JPS5815449B2 - Glass for optical fiber - Google Patents
Glass for optical fiberInfo
- Publication number
- JPS5815449B2 JPS5815449B2 JP54148882A JP14888279A JPS5815449B2 JP S5815449 B2 JPS5815449 B2 JP S5815449B2 JP 54148882 A JP54148882 A JP 54148882A JP 14888279 A JP14888279 A JP 14888279A JP S5815449 B2 JPS5815449 B2 JP S5815449B2
- Authority
- JP
- Japan
- Prior art keywords
- mol
- glass
- optical fiber
- ray diffraction
- observed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011521 glass Substances 0.000 title claims description 42
- 239000013307 optical fiber Substances 0.000 title claims description 33
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminium flouride Chemical compound F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 claims description 21
- 229910001632 barium fluoride Inorganic materials 0.000 claims description 16
- 229910007998 ZrF4 Inorganic materials 0.000 claims description 14
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 14
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 14
- OMQSJNWFFJOIMO-UHFFFAOYSA-J zirconium tetrafluoride Chemical compound F[Zr](F)(F)F OMQSJNWFFJOIMO-UHFFFAOYSA-J 0.000 claims description 13
- FVRNDBHWWSPNOM-UHFFFAOYSA-L strontium fluoride Chemical compound [F-].[F-].[Sr+2] FVRNDBHWWSPNOM-UHFFFAOYSA-L 0.000 claims description 10
- 229910001637 strontium fluoride Inorganic materials 0.000 claims description 10
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 4
- 239000000463 material Substances 0.000 description 32
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 24
- 239000000203 mixture Substances 0.000 description 21
- 238000002441 X-ray diffraction Methods 0.000 description 20
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 14
- 229910052786 argon Inorganic materials 0.000 description 12
- 239000007789 gas Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 239000013078 crystal Substances 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 8
- 239000012780 transparent material Substances 0.000 description 8
- 125000001475 halogen functional group Chemical group 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000004017 vitrification Methods 0.000 description 5
- JZKFIPKXQBZXMW-UHFFFAOYSA-L beryllium difluoride Chemical compound F[Be]F JZKFIPKXQBZXMW-UHFFFAOYSA-L 0.000 description 4
- 229910001633 beryllium fluoride Inorganic materials 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910004366 ThF4 Inorganic materials 0.000 description 2
- 239000005283 halide glass Substances 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011592 zinc chloride Substances 0.000 description 2
- 235000005074 zinc chloride Nutrition 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- 101100004392 Arabidopsis thaliana BHLH147 gene Proteins 0.000 description 1
- 229910016036 BaF 2 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/10—Compositions for glass with special properties for infrared transmitting glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/04—Fibre optics, e.g. core and clad fibre compositions
- C03C13/041—Non-oxide glass compositions
- C03C13/042—Fluoride glass compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/32—Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
- C03C3/325—Fluoride glasses
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Glass Compositions (AREA)
Description
【発明の詳細な説明】
本発明は赤外の波長領域において光透過の窓を有する光
学ファイバ用ガラスに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber glass having a window that transmits light in the infrared wavelength region.
従来、光学ファイバには石英系ガラス(SiO2)が使
用されてきた。Conventionally, silica glass (SiO2) has been used for optical fibers.
しかしこの種のガラスではSiO結合の振動に起因する
赤外吸収があり、これとレーり散乱のため、伝送損失の
小さな波長領域が波長0.6〜1.7μmの可視域から
近赤外域に限られ、それより長波長の波長領域において
は光学ファイバの低損失化は実現できないでいた。However, in this type of glass, there is infrared absorption caused by the vibration of SiO bonds, and due to this and Leh scattering, the wavelength range with small transmission loss shifts from the visible range of wavelengths of 0.6 to 1.7 μm to the near-infrared range. However, it has not been possible to achieve low loss in optical fibers in a limited wavelength range and longer wavelengths.
一方、多くのハロゲン化合物が赤外透明材料として知ら
れているが、これらの大部分は結晶質であり、低損失、
均質、長尺、可と5性を必要とする光学ファイバ用素材
という観点から見ると、多結晶の場合には粒界の散乱に
よる損失のために低損失化が困難になり、単結晶の場合
は成長速度が遅いために長尺の光学ファイバを製造する
際の量産性が著しく悪いという欠点がある。On the other hand, many halogen compounds are known as infrared transparent materials, but most of these are crystalline, low loss,
From the perspective of optical fiber materials that require homogeneity, long length, and flexibility, it is difficult to reduce loss in the case of polycrystals due to loss due to scattering of grain boundaries, while in the case of single crystals, However, since the growth rate is slow, mass productivity when manufacturing long optical fibers is extremely poor.
赤外の波長領域において透明なハライドガラスとしては
、BeF2系ガラス、ZnCl2系ガラス、ZrF4−
ThF4−BaF2ガラスなどが知られており、これら
は5i02系ガラスに比較してより長波長まで光を透過
するという長所を有しているが、BeF2、ZnCl2
には潮解性があるため、湿気による経時劣化、即ち水の
O−H結合に起因する赤外吸収の増大が予想され、さら
にBeF2、ThF4は毒性が強く人体に有害であると
言う欠点がある。Examples of halide glasses that are transparent in the infrared wavelength region include BeF2-based glass, ZnCl2-based glass, and ZrF4-based glass.
ThF4-BaF2 glasses are known, and these have the advantage of transmitting light to longer wavelengths than 5i02 glasses, but BeF2, ZnCl2
Since BeF2 and ThF4 have deliquescent properties, they are expected to deteriorate over time due to moisture, that is, increase in infrared absorption due to O-H bonds in water.Additionally, BeF2 and ThF4 have the disadvantage of being highly toxic and harmful to the human body. .
このようにこれらのハライドガラスは光学ファイバとし
ての使用に際して、信頼性の面や安全性の面で問題があ
った。As described above, these halide glasses have problems in terms of reliability and safety when used as optical fibers.
本発明は、このような現状に鑑みてなされたものであり
、その目的は波長2μm以上の赤外領域においても低損
失であり、かつ毒性がなく、吸湿性が小で量産性のある
光学ファイバ用ガラスを提供することを目的とするもの
である。The present invention was made in view of the current situation, and its purpose is to create an optical fiber that has low loss even in the infrared region with a wavelength of 2 μm or more, is nontoxic, has low hygroscopicity, and can be mass-produced. The purpose of this project is to provide glass for industrial use.
したがって本発明による光学ファイバ用ガラスはBaF
2、SrF2およびCaF2よりなる群より選ばれた1
種のフッ化物とAlF3より成り、かつモル%で60<
BaF2<80.30<SrF2<7630<CaF2
<74および20〈AlF3〈70であることを特徴と
するものである。Therefore, the glass for optical fiber according to the present invention is BaF
2, 1 selected from the group consisting of SrF2 and CaF2
Consists of seed fluoride and AlF3, and has a mole% of 60<60
BaF2<80.30<SrF2<7630<CaF2
<74 and 20<AlF3<70.
また、本発明による第2の発明は、BaF2゜8rF2
よりなる群より選ばれた1種のフッ化物とZrF4より
成り、かつモル%で20<BaF2<70゜20<Sr
F2<6020<CaF2<58および3゜<ZrF4
<80であることを特徴とするものであ4本発明による
光学ファイバ用ガラスは潮解性、毒性のないBaF2、
S rF2、CaF2、AlF3、ZrF4をガラス構
成素材として用いているため、毒性、吸湿性がなく、し
たがって、製造過程上及び使用上の安全性が高く、かつ
信頼性が良好である。Moreover, the second invention according to the present invention is BaF2°8rF2
Consisting of one fluoride selected from the group consisting of ZrF4, and in mol% 20<BaF2<70°20<Sr
F2<6020<CaF2<58 and 3°<ZrF4
<80.4 The glass for optical fiber according to the present invention is characterized by having a deliquescent and non-toxic BaF2,
Since SrF2, CaF2, AlF3, and ZrF4 are used as glass constituent materials, there is no toxicity or hygroscopicity, and therefore, the manufacturing process and use are highly safe and reliable.
更に本発明による光学ファイバ用ガラスによれば従来の
5i02系ガラスに較べ、約14〜20μmという長波
長領域まで良好な光透過性を有し、2μm以上の長波長
領域においても低損失の光学ファイバを製造しえると言
う利点がある。Furthermore, the glass for optical fiber according to the present invention has better light transmittance in the long wavelength range of about 14 to 20 μm compared to the conventional 5i02 glass, and can be used as an optical fiber with low loss even in the long wavelength range of 2 μm or more. It has the advantage of being able to manufacture
また、本発明による光学ファイバ用ガラスは、液体状態
より急冷することによりガラス化するため、即ち、結晶
質でないため、製造が容易で、かつ量産性があり、また
結晶粒界による損失がないと言う利点もある。Furthermore, since the glass for optical fibers according to the present invention is vitrified by rapid cooling from a liquid state, that is, it is not crystalline, it is easy to manufacture and can be mass-produced, and there is no loss due to grain boundaries. There are some advantages as well.
本発明を更に詳しく説明すると、本発明による光学ファ
イバ用ガラスは、前述のように、BaF2、SrF2、
CaF2より成る群より選択された1種とAlF3ある
いはZrF4とより成るものである。To explain the present invention in more detail, the glass for optical fiber according to the present invention includes BaF2, SrF2,
It consists of one selected from the group consisting of CaF2 and AlF3 or ZrF4.
具体的物質について、組成範囲を挙げると、BaF2に
対してAlF3を添加する場合、BaF2とAlF3の
和を100モル%として、20モル%(ただし20モル
%は含まず)〜40モル%未満最も好ましくは22〜3
6%、SrF2に対しAlF3を添加する場合、S r
F 2とAlF3の和を100モル%として、24モ
ル%(ただし24モル%は含まず)〜70モル%未満、
最も好ましくは26〜60モル%、CaF2に対しAl
F3を添加する場合、CaF2とAlF3の和を100
モル%として、26モル%(ただし26モル%は含まず
)〜70モル%未満、最も好ましくは28〜60モル%
である。Regarding specific substances, the composition range is as follows: When AlF3 is added to BaF2, the sum of BaF2 and AlF3 is 100 mol%, and the most Preferably 22-3
6%, when adding AlF3 to SrF2, S r
24 mol% (but not including 24 mol%) to less than 70 mol%, assuming the sum of F2 and AlF3 as 100 mol%,
Most preferably 26 to 60 mol% Al to CaF2
When adding F3, the sum of CaF2 and AlF3 is 100
As mol%, from 26 mol% (but not including 26 mol%) to less than 70 mol%, most preferably from 28 to 60 mol%
It is.
前記に示した組成範囲を外れると、液体状態よりの急冷
が困難となったり、結晶化しやすくなったりするからで
ある。This is because if the composition falls outside of the above-mentioned composition range, it becomes difficult to rapidly cool it from a liquid state or it becomes easy to crystallize.
また、BaF2にZrF4を添加する場合、B aF2
とZrF4との和を100モル%として、30モル%(
ただし30モル%は含まず)〜80モル%未満が好まし
く、最も好ましくは、32モル%〜70モル%未満、S
rF2にZrF4を添加する場合、SrF2とZrF
4との相を100モル%とし、40モル%(ただし40
モル%は含まず)〜80モル%未満が好ましく、最も好
ましくは42〜70モル%、CaF2にZrF4を添加
する場合、CaF2とZrF4との和を100モル%と
し、42モル%・(ただし42モル%は含まず)〜80
モル%未満、最も好ましくは44〜70モル%である。Also, when adding ZrF4 to BaF2, BaF2
and ZrF4 as 100 mol%, 30 mol% (
However, S
When adding ZrF4 to rF2, SrF2 and ZrF
The phase with 4 is 100 mol%, and 40 mol% (however, 40 mol%
When ZrF4 is added to CaF2, the sum of CaF2 and ZrF4 is taken as 100 mol%, and the amount is preferably 42 mol% (excluding mole%) ~80
Less than mol %, most preferably 44-70 mol %.
ZrF4の添加量が80モル%以上であると、揮発が激
しく、液体状態よりの急冷が困難となる。When the amount of ZrF4 added is 80 mol % or more, volatilization is intense and rapid cooling from a liquid state becomes difficult.
以下本発明の詳細な説明するが、本発明は以、下の実施
例により限定されるものではないことはもちろんである
。The present invention will be described in detail below, but it goes without saying that the present invention is not limited to the following examples.
実施例 1
組成比がBaF278モル%−A12322モル%にな
るように配合したBaF2−AlF3混合粉末を直径0
.4 mmの小孔をもった白金るつぼにいれ、アルゴン
ガス雰囲気下、1290℃の温度で溶融した。Example 1 BaF2-AlF3 mixed powder blended so that the composition ratio was BaF278 mol% - A12322 mol% was made into a powder with a diameter of 0.
.. It was placed in a platinum crucible with a small hole of 4 mm and melted at a temperature of 1290°C under an argon gas atmosphere.
次にこのるつぼ内のアルゴンガス圧を1.0kg/cm
2に高めて、15m/secの周速で回転しているスチ
ール製ロール表面に溶融材料を小孔から射出し、急冷し
て厚さ約15μmの透明材料(光学ファイバ用ガラス)
を得た。Next, the argon gas pressure inside this crucible was set to 1.0 kg/cm.
2, the molten material is injected through small holes onto the surface of a steel roll rotating at a circumferential speed of 15 m/sec, and is rapidly cooled to produce a transparent material (glass for optical fiber) with a thickness of approximately 15 μm.
I got it.
このようにして製造された本発明による光学ファイバ用
ガラスのX線回折図を第1図のaとして示す。The X-ray diffraction diagram of the glass for optical fiber according to the present invention produced in this manner is shown as a in FIG.
第1図のaのX線図折図形に示すように、本発明による
光学ファイバ用ガラスは結晶によるピークが観察されず
ハローパターンが生じていた。As shown in the X-ray diffraction pattern of a in FIG. 1, in the glass for optical fiber according to the present invention, no peaks due to crystals were observed and a halo pattern was observed.
したがって、ガラス化していることが確かめられた。Therefore, it was confirmed that it was vitrified.
実施例 2
組成比をBaF270モル%−AIF330モル%及び
BaF264モル%−AIF336モル%とし、実施例
1と同様に、それぞれを白金るつぼ内でアルゴンガス雰
囲気下1290℃の温度で溶融し、1、0kg/cm2
のアルゴンガス圧で加圧し、直径0.4朋の小孔から射
出し一ロール周速15 m/ secで20−ル急冷し
てこれら組成においてそれぞれ厚さ約15μの透明材料
を得た。Example 2 The composition ratios were 270 mol% BaF-330 mol% BaF and 264 mol% BaF-336 mol% BaF, and each was melted in a platinum crucible at a temperature of 1290°C under an argon gas atmosphere in the same manner as in Example 1. 0kg/cm2
The material was injected through a small hole with a diameter of 0.4 mm and rapidly cooled at 20 mm at a circumferential speed of 15 m/sec to obtain a transparent material having a thickness of approximately 15 .mu.m for each of these compositions.
このように製造された本発明による光学ファイバ用ガラ
スのX線回折図を第1図に示す。FIG. 1 shows an X-ray diffraction diagram of the glass for optical fiber according to the present invention manufactured in this manner.
図中、BaF270モル%−AIF330モル%及びB
aF264モル%−AIF336モル%の光学ファイバ
用ガラスのX線回折図形はそれぞれ第1図のす、cとし
て示した。In the figure, BaF270 mol%-AIF330 mol% and B
The X-ray diffraction patterns of the glass for optical fiber containing 264 mol % of aF and 336 mol % of AIF are shown as s and c in FIG. 1, respectively.
第1図に示すように、図形す及びCは結晶によるピーク
が観察されずハローパターンが生じていることから、ガ
ラス化していることが確かめられた。As shown in FIG. 1, it was confirmed that the shapes S and C were vitrified because no crystal peak was observed and a halo pattern was observed.
BaF264モル%−AIF336モル%光学ファイバ
用ガラスの光透過特性を製造時から1年間を経過した後
に、波長2〜30μmの範囲について測定した結果、第
2図に示すようにこの光学ファイバ用ガラスは水による
吸収(約2.7μm)が全く存在せず2μmから約15
μmの波長の赤外領域で透明であった。The light transmission characteristics of the BaF264 mol%-AIF336 mol% glass for optical fibers were measured in the wavelength range of 2 to 30 μm after one year from the time of manufacture, as shown in Figure 2. Absorption by water (approximately 2.7 μm) is completely absent, and from 2 μm to approximately 15
It was transparent in the infrared region with a wavelength of μm.
比較例 1
組成比をBaF280モル%−AIF320モル/%及
びBaF260モル%−AIF340モル%とし、実施
例1と同様に、同一の条件下で急冷してそれぞれ厚さ約
15μmの白濁した材料を得た。Comparative Example 1 The composition ratios were set to BaF280 mol%-AIF320 mol/% and BaF260 mol%-AIF340 mol%, and as in Example 1, they were rapidly cooled under the same conditions to obtain cloudy materials with a thickness of about 15 μm. Ta.
これらの材料のX線回折図を第1図のd、eとしてそれ
ぞれ示す。The X-ray diffraction patterns of these materials are shown as d and e in FIG. 1, respectively.
BaF280モル%−AIF320モル%及びBaF2
60モル%−AIF340モル%の急冷材料では、それ
ぞれ第1図のd、eOX線回折図形に示されるように結
晶質を示すピークが観察され、これらは結晶化していた
。BaF280 mol%-AIF320 mol% and BaF2
In the rapidly cooled material containing 60 mol%-AIF3 and 40 mol%, peaks indicating crystallinity were observed as shown in the OX-ray diffraction patterns d and e in FIG. 1, and these peaks were crystallized.
実施例 3
組成比を5rF274モル%−AIF326モル%、5
rF266モル%−AIF334モル%及びS rF2
40モル%−AIF360モル%とし、実施例1と同様
に、それぞれを白金るつぼ内でアルゴンガス雰囲気下1
400℃の温度で溶融し、1.0 kg/cm2のアル
ゴンガス圧で加圧し、直径0.4 myttの小孔から
射出し、ロール周速15 rn/ seeでロール急冷
してこれらの組成においてそれぞれ厚さ約15μmの透
明材料を得た。Example 3 The composition ratio was 5rF274 mol%-AIF326 mol%, 5
rF266 mol%-AIF334 mol% and S rF2
40 mol%-AIF360 mol%, and as in Example 1, each was heated in a platinum crucible under an argon gas atmosphere for 1 hour.
These compositions were melted at a temperature of 400°C, pressurized with an argon gas pressure of 1.0 kg/cm2, injected through a small hole with a diameter of 0.4 mytt, and rapidly cooled with a roll at a peripheral speed of 15 rn/see. Transparent materials each having a thickness of about 15 μm were obtained.
S rF274モル%−AIF326モル%、S rF
266モル%−AIF334モル%及びSrF240モ
ル%−AIF360モル%の急冷材料は、それぞれ第3
図のa、b、cOX線回折図形に示すように結晶質によ
るピークが観察されずハローパターンが生じでいること
からガラス化していることがわかった。S rF274 mol% - AIF326 mol%, S rF
The quenching materials of 266 mol%-AIF334 mol% and SrF240 mol%-AIF360 mol% are respectively
As shown in the OX-ray diffraction patterns a, b, and c in the figure, no crystalline peaks were observed and a halo pattern was formed, indicating that vitrification occurred.
5rF266モル%−AIF334モル%ガラスは第4
図の赤外透過特性に示すように、水による吸収は全くな
く、約14.5μmの赤外波長領域まで透明であった。5rF266 mol%-AIF334 mol% glass is the fourth
As shown in the infrared transmission characteristics in the figure, there was no absorption by water at all, and the material was transparent up to an infrared wavelength region of approximately 14.5 μm.
比較例 2
組成比を5rF276モル%−AIF324モル%及び
5rF230モル%−AI F 370−E/L/%と
し、実施例3と同様に、同一条件下で急冷してそれぞれ
厚さ約15μmの白濁した材料を得た。Comparative Example 2 The composition ratios were set to 5rF276 mol%-AIF324 mol% and 5rF230 mol%-AIF 370-E/L/%, and as in Example 3, they were rapidly cooled under the same conditions to form cloudy clouds with a thickness of about 15 μm. obtained the material.
5rF276モル%−AIF324モル%及びSrF2
30モル%−AIF370モル%の急冷材料ではそれぞ
れ第3図のd、eOX線回折図形に示すように結晶質を
示すピークが観察され、これらは結晶化していた。5rF276 mol%-AIF324 mol% and SrF2
In the 30 mol % - AIF3 70 mol % quenched material, peaks indicating crystallinity were observed as shown in the OX-ray diffraction patterns d and e in FIG. 3, and these were crystallized.
実施例 4
組成比をCaF272モル%−AI F328モル%、
CaF260モル%−AIF340モル%及びCaF2
40モル%−AIF360モル%とし、実施例1と同様
に、それぞれ白金るつぼ内でアルゴンガス雰囲気下13
30℃の温度で溶融し、1.0kg/c4のアルゴンガ
ス圧で加圧し、直径0.4 mmの小孔から射出し、ロ
ール周速15 m/ seeでロール急冷して、これら
の組成においてそれぞれ厚さ約15μmの透明材料を得
た。Example 4 Composition ratio: CaF272 mol%-AIF328 mol%,
CaF260 mol%-AIF340 mol% and CaF2
40 mol%-AIF360 mol%, and as in Example 1, each was heated in a platinum crucible under an argon gas atmosphere for 13 hours.
These compositions were melted at a temperature of 30°C, pressurized with an argon gas pressure of 1.0 kg/c4, injected through a small hole with a diameter of 0.4 mm, and rapidly cooled with a roll at a peripheral speed of 15 m/see. Transparent materials each having a thickness of about 15 μm were obtained.
CaF272モル%−AIF328モル%、CaF26
0モル%−AIF340モル%及びCaF240モル%
−AIF、60モル%の急冷材料はそれぞれ第5図のa
、b、cのX線回折図形に示すように結晶質によるピー
クが観察されず、ハローパターンが生じていることから
、ガラス化していることがわかった。CaF272 mol% - AIF328 mol%, CaF26
0 mol% - AIF340 mol% and CaF240 mol%
- AIF, 60 mol % quenched materials are respectively a in Figure 5.
As shown in the X-ray diffraction patterns of , b, and c, no crystalline peaks were observed and a halo pattern was observed, indicating that vitrification occurred.
CaF272モル%−AIF328モル%ガラスは第6
図の赤外透過特性に示すように水による吸収は全く存在
せず約14μmの赤外波長域まで透明であった。CaF272 mol%-AIF328 mol% glass is the 6th
As shown in the infrared transmission characteristics in the figure, there was no absorption by water at all, and the material was transparent up to an infrared wavelength range of about 14 μm.
比較例 3
組成比をCaF274モル%−AIF326モル%及び
CaF230モル%−A I F 370モル%とし、
実施例4と同様に同一の条件下で急冷してそれぞれ厚さ
約15μmの白濁した材料を得た。Comparative Example 3 The composition ratios were set to 274 mol% of CaF-326 mol% of AIF and 30 mol% of CaF-370 mol% of AIF,
The materials were rapidly cooled under the same conditions as in Example 4 to obtain cloudy white materials each having a thickness of about 15 μm.
CaF274モル%−AIF326モル%及びCaF2
30モル%−A I F 370 モル%の急冷材料で
はそれぞれ第5図のd、eのX線回折図形に示すように
結晶質を示すピークが観察されこれらは結晶化していた
。CaF274 mol%-AIF326 mol% and CaF2
In the quenched material of 30 mol % - A IF 370 mol %, peaks indicating crystallinity were observed as shown in the X-ray diffraction patterns d and e in FIG. 5, respectively, and these peaks were crystallized.
実施例 5
組成比をBaF268 モル%−ZrF432モル%、
BaF260モA/%−ZrF440モル%、BaF2
54モル%−ZrF446 モ#%及びBaF230モ
ル%−ZrF、70モル%とし、実施例1と同様にそれ
ぞれを白金るつぼ内でアルゴンガス雰囲気下1350℃
の温度で溶融し、■、2 kg/cMのアルゴンガス圧
で加圧し、直径0.4 mmの小孔から射出し、ロール
周速15 ml secでロール急冷してこれらの組成
においてそれぞれ厚さ約15μmの透明材料を得た。Example 5 Composition ratio: BaF268 mol%-ZrF432 mol%,
BaF260 moA/%-ZrF440 mole%, BaF2
54 mol%-ZrF446 mo#% and BaF230 mol%-ZrF, 70 mol%, and each was heated in a platinum crucible at 1350°C under an argon gas atmosphere in the same manner as in Example 1.
It was melted at a temperature of A transparent material of about 15 μm was obtained.
BaF268モル%−ZrF432モル%、BaF26
0モル%−ZrF440モル%、BaF254モル%−
ZrF446モル%及びBaF230モル%−ZrF4
70モル%の急冷材料はそれぞれ第7図のa、b、c、
dのX線回折図形に示すように結晶質によるピークが観
察されずハローパターンが生じていることから、ガラス
化していることがわかった。BaF268 mol%-ZrF432 mol%, BaF26
0 mol% - ZrF440 mol%, BaF254 mol%-
ZrF446 mol% and BaF230 mol%-ZrF4
The 70 mol% quenched materials are a, b, c, and
As shown in the X-ray diffraction pattern (d), no crystalline peak was observed and a halo pattern was observed, indicating that vitrification had occurred.
BaF260モル%−ZrF440モル%ガラスは第8
図の赤外透過特性に示すように水による吸収は全く存在
せず約20μmの赤外波長まで透明であった。BaF260 mol%-ZrF440 mol% glass is the 8th
As shown in the infrared transmission characteristics in the figure, there was no absorption by water at all, and the material was transparent up to an infrared wavelength of approximately 20 μm.
比較例 4
組成比をBaF270モル%−ZrF430モル%とし
、実施例5と同様に同一の条件下で急冷して厚さ約15
μmの白濁した材料を得た。Comparative Example 4 The composition ratio was 270 mol % BaF - 30 mol % ZrF, and it was rapidly cooled under the same conditions as in Example 5 to a thickness of about 15 mol %.
A cloudy material of μm was obtained.
この材料では第7図のCOX線回折図形に示すように結
晶質を示すピークが観察され、この急冷材料は結晶化し
ている。In this material, a peak indicating crystallinity is observed as shown in the COX-ray diffraction pattern of FIG. 7, and this rapidly quenched material is crystallized.
実施例 6
組成比を5rF258モル%−ZrF442モル%、5
rF250モル%−ZrF450モル%、5rF244
モル%−ZrF456モル%及び5rF230モル%−
ZrF470モル%とし、実施例1と同様に、それぞれ
を白金るつぼ内でアルゴンガス雰囲気下1430℃の温
度で溶融し、1.2 kg/cmのアルゴンガス圧で加
圧し、直径0.4 m7にの小孔から射出し、ロール周
速15m/seeでロール急冷してこれらの組成におい
てそれぞれ厚さ約15μmの透明材料を得た。Example 6 The composition ratio was 5rF258 mol%-ZrF442 mol%, 5
rF250 mol%-ZrF450 mol%, 5rF244
Mol%-ZrF456 mol% and 5rF230 mol%-
ZrF was 470 mol%, and as in Example 1, each was melted in a platinum crucible at a temperature of 1430°C under an argon gas atmosphere, pressurized with an argon gas pressure of 1.2 kg/cm, and made into a diameter of 0.4 m7. Transparent materials having a thickness of about 15 μm were obtained for each of these compositions by injecting the material through a small hole and rapidly cooling it with a roll at a peripheral speed of 15 m/see.
5rF258モル%−ZrF442モル%、5rF25
0モル%−Z−rF450モル%、5rF244モル%
−ZrF456−E−/1/%及び5rF230モル%
−ZrF470モル%の急冷材料はそれぞれ第9図のa
lb、c、dのX線回折図形に示すように、結晶による
ピークが観察されずハローパターンが生じていることか
らガラス化していることがわかった。5rF258 mol%-ZrF442 mol%, 5rF25
0 mol%-Z-rF450 mol%, 5rF244 mol%
-ZrF456-E-/1/% and 5rF230 mol%
- The quenched materials of 470 mol% ZrF are respectively a in Fig. 9.
As shown in the X-ray diffraction patterns of lb, c, and d, no peaks due to crystals were observed and a halo pattern was observed, indicating that vitrification occurred.
5fF250モル%−ZrF450モル%ガラスは第1
0図の赤外透過特性に示すように水による吸収は全く存
在せず約16.5μmの赤外波長領域まで透明であった
。5fF250mol%-ZrF450mol% glass is the first
As shown in the infrared transmission characteristics in Figure 0, there was no absorption by water at all, and the material was transparent up to an infrared wavelength region of approximately 16.5 μm.
比較例 5
組成比を5rF260モル%−2rF440モル%とし
、実施例6と同様に、同一の条件下で急冷して厚さ約1
5μmの白濁した材料を得た。Comparative Example 5 The composition ratio was set to 5rF260 mol% - 2rF440 mol%, and the material was rapidly cooled under the same conditions as in Example 6 to a thickness of about 1.
A cloudy material of 5 μm was obtained.
この材料では第9図のeOX線回折図形に示すように結
晶質を示すピークが観察され、この急冷材料は結晶化し
ていた。In this material, a peak indicating crystallinity was observed as shown in the eOX-ray diffraction pattern of FIG. 9, and this rapidly quenched material was crystallized.
実施例 7
組成比をCaF256モル%−ZrF444モル%、C
aF250モル%−ZrF450モル%、CaF246
モル%−ZrF454 モル%及びCaF230モル%
−ZrF470モル%とし、実施例1と同様にそれぞれ
を白金るつぼ内でアルゴンガス雰囲気下1330℃の温
度で溶融し、0.8 kg/cm2のアルゴンガス圧で
加圧し、直径0.4 mmの小孔から射出し、ロール周
速29m/seeでロール急冷してこれらの組成におい
てそれぞれ厚さ約10μmの透明材料を得た。Example 7 Composition ratio: CaF256 mol%-ZrF444 mol%, C
aF250 mol%-ZrF450 mol%, CaF246
Mol% - ZrF454 Mol% and CaF230 Mol%
-ZrF470 mol %, each was melted in a platinum crucible at a temperature of 1330°C under an argon gas atmosphere in the same manner as in Example 1, and pressurized with an argon gas pressure of 0.8 kg/cm2 to form a mold with a diameter of 0.4 mm. Transparent materials having a thickness of approximately 10 μm were obtained for each of these compositions by injection through a small hole and quenching with a roll at a peripheral speed of 29 m/see.
CaF256モル%−ZrF444モル%、CaF25
0モル%−ZrF450モル%、CaF246 モル%
−ZrF454モル%及びCaF、30モル%−ZrF
470モル%の急冷材料はそれぞれ第11図のa、b、
c、dのX線回折図形に示すように結晶によるピークが
観察されず、ハローパターンが生じていることから、ガ
ラス化していることがわかった。CaF256 mol%-ZrF444 mol%, CaF25
0 mol% - ZrF450 mol%, CaF246 mol%
-ZrF454 mol% and CaF, 30 mol% -ZrF
The 470 mol% quenched materials are shown in Figure 11 a, b, respectively.
As shown in the X-ray diffraction patterns c and d, no peaks due to crystals were observed and a halo pattern was observed, indicating that vitrification had occurred.
CaF256モル%−ZrF444モル%ガラスは第1
2図の赤外透過特性に示すように水による吸収は全く存
在せず約17μmの赤外波長まで透明であつた。CaF256 mol%-ZrF444 mol% glass is the first
As shown in the infrared transmission characteristics in Figure 2, there was no absorption by water at all, and the material was transparent up to an infrared wavelength of approximately 17 μm.
比較例 6
組成比をCaF258モル%−ZrF442 モル%と
し、実施例7と同様に同一の条件下で急冷して厚さ約1
0μmの白濁した材料を得た。Comparative Example 6 The composition ratio was set to 258 mol% of CaF-442 mol% of ZrF, and it was rapidly cooled under the same conditions as in Example 7 to a thickness of about 1.
A cloudy material with a diameter of 0 μm was obtained.
この材料では第11図のeのX線回折図形に示すように
結晶質を示すピークが観察されこの急冷材料は結晶化し
ていた。In this material, a peak indicating crystallinity was observed as shown in the X-ray diffraction pattern of e in FIG. 11, indicating that this rapidly quenched material was crystallized.
第1図は本発明による光学ファイバ用ガラス(実施例1
および2)のX線回折図を結晶体のX線回折図(比較例
1)と共に示した図、第2図は本発明による光学ファイ
バ用ガラス(実施例2)の赤外透過特性を示すグラフ、
第3図は本発明による光学ファイバ用ガラス(実施例3
)のX線回折図を結晶体のX線回折図(比較例2)と共
に示した図、第4図は本発明による光学ファイバ用ガラ
ス(実施例3)の赤外透過特性を示すグラフ、第5図は
本発明による光学ファイバ用ガラス(実施例4)のX線
回折図を結晶体のX線回折図(比較例3)と共に示した
図、第6図は本発明よる光学ファイバ用ガラス(実施例
4)の赤外透過性を示すグラフ、第7図は本発明による
光学ファイバ用ガラス(実施例5)のX線回折図を結晶
体のX線回折図(比較例4)と共に示した図、第8図は
本発明による光学ファイバ用ガラス(実施例5)の赤外
透過性を示すグラフ、第9図は本発明による光学ファイ
バ用ガラス(実施例6)のX線回折図を結晶体のX線回
折図(比較例5)と共に示した図、第10図は本発明に
よる光学ファイバ用ガラス(実施例6)の赤外透過性を
示すグラフ、第11図は本発明による光学ファイバ用ガ
ラス(実施例7)のX線回折図を結晶体のX線回折図(
比較例6)と共に示した図、第12図は本発明による光
学ファイバ用ガラス(実施例7)の赤外透過性を示すグ
ラフである。FIG. 1 shows a glass for optical fiber according to the present invention (Example 1).
and 2) are shown together with the X-ray diffraction chart of the crystal body (Comparative Example 1), and FIG. 2 is a graph showing the infrared transmission characteristics of the optical fiber glass according to the present invention (Example 2). ,
FIG. 3 shows a glass for optical fiber according to the present invention (Example 3).
) is a diagram showing the X-ray diffraction diagram of the crystal body (Comparative Example 2), and FIG. Figure 5 shows the X-ray diffraction diagram of the optical fiber glass according to the present invention (Example 4) together with the X-ray diffraction diagram of the crystalline substance (Comparative Example 3), and Figure 6 shows the optical fiber glass according to the present invention (Example 4). FIG. 7 is a graph showing the infrared transmittance of Example 4), and FIG. 7 shows the X-ray diffraction diagram of the optical fiber glass according to the present invention (Example 5) together with the X-ray diffraction diagram of the crystal (Comparative Example 4). 8 is a graph showing the infrared transmittance of the glass for optical fiber according to the present invention (Example 5), and FIG. 9 is a graph showing the X-ray diffraction diagram of the glass for optical fiber according to the present invention (Example 6). Figure 10 is a graph showing the infrared transmittance of the optical fiber glass according to the present invention (Example 6), and Figure 11 is a graph showing the infrared transmittance of the optical fiber glass according to the present invention (Example 6). The X-ray diffraction diagram of the glass for glass (Example 7) is the X-ray diffraction diagram of the crystal (
FIG. 12, which is shown together with Comparative Example 6), is a graph showing the infrared transmittance of the optical fiber glass (Example 7) according to the present invention.
Claims (1)
選ばれた1種のフッ化物とAlF3より成り、かつ−E
/1/%で60<BaF2<80.30<S rF2<
76.30 <Ca F2< 74および20<AlF
3<70であることを特徴とする光学ファイバ用ガラス
。 2− BaF2、SrF2およびCaF2よりなる群
より選ばれた1種のフッ化物とZrF4より成り、かつ
モル%で20<BaF2<70.20<SrF2<60
.20くCaF2〈58および30<ZrF4<80で
あることを特徴とする光学ファイバ用ガラス。[Scope of Claims] 1 Consisting of one fluoride selected from the group consisting of BaF2, SrF2 and CaF2 and AlF3, and -E
/1/% 60<BaF2<80.30<S rF2<
76.30 <Ca F2 < 74 and 20 < AlF
A glass for optical fiber, characterized in that 3<70. 2- Consisting of ZrF4 and one fluoride selected from the group consisting of BaF2, SrF2 and CaF2, and 20<BaF2<70.20<SrF2<60 in mol%
.. A glass for optical fiber, characterized in that 20<CaF2<58 and 30<ZrF4<80.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54148882A JPS5815449B2 (en) | 1979-11-19 | 1979-11-19 | Glass for optical fiber |
US06/189,757 US4308066A (en) | 1979-10-30 | 1980-09-23 | Glass for optical fibers |
GB8030799A GB2061910B (en) | 1979-10-30 | 1980-09-24 | Glass for optical fibers |
FR8021060A FR2468559A1 (en) | 1979-10-30 | 1980-10-01 | GLASS FOR OPTICAL FIBERS |
DE3037323A DE3037323C2 (en) | 1979-10-30 | 1980-10-02 | Fluoride glass for optical fibers that are particularly transparent in the infrared range |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54148882A JPS5815449B2 (en) | 1979-11-19 | 1979-11-19 | Glass for optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5673645A JPS5673645A (en) | 1981-06-18 |
JPS5815449B2 true JPS5815449B2 (en) | 1983-03-25 |
Family
ID=15462822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54148882A Expired JPS5815449B2 (en) | 1979-10-30 | 1979-11-19 | Glass for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5815449B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0623076B2 (en) * | 1986-02-28 | 1994-03-30 | ホ−ヤ株式会社 | Fluoride glass |
-
1979
- 1979-11-19 JP JP54148882A patent/JPS5815449B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5673645A (en) | 1981-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU688149B2 (en) | Transparent glass-ceramics | |
JPH07300338A (en) | Transparent glass and waveguide structure | |
JPS638055B2 (en) | ||
US4308066A (en) | Glass for optical fibers | |
JPS5934141B2 (en) | Glass for optical fiber | |
AU637760B2 (en) | Low liquidus, stable heavy metal fluoride glass compositions | |
JPH0437015B2 (en) | ||
JPS60155549A (en) | Fluoride glass for transmitting infrared ray | |
JPS5815449B2 (en) | Glass for optical fiber | |
JP2515268B2 (en) | Near infrared cut filter glass | |
JP3749276B2 (en) | Infrared transmission glass | |
JPH0616451A (en) | Filter glass for cutting near-infrared rays | |
JPS582173B2 (en) | Glass material for optical glass fiber | |
Shahriari et al. | Synthesis and characterization of aluminum fluoride-based glasses and optical fibers | |
JPH10194774A (en) | Filter glass for cutting near infrared light | |
JPH0444617B2 (en) | ||
JP3145136B2 (en) | Infrared transparent fluoride glass | |
JP2585715B2 (en) | Infrared transmission glass | |
JPH05124834A (en) | Fluoride glass | |
JPS63144141A (en) | Fluorophosphate optical glass | |
JPS6259066B2 (en) | ||
JP2003160358A (en) | Filter glass for cutting near-infrared ray | |
JPS63107841A (en) | Halide glass for optical fiber | |
JPS6177639A (en) | Production of infrared optical membrane material | |
JPH0558672A (en) | New ainfinityf3 series fluoride glass |