JPS58153659A - Constant flow rate control device for liquid supplying apparatus - Google Patents

Constant flow rate control device for liquid supplying apparatus

Info

Publication number
JPS58153659A
JPS58153659A JP3746682A JP3746682A JPS58153659A JP S58153659 A JPS58153659 A JP S58153659A JP 3746682 A JP3746682 A JP 3746682A JP 3746682 A JP3746682 A JP 3746682A JP S58153659 A JPS58153659 A JP S58153659A
Authority
JP
Japan
Prior art keywords
signal
flow rate
frequency
ink
constant flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3746682A
Other languages
Japanese (ja)
Inventor
Masahiko Aiba
正彦 相羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3746682A priority Critical patent/JPS58153659A/en
Publication of JPS58153659A publication Critical patent/JPS58153659A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling

Landscapes

  • Ink Jet (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To obtain the titled device which can cope with the fluctuation in minute flow rate accompanied by the change in an environment and can obtain excellent picture quality by using an ink jet printer, and wherein the state of the particle formation is observed and the pump driving is controlled. CONSTITUTION:An observing device 8 for the ink particles jetted from a nozzle 3 is constituted by a light emitting element 40 and a light receiving element 41. The phases of the passing signal (SENS signal) of the particles and the signal (US signal) of an ultrasonic vibrator 32 are compared in a circuit 50. An output Vin from the circuit is supplied to a voltage controlled oscillator 51. The oscillator 51 outputs a reference frequency f0 (=US signal) when the input voltage Vin is OV, and oscillates a frequency which is higher or lower than the frequency f0 (by DELTAf) based on whether the Vin is higher or lower than OV. The frequency (f) is inputted to a driving part 52 constituted by a solenoid, and the solenoid is driven at the equal frequency.

Description

【発明の詳細な説明】 本発明はインクジェットプリンタなどに使用される液体
供給装置の定流量制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a constant flow rate control device for a liquid supply device used in an inkjet printer or the like.

一般にインクジェットプリンタは均一な粒子化を行わせ
るためにこの液体供給装置としては一定流量の供給装置
が要求されるために定流量ポンプが使用されている。し
かしこのポンプは負荷の変動特に温度変化等によるイン
ク粘性の変化に伴なう微少流量の変動に対しては対処す
ることができなかった。
In general, an inkjet printer uses a constant flow pump because a constant flow rate supply device is required as the liquid supply device in order to uniformly form particles. However, this pump could not cope with minute fluctuations in flow rate due to changes in load, especially changes in ink viscosity due to changes in temperature.

特に印字文字の寸法は、インク供給部(ポンプ)がちの
吐出流量に対し2〜3倍の変動感度を持っ為(インク流
量が、1%変化すると文字寸法は2〜3%変化する)、
安定した印字寸法を得る為にはインク供給部の定流量特
性は不可欠なものである0 又、多数の小滴が、空中を飛行して記録紙まで到達する
までに受ける印字歪に対しても、インク粒子間距離λ(
λは、インク流量に比例する)と密接な関係があり、こ
れを安定化することは、歪補正を正確に行々い、良好な
印字品位を得る上で重要である。
In particular, the size of printed characters is 2 to 3 times more sensitive to the discharge flow rate of the ink supply unit (pump) (if the ink flow rate changes by 1%, the character size changes by 2 to 3%).
In order to obtain stable print dimensions, constant flow characteristics of the ink supply section are essential.Also, it is necessary to prevent printing distortion caused by many small droplets flying through the air before reaching the recording paper. , the distance between ink particles λ(
(proportional to the ink flow rate), and stabilizing this is important in accurately performing distortion correction and obtaining good print quality.

本発明は前記のような微少流量の変動に対して充分対処
しうる定流量制御装置を提供するものであり、特に粒子
形成の状態を観測しながらポンプの駆動を制御すること
によって定流量の供給ができるように工夫し、安定した
画質が得られるインクジェットプリンタとなしたもので
ある。
The present invention provides a constant flow rate control device that can sufficiently cope with the minute fluctuations in flow rate as described above, and in particular, it is possible to supply a constant flow rate by controlling the drive of a pump while observing the state of particle formation. This is an inkjet printer that can provide stable image quality.

以下本発明について図面の一実施例と共に詳細に説明す
る。
The present invention will be described in detail below with reference to an embodiment of the drawings.

第1図は本発明に係る装置を備えたインクジェットプリ
ンタの構成を示す図である。
FIG. 1 is a diagram showing the configuration of an inkjet printer equipped with a device according to the present invention.

1は定流量ポンプ2の駆動部であって実施例ではDCソ
レノイドを示している。また、DCソレノイドの他にモ
ータ等の駆動源であってもよい。
Reference numeral 1 denotes a drive unit for a constant flow pump 2, which is a DC solenoid in the embodiment. In addition to the DC solenoid, a drive source such as a motor may also be used.

3はノズル、4は帯電電極、5は偏向電極、6は不要イ
ンクを回収するガター、7は記録媒体、9はインクタン
ク、10は前詰DCソレノイドでなる駆動部1の制御回
路である。
3 is a nozzle, 4 is a charging electrode, 5 is a deflection electrode, 6 is a gutter for collecting unnecessary ink, 7 is a recording medium, 9 is an ink tank, and 10 is a control circuit for the drive unit 1, which includes a preload DC solenoid.

また、8は前記制御回路10を制御するためのインク粒
子の観測器であり、発光素子と受光素子で構成されて粒
子の通過ごとに出力が変化する。
Further, 8 is an ink particle observation device for controlling the control circuit 10, which is composed of a light emitting element and a light receiving element, and its output changes every time a particle passes.

上記定流量ポンプ2はシリンダ20の空洞をピストン2
1とダイヤフラム23で区切って圧力室24と25を形
成している。そして、DCCソレノイドなる駆動部1に
よってプランジャー22が往復運動されることでそれら
圧力室24.25の圧力が増減される。
The constant flow pump 2 connects the cavity of the cylinder 20 to the piston 2.
1 and a diaphragm 23 to form pressure chambers 24 and 25. The plunger 22 is reciprocated by the driving unit 1, which is a DCC solenoid, so that the pressure in the pressure chambers 24 and 25 is increased or decreased.

従って、インクタンク9よシのインクが弁25を介して
圧力室24に供給され、更に弁26を介して蓄圧室27
へ供給される。この蓄圧室27へ供給されたインクはフ
ィルタ30、電僑弁31を介してノズル3に供給されて
インクが噴射され、このインクは超音波振動子32によ
って粒子化される。
Therefore, ink from the ink tank 9 is supplied to the pressure chamber 24 via the valve 25, and further via the valve 26 to the pressure accumulation chamber 27.
supplied to The ink supplied to the pressure accumulating chamber 27 is supplied to the nozzle 3 via the filter 30 and the electric valve 31 to be ejected, and this ink is turned into particles by the ultrasonic vibrator 32.

一方、ガター6に回収されたインクは弁28を介して圧
力室25に吸引され、更に弁29を介し:::1゜ てインクタンク9に戻される。
On the other hand, the ink collected in the gutter 6 is sucked into the pressure chamber 25 via the valve 28, and further returned to the ink tank 9 via the valve 29 through 1°.

第2図は上記したインク粒子の観測器8の構成を具体的
に示している。
FIG. 2 specifically shows the configuration of the ink particle observation device 8 described above.

この第2図において、40は発光ダイオードであってこ
の発光ダイオード40より発光される光はレンズ43に
よって集束され、スリット42を介して受光素子41へ
導びかれる。
In FIG. 2, 40 is a light emitting diode, and light emitted from the light emitting diode 40 is focused by a lens 43 and guided to a light receiving element 41 through a slit 42. In FIG.

このため、前記受光素子41からはインク粒子の通過毎
に出力が変化し、この周波数は粒子化周波数(超音波振
動子32の信号(US信号))と同じ値となるが、流量
の変動に従って検出信号の位相が変化する。従って、あ
る基準信号つまり前記US信号と受光素子41からの検
出信号(SEMS信号)との位相比較することによって
インク流量状態がわかることになる。
Therefore, the output from the light receiving element 41 changes every time an ink particle passes, and this frequency becomes the same value as the atomization frequency (signal (US signal) of the ultrasonic vibrator 32), but as the flow rate changes, The phase of the detection signal changes. Therefore, by comparing the phases of a certain reference signal, that is, the US signal, and the detection signal (SEMS signal) from the light receiving element 41, the ink flow rate state can be determined.

前記流量と位相差について今少し考察すると、インク粒
子間距離λと粒子速度VとUS信号周波数fiと流量Q
の関係は次式で与えられるO8Nはノズル断面積である
Considering the flow rate and phase difference, the distance λ between ink particles, the particle velocity V, the US signal frequency fi, and the flow rate Q
The relationship is given by the following equation, where O8N is the nozzle cross-sectional area.

また、位相差φ(位相差=φ、US−φBENlll+
)は次式で与えられる。tはノズルとセンサー間の距離
である。
In addition, the phase difference φ (phase difference=φ, US−φBENllll+
) is given by the following equation. t is the distance between the nozzle and the sensor.

そしてφのQに対する変化減度は μ となシ、つまり流量Qが+1%変化するとφは一1%変
化する。
The degree of change in φ with respect to Q is μ, that is, when the flow rate Q changes by +1%, φ changes by -1%.

上記US信号と5ENS信号との位相検波は±2π(r
ad)の間で検出するものであ〕、−2π〈x<2π と表わした場合、Xの変化によシ出力が表われる0 例えばセンサー位置z==30(ms+)、粒子間距離
λ= 0.2 (m )とすると、粒子化信号との位相
を 差φはφ=2π7=300π(rad)となる。今、こ
の制御系が働いて制御誤差が±π(rad)の範囲とす
ると、これはφ全体に対し±0.33%となシ、流量に
対しても壬0.33%の誤差範囲となって高精度の制御
が可能である。
The phase detection between the above US signal and 5ENS signal is ±2π(r
ad)], and when expressed as -2π<x<2π, the output appears depending on the change in X. For example, sensor position z = = 30 (ms +), interparticle distance λ = 0.2 (m), the phase difference φ from the particulate signal is φ=2π7=300π (rad). Now, if this control system is working and the control error is in the range of ±π (rad), this is ±0.33% for the entire φ, and the error range for the flow rate is also 0.33%. Therefore, highly accurate control is possible.

以上のことから粒子の通過信号(SENS信号)を観測
し、US信号との位相比較によって、流量を一定とすべ
く制御が可能となる。
From the above, by observing the particle passage signal (SENS signal) and comparing the phase with the US signal, it becomes possible to control the flow rate to be constant.

具体的には第3図に示す制御系を構成している。Specifically, a control system shown in FIG. 3 is configured.

第3図は第1図の制御回路10を示し、50はUS信号
とSEMS信号との位相差を検波する回路であって位相
差に応じた出力が得られる。
FIG. 3 shows the control circuit 10 of FIG. 1, and 50 is a circuit for detecting the phase difference between the US signal and the SEMS signal, and an output corresponding to the phase difference is obtained.

即ち、第5図(4)、の)、(0にはUS信号とSEM
S信号を比較する回路50の出力状態を示し、第5図(
ト)は同位相の状態であってこの時に回路50出力Vi
nはOVである。°また第5図(B)はSEMS信号(
f)がプラス方向にずれた状態(f>fO)であってこ
の時に回路50の出力vinu高くなり、更に第5図(
Qは5ENS信号(f)がマイナス方向にずれた状態(
f(f。)であってこの時に回路50の出力Vinは低
くなる。
That is, in (4) of Fig. 5), (0 is the US signal and SEM
The output state of the circuit 50 for comparing the S signal is shown in FIG.
) are in the same phase state, and at this time the circuit 50 output Vi
n is OV. ° Figure 5 (B) also shows the SEMS signal (
f) is shifted in the positive direction (f>fO), and at this time, the output vinu of the circuit 50 becomes high, and furthermore, as shown in FIG.
Q is a state in which the 5ENS signal (f) is shifted in the negative direction (
f(f.), and at this time the output Vin of the circuit 50 becomes low.

これら位相の状態と出力vinの関係については第4図
←)においても示されている。
The relationship between these phase states and the output vin is also shown in FIG. 4←).

上記回路5oの出力vinは電圧制御発振器51に供給
され、この発振器51は第4図(イ)に示すように入力
電圧VinがOvであれば基準周波数f。
The output vin of the circuit 5o is supplied to a voltage controlled oscillator 51, and as shown in FIG. 4(a), this oscillator 51 has a reference frequency f when the input voltage Vin is Ov.

(fo=US信号)を出力し、またVinがOvより高
くなければ基準周波数f。より高く(Δf)なり、更に
VinがOVより低くなればf。より低い周波数を発振
する。
(fo=US signal), and if Vin is higher than Ov, the reference frequency f. becomes higher (Δf), and if Vin becomes lower than OV, then f. oscillates at a lower frequency.

この様にして得られた周波数fはDCソレノイドでなる
駆動部52(第1図の1の相当)に入力され、等しい周
波数でソレノイドが駆動される。
The frequency f obtained in this manner is input to a driving section 52 (corresponding to 1 in FIG. 1) consisting of a DC solenoid, and the solenoid is driven at the same frequency.

この場合、インク流量は周波数fと比例関係にある0 従って、上記SEMS信号をポンプ駆動にフィードバッ
クすることによって一定流量を供給すべく制御すること
ができる。
In this case, the ink flow rate is proportional to the frequency f. Therefore, by feeding back the SEMS signal to the pump drive, it is possible to control the ink flow rate to supply a constant flow rate.

次に第6図は第2図の粒子化状態の観測器8の他の実施
例を示すものであり、これはガター6にピエゾ圧電素子
8Aを設けて粒子の衝突振動を電気信号として取出すこ
とにより、これを上述した5ENS信号として使用する
ようになしだものである。
Next, FIG. 6 shows another embodiment of the particle state observation device 8 shown in FIG. 2, in which a piezoelectric element 8A is provided in the gutter 6 to extract particle collision vibration as an electric signal. Therefore, this is used as the 5ENS signal mentioned above.

また、基準信号として上述した粒子化信号(US信号)
を用いずに第2図のようなセンサーを複数個使用してそ
れらの位相差を取って検出することもできる。
In addition, the above-mentioned particle signal (US signal) is used as a reference signal.
It is also possible to use a plurality of sensors as shown in FIG. 2 and detect the phase difference between them without using the sensor.

以上のように本発明にあってはノズルから噴出されるイ
ンク粒子からこのインク粒子の形成周期を観測する手段
と、前記手段で観測されたインク粒子の形成周期とノズ
ル部分で液体を粒子化するだめの粒子化信号との位相差
を検出する手段と、前記手段の検出に基づいてポンプ手
段の駆動周波数を決定する手段とを備えて前記位相差に
基づいて決定された駆動周波数でポンプ手段を制御する
ことにより、環境変化に伴なう微少流量の変動に対して
も充分対処でき、良好な画質が得られるインクジェット
プリンタを得ることが、できる等の特徴を有する。
As described above, the present invention includes a means for observing the formation period of ink particles from ink particles ejected from a nozzle, and a means for observing the formation period of ink particles observed by the means and for converting the liquid into particles at the nozzle portion. means for detecting a phase difference with a particulate signal of the pump; and means for determining a driving frequency of the pumping means based on the detection by the means, the pumping means being operated at a driving frequency determined based on the phase difference. By controlling the inkjet printer, it is possible to sufficiently cope with minute fluctuations in flow rate due to environmental changes, and to obtain an inkjet printer that can obtain good image quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置を具備したインクジェットプ
リンタの構成を示す図、第2図はインク粒子の観測器の
構成を示す図、第3図は第1図の制御回路における具体
的構成を示す図、第4図(イ)、(ロ)は第3図の構成
の特性図、第5図(ト)、@)、(C’lは第3図の位
相検波回路の動作を示す信号波形図、第6図は第2図で
示した観測器の七の実施例を示す図である。 1:駆動部、2:定流量ポンプ、3:ノズル、8:イン
ク粒子の観測器、9:インクタンク、10:制御回路、
32:超音波振動子、40:発光ダイオード、41:受
光素子、50:位相を検波する回路、51:発振器。
FIG. 1 is a diagram showing the configuration of an inkjet printer equipped with a device according to the present invention, FIG. 2 is a diagram showing the configuration of an ink particle observation device, and FIG. 3 is a diagram showing the specific configuration of the control circuit in FIG. 1. Figures 4 (A) and (B) are characteristic diagrams of the configuration in Figure 3, Figures 5 (G) and @), (C'l are signals indicating the operation of the phase detection circuit in Figure 3). The waveform diagram, FIG. 6, is a diagram showing seven embodiments of the observation device shown in FIG. 2. 1: Drive unit, 2: Constant flow pump, 3: Nozzle, 8: Ink particle observation device, 9 : ink tank, 10: control circuit,
32: Ultrasonic transducer, 40: Light emitting diode, 41: Light receiving element, 50: Phase detection circuit, 51: Oscillator.

Claims (1)

【特許請求の範囲】 1、液体タンクからの液体をポンプ手段でノズルへ供給
し、前記ノズルから液体を粒子化して噴出させる装置に
おいて、 前記ノズルから噴出されるインク粒子からこのインク粒
子の形成周期を観測する手段と、前記手段で観測された
インク粒子の形成周期とノズル部分で液体を粒子化する
ための粒子化信号との位相差を検出する手段と、 前記手段の検出に基づいてポンプ手段の駆動周波数を決
定する手段、 とを備えて上記位相差に基づいて決定された駆動周波数
でポンプ手段を制御する仁とにより定流量供給を行わせ
たことを特徴とする液体供給装置の定流量制御装置。
[Scope of Claims] 1. In an apparatus for supplying liquid from a liquid tank to a nozzle by a pump means, and ejecting the liquid into particles from the nozzle, the formation cycle of the ink particles from the ink particles ejected from the nozzle. means for detecting a phase difference between the formation cycle of ink particles observed by the means and a particle formation signal for forming liquid into particles at the nozzle portion; and pump means based on the detection by the means. A constant flow rate of a liquid supply device characterized in that the constant flow rate is supplied by means for determining a drive frequency of the pump means, and a drive frequency determined based on the phase difference. Control device.
JP3746682A 1982-03-09 1982-03-09 Constant flow rate control device for liquid supplying apparatus Pending JPS58153659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3746682A JPS58153659A (en) 1982-03-09 1982-03-09 Constant flow rate control device for liquid supplying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3746682A JPS58153659A (en) 1982-03-09 1982-03-09 Constant flow rate control device for liquid supplying apparatus

Publications (1)

Publication Number Publication Date
JPS58153659A true JPS58153659A (en) 1983-09-12

Family

ID=12498294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3746682A Pending JPS58153659A (en) 1982-03-09 1982-03-09 Constant flow rate control device for liquid supplying apparatus

Country Status (1)

Country Link
JP (1) JPS58153659A (en)

Similar Documents

Publication Publication Date Title
US7300131B2 (en) Droplet ejection apparatus with ejection failure detection means
EP1452318B1 (en) Droplet ejecting apparatus and ejection failure detecting / determining method for a droplet ejecting head
US7798596B2 (en) Inkjet recording apparatus
JP2004314457A (en) Liquid droplet discharging device and head abnormality detection/judgment method
US4368474A (en) Ink droplet formation control in an ink jet system printer
EP1700700B1 (en) Inkjet recording apparatus
JPH078565B2 (en) Control circuit for ink jet head
JP2004276274A (en) Liquid droplet discharging device
JPS6260270B2 (en)
JPS6330870B2 (en)
US7341325B2 (en) Droplet ejection apparatus and method of detecting ejection failure in droplet ejection heads
JPS58153659A (en) Constant flow rate control device for liquid supplying apparatus
JP2007160671A (en) Liquid jetting device, and its controlling method
JP4561232B2 (en) Non-ejection detection circuit for inkjet recording apparatus, inspection method for inkjet recording apparatus, and inkjet recording apparatus
JP3296942B2 (en) Nozzle clogging detection method
JP2004314458A (en) Liquid droplet discharging device and head abnormality detection/judgment method
JP4561233B2 (en) Non-ejection detection circuit for inkjet recording apparatus, inspection method for inkjet recording apparatus, and inkjet recording apparatus
JP2012061760A (en) Image forming system, control method for the same, and control program
JP2004299140A (en) Droplet discharge device and method for detecting abnormality of head of droplet discharge device and recovering from it
JPS5831763A (en) Ink jet head
JP2727571B2 (en) Ink jet printer
JPS62130856A (en) Controller for exciting voltage in ink jet recorder
JPS5831768A (en) Ink jet copy-printing device
WO2004076185A1 (en) Liquid drop ejector and method for detecting/judging abnormality of head
JPS6274659A (en) Deflection control ink jet recorder