JPS5815469A - Ac/dc converter - Google Patents
Ac/dc converterInfo
- Publication number
- JPS5815469A JPS5815469A JP56111727A JP11172781A JPS5815469A JP S5815469 A JPS5815469 A JP S5815469A JP 56111727 A JP56111727 A JP 56111727A JP 11172781 A JP11172781 A JP 11172781A JP S5815469 A JPS5815469 A JP S5815469A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- coil
- transformer
- thyristor
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 claims description 11
- 238000004804 winding Methods 0.000 claims description 10
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/305—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a thyratron or thyristor type requiring extinguishing means
- H02M3/315—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
- Inverter Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はAO−DCコンバータに関するものであ P
る。AO電源を所要のDC電源に変換するコンバータに
おいて、AC電源を整流してDoにしたものを高速スイ
ッチング素子を用いてスイッチングして25 KHz程
度のA、Oにし、そのACを再び変圧の
整流して所望4DOにするものがあるが、その種のコン
バータは特にトランスが小形化されるために装置全体の
小形軽量化を推進できる大きなメリットがある。しかし
この種の高速スイッチング素子を用いて一担周波数を高
周波に変換するものにあっては、高速スイッチング素子
のオフ時に逆方向高圧起電力が生じるため、それを除去
する算段を施さねばならなかったり、あるいは除去しな
いまでもその高圧出力に耐え得るような電気部品を使用
しなければならないなど、何がしかの対策を施さねばな
らなかった。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an AO-DC converter. In a converter that converts AO power into the required DC power, the AC power is rectified to Do, which is switched using a high-speed switching element to become A and O at about 25 KHz, and then the AC is rectified by the transformer again. There is a converter that can achieve the desired 4DO using a converter, but this type of converter has the great advantage of being able to reduce the size and weight of the entire device because the transformer is particularly small. However, in devices that use this type of high-speed switching element to convert a single frequency to a high frequency, a high voltage electromotive force is generated in the reverse direction when the high-speed switching element is turned off, so it is necessary to take measures to remove it. Otherwise, some kind of countermeasure had to be taken, such as using electrical parts that could withstand the high voltage output even if they were not removed.
例えば、この種従来の事例を第1図によって説明すれば
、商用のA、 0電源1をブリッジ整流器2で整流し、
そのプラス出力をトランス4の一次コイルN1の一端に
入力し、その−次コイルN1の他端は高速スイッチング
素子5を介して接地している。For example, to explain this type of conventional case with reference to Fig. 1, a commercial A, 0 power supply 1 is rectified by a bridge rectifier 2,
The positive output is inputted to one end of the primary coil N1 of the transformer 4, and the other end of the negative coil N1 is grounded via the high speed switching element 5.
6 P
高速スイッチング素子5としてはゲートターンオフサイ
リスクを使用している。3と6は各々コンデンサであり
、7は上記のサイリスタ5を制御する回路である。なお
トランス4の二次側にはブリッジ形整流器8と電解コン
デンサ9が設けられていて、所定電圧のD Oが負荷に
加えられるようになっている。この回路において、サイ
リスタ5がONとなり、整流器2の出力Eがトランス4
の一次コイルN1に流れて二次コイルN2に一次コイル
と二次コイルの巻数に応じた電圧が誘起されるとともに
、サイリスタ5がOFFすると、今度は電流の遮断に伴
う電力すなわち今までとは逆方向の高圧起電力が発生し
て図中矢印の如く流れ、トランスの二次コイルN、にも
当然前述正方向の場合と同様−次コイルと二次コイルの
巻数比に応じた値の電圧となって誘起される。整流器2
の出力電圧と比べて逆方向起電力は相当高い値であり9
図示すれば第2図(1)中の破線のごときである。この
ような高圧成分がトランスによシ昇圧されるのであるか
ら、トランス二次側に現われる直流においても。6P As the high-speed switching element 5, a gate turn-off switch is used. 3 and 6 are capacitors, and 7 is a circuit for controlling the thyristor 5 described above. A bridge rectifier 8 and an electrolytic capacitor 9 are provided on the secondary side of the transformer 4, so that a predetermined voltage DO is applied to the load. In this circuit, the thyristor 5 is turned on and the output E of the rectifier 2 is transferred to the transformer 4.
A voltage flows through the primary coil N1 and is induced in the secondary coil N2 according to the number of turns of the primary and secondary coils, and when the thyristor 5 is turned off, the electric power accompanying the interruption of the current, that is, the opposite of what was before, is generated. A high-voltage electromotive force is generated in the direction and flows as shown by the arrow in the figure, and the secondary coil N of the transformer naturally receives a voltage of a value corresponding to the turns ratio of the primary coil and the secondary coil, just as in the case of the positive direction described above. It is induced by becoming. Rectifier 2
The reverse electromotive force is quite high compared to the output voltage of 9
If illustrated, it looks like the broken line in FIG. 2 (1). Since such high voltage components are boosted by the transformer, even the direct current appearing on the secondary side of the transformer.
特開昭58−15469 (2)
第2図(2)中の破線のごとく高圧リップル成分として
存在し、電気部品の耐圧性能を上げなければならない原
因をなしていたと同時に、他の機器へ雑音障害等の悪影
響を与える原因をなしていた。JP-A-58-15469 (2) As shown by the broken line in Figure 2 (2), it exists as a high-voltage ripple component, causing the need to improve the voltage resistance of electrical components, and at the same time causing noise interference to other equipment. This caused negative effects such as
本発明は上記従来の欠点に鑑みてなされたもので、トラ
ンスの入力側巻線の適宜巻数の個所に中間タップを立て
て一次コイルと三次コイルを形成し、サイリスクON時
の電流経路と同opp時の逆方向高圧電流の経路を独立
させ、それらのうちどちらの経路の入力に対してもトラ
ンス出力側巻線には一定電圧が誘起されるようにして、
従来例で述べたようなトランス出力に異常なリップルが
現われないようにしている。The present invention has been made in view of the above-mentioned drawbacks of the conventional technology.The present invention has been made in view of the above-mentioned drawbacks of the conventional technology.The present invention has been developed by installing an intermediate tap at a suitable number of turns on the input side winding of a transformer to form a primary coil and a tertiary coil. The paths of the reverse high voltage current are made independent, and a constant voltage is induced in the transformer output winding in response to input from either path.
This prevents abnormal ripples from appearing in the transformer output as described in the conventional example.
すなわち以下に実施例を用いてその構成を説明すれば、
第6図のとおりとなる。第6図中、第1図と同一符号の
ものは第1図のものと同一ないし同等のものである。That is, if the configuration is explained below using an example,
As shown in Figure 6. In FIG. 6, the same reference numerals as in FIG. 1 are the same as or equivalent to those in FIG.
さてこの第6図の回路において、トランス4は入力側巻
線に中間タップを立てて一次コイルN1と三次コイルN
3を形成するとともに、出力側巻線に P
二次コイルを形成して構成されている。商用A、 0を
整流する整流器の出力はトランス入力巻線の中間タップ
に接続し、−次コイルの中間タップでない側はサイリス
タ5のアノードに接続し、同カソードは接地する。この
サイリスタ5のゲートとカソードにはスイッチング制御
用の回路7が接続されている。サイリスタ5のアノード
ヵンード間にはダイオード11とコンデンサ乙の直列回
路が接続し、その場合ダイオードはサイリスタ5と方向
性を一致させている。また、これらダイオード11とコ
ンデンサ6の接続点と三次コイルN3の中間タップでな
い側の一端間はダイオード12で接続されている。この
ダイオード12の方向性は前記ダイオード11と順方向
である。そして三次コイルN3の両端間はコンデンサ1
3で接続されている。なお、このコンデンサ13はなく
ともよいことがある。そしてトランス入力側巻線におけ
る一次コイルNI+三次コイルN3.および出力側巻線
の二次コイルN2の巻数の関係は。Now, in the circuit shown in Fig. 6, the transformer 4 has an intermediate tap on the input winding, and the primary coil N1 and the tertiary coil N1.
3 and a P secondary coil is formed on the output side winding. The output of the rectifier that rectifies the commercial A, 0 is connected to the center tap of the transformer input winding, and the side of the -order coil other than the center tap is connected to the anode of the thyristor 5, whose cathode is grounded. A switching control circuit 7 is connected to the gate and cathode of this thyristor 5. A series circuit of a diode 11 and a capacitor B is connected between the anode cand of the thyristor 5, and in this case, the diode and the thyristor 5 have the same directionality. Further, a diode 12 is connected between the connection point between the diode 11 and the capacitor 6 and one end of the tertiary coil N3 on the side other than the center tap. The directionality of this diode 12 is in the forward direction of the diode 11. And a capacitor 1 is connected between both ends of the tertiary coil N3.
Connected by 3. Note that this capacitor 13 may not be necessary in some cases. And primary coil NI+tertiary coil N3 in the transformer input side winding. And the relationship between the number of turns of the secondary coil N2 of the output side winding is as follows.
N257.、 N2.、−
P
になっている。ただし式中■p: サイリスクOFF
時の逆方向起電力
E : 整流器2の出力
電圧
このような回路構成において、トランスの一次コイル、
二次コイル、三次コイルの巻数を二次コイルの出力電圧
が一定になるようにしであるので。N257. , N2. , -P. However, ■p in the formula: Cyrisk OFF
Reverse electromotive force E: Output voltage of rectifier 2 In this circuit configuration, the primary coil of the transformer,
The number of turns of the secondary coil and tertiary coil is adjusted so that the output voltage of the secondary coil remains constant.
サイリスタ5のON時にトランス−次コイルN1によっ
て二次コイルN2に誘起される電圧と、サイリスクのO
FF時に第6図の矢印の如く三次コイルN3に高電圧が
流れて二次コイルN2に誘起される電圧とが同一値とな
るので、平滑後負荷1oに対してリップルのないきれい
なりoを与えることができる。The voltage induced in the secondary coil N2 by the transformer secondary coil N1 when the thyristor 5 is turned on and the O of the thyristor
During FF, a high voltage flows through the tertiary coil N3 as shown by the arrow in Figure 6, and the voltage induced in the secondary coil N2 becomes the same value, so a clean voltage without ripples is given to the load 1o after smoothing. be able to.
以上本発明によれば、トランス入力側巻線を中間タップ
によって適宜巻数の一次コイルと三次コイルに設定し、
サイリスクON時の整流器からの正常電圧の入力につい
ても又サイリスクOFF時の逆方向高圧起電力の入力に
ついても、トランス出力側二次コイルには常に同一電圧
が誘起されるようにしたので、電気部品の不必要な高耐
圧化は無用7 P
となり、また他の機器への雑音障害等の悪影響の心配も
無用となった。As described above, according to the present invention, the transformer input side winding is set to have an appropriate number of turns as a primary coil and a tertiary coil by means of an intermediate tap,
The same voltage is always induced in the secondary coil on the output side of the transformer, regardless of the input of normal voltage from the rectifier when the risk is ON or the input of reverse high voltage electromotive force when the risk is OFF. There is no need to increase the voltage resistance of the 7P, and there is no need to worry about negative effects such as noise interference on other equipment.
第1図d従来のAC−DCコンバータの電気回路図。
第2図は同AC−DCコンバータの動作波形図であり。
(1)は二次コイル側に誘起される電圧の動作波形図。
(2)は負荷に印加する電圧の動作波形図、第3図は2
・・・ブリッジ形整流器 4・・・トランス5・・・
高速スイッチング素子 6・・・コンデンサ11.12
・・・ダイオード 16・・・コンデンサN1・
・・−次コイルN2・・・二次コイルN3・・三次コイ
ル
出願人 日立熱器具株式会社
第2図FIG. 1d is an electrical circuit diagram of a conventional AC-DC converter. FIG. 2 is an operating waveform diagram of the AC-DC converter. (1) is an operation waveform diagram of the voltage induced on the secondary coil side. (2) is an operating waveform diagram of the voltage applied to the load, and Figure 3 is 2
...Bridge type rectifier 4...Transformer 5...
High-speed switching element 6... Capacitor 11.12
...Diode 16...Capacitor N1.
...-Secondary coil N2...Secondary coil N3...Tertiary coil Applicant Hitachi Thermal Appliances Co., Ltd. Figure 2
Claims (1)
N1)と三次コイル(N3)を形成した入力側巻線と二
次コイル(N2)を形成した出力側巻線で構成されるト
ランス(4)の前記中間タップにAOを整流したDCの
正極を接続し、前記−次コイル(N1)の中間タップで
ない側の一端に高速スイッチング素子(5)のアノード
を接続し、同カソードを接地し、壕だ同アノード・カソ
ード間には前記高速スイッチング素子と順方向のダイオ
ード01)とコンデンサ(6)の直列回路をコンデンサ
(6)がカソード側となるように接続し、これらダイオ
ードIとコンデンサ(6)の接続点と前記三次コイル(
N3)の中間タップでない側の一端とを前記ダイオード
01と順方向のダイオードQ2で接続したことを特徴と
するA、 0− D Oコンバータ。By providing an intermediate tap, the primary coil with an appropriate number of turns (
The positive pole of the DC rectified with AO is connected to the intermediate tap of the transformer (4), which is composed of the input winding forming the N1), the tertiary coil (N3), and the output winding forming the secondary coil (N2). The anode of the high-speed switching element (5) is connected to one end of the secondary coil (N1) on the side other than the intermediate tap, and the cathode is grounded. A series circuit of a forward diode 01) and a capacitor (6) is connected such that the capacitor (6) is on the cathode side, and the connection point between these diodes I and the capacitor (6) is connected to the tertiary coil (
A, 0-DO converter, characterized in that one end of N3) on the side other than the intermediate tap is connected to the diode 01 through a forward diode Q2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56111727A JPS5815469A (en) | 1981-07-17 | 1981-07-17 | Ac/dc converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56111727A JPS5815469A (en) | 1981-07-17 | 1981-07-17 | Ac/dc converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5815469A true JPS5815469A (en) | 1983-01-28 |
JPS6349472B2 JPS6349472B2 (en) | 1988-10-04 |
Family
ID=14568629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56111727A Granted JPS5815469A (en) | 1981-07-17 | 1981-07-17 | Ac/dc converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5815469A (en) |
-
1981
- 1981-07-17 JP JP56111727A patent/JPS5815469A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6349472B2 (en) | 1988-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5796598A (en) | Voltage-converting circuit for the power supply of an electrical consumer of high output, particularly a bobbin winding machine | |
US4104715A (en) | Alternating current to alternating current converter apparatus | |
US4654771A (en) | Switched power supply comprising a free-running flow converter and electrically separated control loop | |
JP4375839B2 (en) | Switching power supply | |
EP0479196A1 (en) | Power supply circuit | |
EP0964504A1 (en) | Switching power source apparatus | |
JPS5815469A (en) | Ac/dc converter | |
JPS5853195A (en) | Device for firing discharge lamp | |
JP3238266B2 (en) | Switching power supply | |
JPH0341892Y2 (en) | ||
JPS6349470B2 (en) | ||
KR890000657Y1 (en) | Clamping circuit | |
JP2547953Y2 (en) | converter | |
JPH09285122A (en) | Rcc-switching power circuit | |
JPH06205582A (en) | Switching power supply | |
JPH10174432A (en) | Switching power supply unit | |
JPH0731155A (en) | Inverter | |
JP2000166255A (en) | Power conversion apparatus | |
JPH05103466A (en) | Switching power supply having many outputs | |
JPH104684A (en) | Switching power unit | |
JPS61249672A (en) | Power unit for dc arc welding | |
JPH05103468A (en) | Switching power supply equipment | |
JPH0614553A (en) | Power converter | |
KR19980062790U (en) | Power Factor Converter | |
JPH07123721A (en) | Power source circuit |