shown in Figures 6 and 9, so that it can be increased more effectively in response to changes in load. Achieves efficient operation.

なお、第1図乃至第3図において(12)は接触子(1
2−1)〜(12−3)を有する電動機発停用電磁接触
器、f+3)(は単相モータ(1)と連動して発停する
室外側ファンモーフ、(14)は端子盤、(2のは過電
流継電器を夫々示している。
In addition, in FIGS. 1 to 3, (12) is the contact (1
2-1) to (12-3), f+3) (is an outdoor fan morph that starts and stops in conjunction with the single-phase motor (1), (14) is a terminal board, ( 2 shows overcurrent relays, respectively.

本発明は以上各実施例によって詳細に説明したように、
主巻線(2)と補助巻線(3)のうち少くとも一方から
、終端のタップを含み高負荷タップ、中負荷タップ、低
負荷タップ等負荷の程度によって選択する複数のタップ
を引き出して、一種の巻線について一つのタップを選択
し定格電圧の電源に接続した場合に、停動トルク点速度
よりも大きく同期速度よりも小さくて、かつ定格速度に
近い速度で駆動すると共に、相応する負荷て対し最高効
率の下で出力を発し得る高効率形電動機に形成してなる
フンデンザ形単相誘導電動機(1)を圧縮機に連結する
一方、該圧縮機に加わる負荷の程度を検出する負荷検出
手段(8)を吐出管なと冷凍回路の適宜個所に配設して
、この負荷検出手段(8)の指令により、前記単相誘導
電動機t+)の複数のタップのうち負荷に対応するタッ
プを選択して電源に接続するようにしたから、負荷変動
が激しい機械の部類にはいる空気調和機を、原動機とし
ての電動機(1)が常に最高効率で付勢されるように制
御することによって、エネルギー有効比が高い状態で年
間を通じて運転可能さなり、省エネルギーの効果は頗る
犬である。
As described in detail in each embodiment above, the present invention has the following features:
From at least one of the main winding (2) and the auxiliary winding (3), a plurality of taps, including the terminal tap, are selected depending on the degree of load, such as high load taps, medium load taps, low load taps, etc., When one tap is selected for a type of winding and connected to a power source with rated voltage, it is driven at a speed that is greater than the stall torque point speed and less than the synchronous speed, and close to the rated speed, and the corresponding load is applied. A fundenza-type single-phase induction motor (1) formed as a high-efficiency motor that can generate output at maximum efficiency is connected to a compressor, and a load detection device detects the degree of load applied to the compressor. A means (8) is disposed at an appropriate location in the discharge pipe or the refrigeration circuit, and in response to a command from the load detection means (8), a tap corresponding to the load is selected from among the plurality of taps of the single-phase induction motor (t+). By selectively connecting the air conditioner to the power source, which is classified as a type of machine with severe load fluctuations, the electric motor (1) as the prime mover is controlled so that it is always energized at maximum efficiency. It can be operated throughout the year with a high effective energy ratio, and the energy saving effect is outstanding.

また、本発明は単相誘導電動機N)の複数のタップを選
択して電源に接続する制御態様であって制御系の簡素化
はもとより信頼性向ならびに単純化もとつく低コストの
経済的利点を有するものである。
In addition, the present invention is a control mode in which multiple taps of a single-phase induction motor (N) are selected and connected to a power source, which not only simplifies the control system but also provides economic advantages such as improved reliability and low cost based on the simplification. It is something that you have.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明空調機の各側に係る電気回路
要部展開図、第4図乃至第6図−1夫々第1図乃至第3
図に対応する電動機効率変化線図、第7図乃至第9図は
同じく運転条件と電動機入力との関係を示す線図である
。第10図は一般の中相誘導電動機における出力−効率
線図である。 f+)・・・コシデンザ形単相誘導電動機、(2)・・
・主巻線、      (3)・・・補助巻線、゛(4
)・・・起動運転コンデンサ、(8)・・・負荷検出手
段、+5) 、 (+5)・・高負荷タップ、+6+ 
、 (+6)・・・中負荷タップ、+7) 、 (+7
)・・・低負荷タップ、第1図 第3図 第2図 ′ 第4図 電勅磯出力(W)
Figures 1 to 3 are exploded views of the main parts of electric circuits on each side of the air conditioner of the present invention, and Figures 4 to 6-1, respectively.
The motor efficiency change diagrams corresponding to the figures and FIGS. 7 to 9 are diagrams similarly showing the relationship between operating conditions and motor input. FIG. 10 is an output-efficiency diagram of a general medium-phase induction motor. f+)...Koshidenza type single-phase induction motor, (2)...
・Main winding, (3)... Auxiliary winding, ゛(4
)...Start-up operation capacitor, (8)...Load detection means, +5), (+5)...High load tap, +6+
, (+6)...Medium load tap, +7) , (+7
)...Low load tap, Figure 1 Figure 3 Figure 2 ' Figure 4 Electric power output (W)

Claims (1)

【特許請求の範囲】[Claims] ■、主巻線(2)と補助巻線(3)のうち少くとも一方
から終端のタップを含み高負荷タップ、中負荷タップ、
低負荷タップ等負荷の程度によって選択する複数のタッ
プを引き出して、一種の巻線について一つのタップを選
択し定格電圧の電源に接続した場合に、停動トルク点速
度よりも大きく同期速度よりも小さくて、かつ定格速度
に近い速度で駆動すると共に、相応する負荷に対し最高
効率の下で出力を発し得る高効率形電動機に形成してな
るコンデンサ形単相誘導電動機fl+を圧縮機に連結す
る一方、該圧縮機に加わる負荷の程度を検出する負荷検
出手段(8)を吐出管など冷凍回路の適宜個所に配設し
て、この負荷検出手段(8)の指令により、前記単相誘
導電動機(1)の複数のタップのうち負荷に対応するタ
ップを選択して電源に接続するようにしたことを特徴と
する高効率運転形空気調和機。
■, a high load tap, a medium load tap, including a terminal tap from at least one of the main winding (2) and the auxiliary winding (3);
If you draw out multiple taps selected according to the degree of load, such as low load taps, and select one tap for a type of winding and connect it to a power source with rated voltage, the stall torque point speed is greater than the synchronous speed. A capacitor-type single-phase induction motor fl+ formed into a small, high-efficiency motor capable of driving at a speed close to the rated speed and generating output at maximum efficiency for a corresponding load is connected to a compressor. On the other hand, a load detection means (8) for detecting the degree of load applied to the compressor is disposed at an appropriate location in the refrigeration circuit such as a discharge pipe, and a command from the load detection means (8) causes the single-phase induction motor to (1) A highly efficient operation type air conditioner characterized in that a tap corresponding to a load is selected from among the plurality of taps and connected to a power source.
JP56112794A 1981-07-18 1981-07-18 High efficiently operating air conditioner Pending JPS5815486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56112794A JPS5815486A (en) 1981-07-18 1981-07-18 High efficiently operating air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56112794A JPS5815486A (en) 1981-07-18 1981-07-18 High efficiently operating air conditioner

Publications (1)

Publication Number Publication Date
JPS5815486A true JPS5815486A (en) 1983-01-28

Family

ID=14595676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56112794A Pending JPS5815486A (en) 1981-07-18 1981-07-18 High efficiently operating air conditioner

Country Status (1)

Country Link
JP (1) JPS5815486A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04200293A (en) * 1990-11-29 1992-07-21 Hitachi Ltd Ventilating device
US6841967B2 (en) 2000-12-27 2005-01-11 Lg Electronics Inc. Coil winding number variable type motor and coil winding number varying method for varying cooling and heating capacity of reciprocating compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495610B1 (en) * 1970-09-05 1974-02-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495610B1 (en) * 1970-09-05 1974-02-08

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04200293A (en) * 1990-11-29 1992-07-21 Hitachi Ltd Ventilating device
US6841967B2 (en) 2000-12-27 2005-01-11 Lg Electronics Inc. Coil winding number variable type motor and coil winding number varying method for varying cooling and heating capacity of reciprocating compressor

Similar Documents

Publication Publication Date Title
US6092378A (en) Vapor line pressure control
Qureshi et al. Variable-speed capacity control in refrigeration systems
US8278778B2 (en) HVAC/R battery back-up power supply system having a variable frequency drive (VFD) power supply
US8193660B2 (en) HVAC/R system having power back-up system with a DC-DC converter
US6772607B2 (en) Refrigerating device
JP4615008B2 (en) System and method for increasing the output horsepower and efficiency of an electric motor
US8299646B2 (en) HVAC/R system with variable frequency drive (VFD) power supply for multiple motors
US6616416B1 (en) Methods and system for motor optimization using capacitance and/or voltage adjustments
US8299653B2 (en) HVAC/R system with variable frequency drive power supply for three-phase and single-phase motors
TWI321391B (en) Chiller system and drive system for a compressor thereof
US9543884B2 (en) Motor control device of air conditioner using distributed power supply
US20070159129A1 (en) Variable Speed Drive for a Chiller System with a Switched Reluctance Motor
KR20190040296A (en) Driving device, air conditioner and driving method of electric motor
KR20190042705A (en) Driving device, air conditioner and driving method of electric motor
CN110892634B (en) Driving device, air conditioner and driving method
KR960002564B1 (en) Compressor drive system
JPWO2019021450A1 (en) Air conditioner, air conditioning system, and control method of air conditioner
KR20190040297A (en) Drive device and air conditioner, and control method of compressor
JP6689464B2 (en) Drive device, compressor, air conditioner, and method for driving permanent magnet embedded motor
JPS5815486A (en) High efficiently operating air conditioner
JPH0335519B2 (en)
WO2021199135A1 (en) Air conditioner
Hwang et al. The evaluation of energy saving performance for the modular design centrifugal chiller
JP7183472B2 (en) Motor drives, air conditioners and refrigerators
KR102455073B1 (en) Rectifier for controlling dc link voltage