JPS58153797A - Coloration of light metal - Google Patents

Coloration of light metal

Info

Publication number
JPS58153797A
JPS58153797A JP3566182A JP3566182A JPS58153797A JP S58153797 A JPS58153797 A JP S58153797A JP 3566182 A JP3566182 A JP 3566182A JP 3566182 A JP3566182 A JP 3566182A JP S58153797 A JPS58153797 A JP S58153797A
Authority
JP
Japan
Prior art keywords
current
voltage
light metal
electricity
positive voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3566182A
Other languages
Japanese (ja)
Inventor
「峰」岸 知弘
Tomohiro Minegishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIWA KOGYO KK
Original Assignee
KIWA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIWA KOGYO KK filed Critical KIWA KOGYO KK
Priority to JP3566182A priority Critical patent/JPS58153797A/en
Publication of JPS58153797A publication Critical patent/JPS58153797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochemical Coating By Surface Reaction (AREA)

Abstract

PURPOSE:To color a light metal so as to impart stable desired color tone thereto, by a method wherein the elecrolyte is immersed in an electrolyte and electrolysis is carried out by using A.C. different in quantity of electricity when positive voltage is applied and quantity of electricity when negative voltage is applied. CONSTITUTION:Between an object 1 to be colored comprising aluminum, an aluminum alloy, an alkaline earth metal or other light metals and an opposed electrode 2 comprising a graphite electrode, commercial A.C. electric power is applied through a circuit including a thyristor SCR and diode D connected in parallel. By this method, a current passing time when positive voltage is applied is appropriately changed by controlling a current stopping time by the thyristor SCR. On the other hand, during a current passing time when negative voltage is applied, current is directly passed through the diode D. Corresponding to the stopping time during this current passing time, coloration with desired color tone can be applied to the object 1 to be colored and, by changing an additive added to the electrolyte 3, different colored products can be obtained.

Description

【発明の詳細な説明】 軽金属の着色法(こ関する。[Detailed description of the invention] Coloring method for light metals (related to this).

従来、アルミニウム等の軽金属の着色法としては種々の
ものか提案され.それらの中でも陽極酸化したアルミニ
ウムを染料を用いて染色する方法や、特殊な電解液を用
いて二次電解する電解発色法か最も代表的なものとして
あけられる。特に、二次電′解による着色方.去は、押
出型拐の着色方法として広く利用されているが、この方
法は硫酸なとの水溶液中で陽極酸化したアルミニウムを
、ニッケルなどの重金属塩を含治する゛市M准中で交流
電解することによって着色する方法であって、陽極酸化
(こよって作られたセル構造を有するアルミナ膜のアル
ミニウム基地との界面に存在するバリャ一層に、直接金
属イオンを放電還元すると同時に、半周期の陽極期に酸
化を起こさせること【こより、透明な酸化膜の深層部に
おいて発色させることから、着色か安定で、退色しにく
く、方法自体も簡便であるなとの利点を崩している。し
かしながら、この方法は色調の制御を電圧(通常数V〜
lO数Vの範囲〕と時間(通常、数分間〕を変化させる
ことによって行なうため、処理や装置の両面から簡便で
はあっても色調の変化を生じ、製造時の品質管理か困難
であるという問題があった。
Various methods have been proposed for coloring light metals such as aluminum. Among these, the most typical methods include dyeing anodized aluminum with dyes and electrolytic coloring, which involves secondary electrolysis using a special electrolyte. In particular, coloring by secondary electrolysis. This method is widely used as a coloring method for extrusion molding, but in this method, aluminum is anodized in an aqueous solution such as sulfuric acid, and then subjected to AC electrolysis in a ``city medium'' medium, which is treated with heavy metal salts such as nickel. This is a method of coloring by anodic oxidation (discharging and reducing metal ions directly into the barrier layer existing at the interface between the alumina membrane and the aluminum base, which has a cell structure), and at the same time applying a half-cycle anode. However, because the color is generated in the deep layer of the transparent oxide film, the coloring is stable, resistant to fading, and the method itself is simple. The method is to control the color tone using voltage (usually a few V~
This process is carried out by changing the range of 1O2V] and the time (usually several minutes), so although it is simple in terms of processing and equipment, it causes changes in color tone and makes quality control during manufacturing difficult. was there.

この問題を解決する手段として、電解液の組成を間 変化させると共(こ、電解重圧および時を調整する△ ことか行なわれてはいるか、それでも色調に微妙な変化
を生じ、緻産段階において作業単位や製品学位間の差の
調整が困難であった1。
As a means of solving this problem, it has been attempted to change the composition of the electrolytic solution over time (adjusting the electrolytic pressure and time), but even so, subtle changes in color tone occur, and at the fine production stage. It was difficult to adjust for differences between work units and product degrees1.

本発明は、このような問題を解決すー\くなされたもの
てあって、量産時のロフト間や製品単位間(こ色調の差
を生じることかなく、所望の色調を得ることかできる軽
金属の着色法を提供することを目的とするものであって
、その要旨は、軽金属を電解液中に浸漬し、−サイクル
14月こ前記軽金属に正の電圧か印加された時に該軽金
属に供給される電気量と負の電圧か印カロされた時(こ
該軽金属に供給される電気量とか異なる交流を用いて電
解することを特徴とする軽金属の着色法にある。、すな
わち、本発明方法は、正の電圧若しくは電流波形と負の
電圧若しくは電流波形が対称である商用交流電圧を軽金
属と対向電極との間に印Ql] t、、その印加電圧と
時間を制御することによって着色する従来の方法とは異
なり、軽金属と対向電極との間に印カロする電源として
−サイクル中番こ軽金属に正の電圧が印加された時に該
軽金属に供給され居 る電気量と負の電圧か印加され夕時に該軽金に供△ 給される電気量とか異なる交流を用い、各々の電気量を
所定値に設定して電解することによって色調を安定化す
るもので、使用する周波数は商用電力の周波数未満、例
えは、数117.から約50Q llzの周波数の範囲
で任意に設定しつるか、この範囲のみに限定されるもの
ではない。具体的には、例えば、商用電源を用いた場合
について説明すると、−サイクル中に軽金属に正の電圧
か印加された時(以下、正電圧時という。)に流れる電
流および負の電圧か印加された時(以下、負電圧時とい
;I、)に流れる電流のうちの一方または両方の通電時
間をサイリスタその他の半導体制御整流素子により制御
することにより、正電圧時の電気量と負電圧時の電気量
を相反に異ならしめ、これによって電解して着色するも
のである。電源は必すしも商用電源のよう(こ正弦波電
圧である必要はなく、方形波電圧であってもよい。
The present invention has been made to solve these problems, and it is possible to obtain a desired color tone without causing differences in color tone between lofts or between product units during mass production. The purpose is to provide a method for coloring a light metal, the gist of which is that a light metal is immersed in an electrolytic solution, and when a positive voltage is applied to the light metal during a cycle of 14 months, a positive voltage is applied to the light metal. This method of coloring light metals is characterized in that when an amount of electricity and a negative voltage are applied (the amount of electricity supplied to the light metal is different from the alternating current), the method of the present invention , A commercial alternating current voltage in which the positive voltage or current waveform and the negative voltage or current waveform are symmetrical is applied between the light metal and the counter electrode. Unlike the method, as a power source is applied between a light metal and a counter electrode, the amount of electricity supplied to the light metal when a positive voltage is applied to the light metal during the cycle and the amount of electricity supplied to the light metal when a negative voltage is applied is calculated at the end of the cycle. The color tone is stabilized by electrolyzing the light metal by setting each amount of electricity to a predetermined value using alternating current that differs from the amount of electricity supplied to the light metal, and the frequency used is less than the frequency of commercial electricity. For example, it may be arbitrarily set in the frequency range from number 117 to approximately 50Qllz, or it is not limited to this range.Specifically, for example, a case where a commercial power source is used will be explained. - The current that flows when a positive voltage is applied to the light metal during the cycle (hereinafter referred to as positive voltage) and the current that flows when a negative voltage is applied (hereinafter referred to as negative voltage; I). By controlling the energization time of one or both of them using a thyristor or other semiconductor-controlled rectifier, the amount of electricity at positive voltage and the amount of electricity at negative voltage are made to be different, which causes electrolysis and coloring. The power source does not necessarily have to be a commercial power source (this does not have to be a sine wave voltage, but may be a square wave voltage.

また−0使用する電解液は公知のものを用いることもで
き、この場合であっても正電圧時の准気緻と負電圧時の
電気量19割合を適宜設定することにより同一溶液で各
種の色調を得ることができる。
In addition, -0 can be used as a known electrolyte, and even in this case, by appropriately setting the ratio of quasi-gas at positive voltage to 19 electricity at negative voltage, various types of electrolyte can be used with the same solution. You can get the color tone.

第1図は商用電源を用いて正電圧時の電気量と負電圧時
の電気量とが異なる交流を発生させる回路の一例を示し
、正電圧時の通電時間をサイリスタs c stで制御
し、負電圧時の通電時間はタイオードDを介してそのま
ま流すよう(こしたものである。■はアルミニウム、ア
ルミニウム合金、アルカリ上金属その他の軽金属からな
る被着色体で電M液3中に浸漬されており、2は対向電
極 DはタイオーI・、′1.Dはツェナータイオード
、UJTはユニジャ7クショントランジスタ、R,、%
 R3に4は抵抗、Cはコンデンサで図のように接続さ
れている。図示のAC端子間に第2図(a)に示される
波形の電圧が印加されると、被着色体3たる軽金属には
第2図(b)に示すような電圧市原波形の電流か流れ、
正電圧時の通電休止角αはI池、Cの値を適宜設定する
ことにより0〜90度の範囲で変化させることかできる
FIG. 1 shows an example of a circuit that uses a commercial power source to generate alternating current in which the amount of electricity at positive voltage and the amount of electricity at negative voltage are different.The energization time at positive voltage is controlled by a thyristor SCST. The conduction time at negative voltage is such that the current is passed through diode D as it is. 2 is the counter electrode, D is the diode I,'1.D is the Zener diode, UJT is the unidirectional transistor, R,, %
4 is a resistor and C is a capacitor, which are connected to R3 as shown in the figure. When a voltage having the waveform shown in FIG. 2(a) is applied between the AC terminals shown in the figure, a current having the voltage Ichihara waveform shown in FIG. 2(b) flows through the light metal that is the object to be colored 3.
The energization pause angle α at the time of positive voltage can be varied within the range of 0 to 90 degrees by appropriately setting the values of I and C.

実施例 20%ll2S04溶液により陽極酸化したアルミニウ
ム板を被着色体1とし、対向電極2と[7て黒鉛電極を
用い、第1図に示す回路からなる電源装置番こより、そ
のIト電王時の通電休止角を釉々番こ代えて、硫酸ニッ
ケル30 g/l、硼酸15 El/l、硫酸マク不シ
ウム15グ/l  の水溶液3で電解をした。
Example 2 An aluminum plate anodized with a 0% ll2S04 solution was used as the object to be colored 1, and a counter electrode 2 and a graphite electrode were used. Electrolysis was carried out using an aqueous solution 3 containing 30 g/l of nickel sulfate, 15 El/l of boric acid, and 15 g/l of unsium sulfate, while changing the energization pause angle.

正電圧時の通電休止時間か0%(α−0)の電流、即ち
、通常の交流で電源電圧5■、実効電流0、3 A/d
d  で3分間常温で電解したところ褐色で、。電解時
間を30秒から10分まで変化さぜたところ淡褐色から
濃褐邑番こ変るのみであった。
0% (α-0) current at positive voltage, power supply voltage 5■, effective current 0.3 A/d at normal AC
d for 3 minutes at room temperature, the color was brown. When the electrolysis time was varied from 30 seconds to 10 minutes, the color only changed from light brown to dark brown.

止 これに対し、本発明に従い正電圧時の通電体時/\ 間を25%(α=45°)とした電流では、3分間の電
解で赤銅色となり、30秒から10分間の電解で淡紅色
か゛ら銅色まで各種色調のものが得られた。また、正電
圧時の通電休止時間を50%(α−90°〕とした電流
では、3分間の電解で黄銅色のものがロIット毎に色調
差を生じることなく安定して得られ、30秒から10分
間の電解で黄金色から青銅色まで各種色調のものが得ら
れた。
In contrast, according to the present invention, when the current is set to 25% (α = 45°) between current-carrying body time at positive voltage, the color becomes reddish copper after 3 minutes of electrolysis, and becomes pale after 30 seconds to 10 minutes of electrolysis. Various colors were obtained from red to copper. In addition, when the current is set to 50% (α - 90°) with a energization pause time of 50% (α-90°) during positive voltage, a brass-colored product can be stably obtained with no difference in color tone from lot to lot after 3 minutes of electrolysis. By electrolysis for 30 seconds to 10 minutes, various colors from golden yellow to bronze were obtained.

また、ト記電解液においてニッケルの一部15襲分を同
量のコバルトに置換した液を用いて電解したところ、正
電圧時の通電休止時間を15〜35%(α−27°〜6
3°)、電流密度03〜08A/d扉、時間30秒〜7
分の範囲で、安定した美しい青銅色とその濃淡を与える
ことかできた。。
In addition, when electrolysis was performed using a solution in which 15 parts of the nickel in the above electrolyte was replaced with the same amount of cobalt, the energization pause time at positive voltage was 15 to 35% (α-27° to 6
3°), current density 03-08 A/d door, time 30 seconds-7
I was able to create a stable and beautiful bronze color and its shading within a few minutes. .

さらに、前記型]/fffiiこ1.9/l 以上の次
亜リン酸塩着しくは次亜硫酸塩を含有させると、この青
銅色はより安定となった。
Furthermore, when hypophosphite or hyposulfite was added in an amount of 1.9/l or more, the bronze color became more stable.

なお、前記実施例では1F雷電圧の通電時間を制御する
こと番こよってIF電圧時の電気量と負電圧時の電気量
とを異ならしめているが、負電圧時の通電時間を制御す
ることによって異ならしめてもよく、また両者を制御す
るようにしてもよい。後者の場合、サイリスタSCRと
逆並列接続されたタイオードDをサイリスタに代え、そ
のゲートを前記サイリスタS C: Rのゲート回路と
同様な独立した回路で位相制御するようにすれはよい1
゜以上の説明から明らかなように、本発明方法によれは
、任意の色調のものを安定して、しかもロフト毎または
製品毎1こ色調に差を生じることなく軽金属に着色でき
るという優れた効果が得られる。
In the above embodiment, the amount of electricity at IF voltage and the amount of electricity at negative voltage are made different by controlling the energization time of 1F lightning voltage, but by controlling the energization time at negative voltage, They may be made different, or both may be controlled. In the latter case, it is better to replace the diode D connected in anti-parallel with the thyristor SCR with a thyristor, and to control the phase of its gate with an independent circuit similar to the gate circuit of the thyristor SCR.
゜As is clear from the above explanation, the method of the present invention has the excellent effect of being able to stably color light metals in any color tone without causing any difference in color tone from loft to loft or from product to product. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

(7) 第1図は本発明方法の実施番こ使用する電源装置の一例
を示す回路図、第2図はその電源電圧電流波形と出力電
圧電流波形を示す図である。 1〜被着色体、2〜対向電極、3〜電解液。 IJFγ1出願人 峯岸知弘 同  上    出和興業株式会+1 代、即 人 弁理士  青111  葆は〃\2名(8
(7) FIG. 1 is a circuit diagram showing an example of a power supply device used in carrying out the method of the present invention, and FIG. 2 is a diagram showing its power supply voltage and current waveforms and output voltage and current waveforms. 1 - object to be colored, 2 - counter electrode, 3 - electrolyte solution. IJFγ1 Applicant: Tomohiro Minegishi (1) Dewa Kogyo Co., Ltd. + 1, immediately available Patent attorney Ao 111 Ao \ 2 people (8
)

Claims (1)

【特許請求の範囲】[Claims] (1)軽金属を電解液中に浸漬し1.−リーイクル中に
Ait記軽全軽金属の電圧か印7111された時に該軽
金属に供給される電気上と負の電圧か印加された時iこ
該軽金属に供給される電気上とか異なる交流を用いて電
解することを特徴とする軽金属の着色法0.
(1) Immersing a light metal in an electrolytic solution 1. - When the voltage of all the light metals is marked 7111 during leakage, the electricity supplied to the light metal is applied, and when a negative voltage is applied, the electricity supplied to the light metal is different from the alternating current. A method for coloring light metals characterized by electrolysis 0.
JP3566182A 1982-03-05 1982-03-05 Coloration of light metal Pending JPS58153797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3566182A JPS58153797A (en) 1982-03-05 1982-03-05 Coloration of light metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3566182A JPS58153797A (en) 1982-03-05 1982-03-05 Coloration of light metal

Publications (1)

Publication Number Publication Date
JPS58153797A true JPS58153797A (en) 1983-09-12

Family

ID=12448051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3566182A Pending JPS58153797A (en) 1982-03-05 1982-03-05 Coloration of light metal

Country Status (1)

Country Link
JP (1) JPS58153797A (en)

Similar Documents

Publication Publication Date Title
CA1079680A (en) Continuous electrolytical treatment of aluminum or its alloys
US3929593A (en) Method of forming colored oxide film on aluminum or aluminum alloy material
US3669856A (en) Process for the production of colored protective coatings on articles of aluminum or aluminum alloys
JPH0347994A (en) Method for coloring titanium or alloy thereof by controlling quantity of supplied electric current
US3915813A (en) Method for electrolytically coloring aluminum articles
US4571287A (en) Electrolytically producing anodic oxidation coat on Al or Al alloy
Raj et al. Pulse anodizing—an overview
US4421610A (en) Electrolytic coloring process
US4226680A (en) Process for electrolytic coloration of anodized aluminium
JPS58153797A (en) Coloration of light metal
US3788956A (en) Electrolytic coloring of anodized aluminum
JP3145117B2 (en) An improved method of current generation and control system for electrolytic treatment
JP3445154B2 (en) Manufacturing method of colored aluminum material
CA1038327A (en) Method of forming colored oxide film on aluminum or aluminum alloy
JPS596397A (en) Multi-color electrolytic coloration of aluminum or aluminum alloy
JP2659545B2 (en) Electrolytic coloring method of aluminum or aluminum alloy
KR20160053287A (en) Electrochromic System of the Aluminum Material using a Crossflow Asymmetry Power Source and Controlling Method for the Same
US3963591A (en) Method of coloring of anodized aluminum and aluminum alloys by electrolytic treatment in the metal salt solutions
JPH0359150B2 (en)
JPS5913095A (en) Electrolytic pigmentation method of aluminum or aluminum alloy
JPS582599B2 (en) Coloring method for anodic oxide films on aluminum and its alloys using current reversal electrolysis
JPS5948879B2 (en) Aluminum electrolytic coloring method
JPS638197B2 (en)
JPH0577758B2 (en)
SE407085B (en) PLEASE FALL ALUMINUM OR ALUMINUM ALLOY FORMS ELECTROLYTICALLY