JPS58153576A - Generating method of steam - Google Patents

Generating method of steam

Info

Publication number
JPS58153576A
JPS58153576A JP3573582A JP3573582A JPS58153576A JP S58153576 A JPS58153576 A JP S58153576A JP 3573582 A JP3573582 A JP 3573582A JP 3573582 A JP3573582 A JP 3573582A JP S58153576 A JPS58153576 A JP S58153576A
Authority
JP
Japan
Prior art keywords
steam
ceramic
powder
balls
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3573582A
Other languages
Japanese (ja)
Inventor
Shiro Takahashi
四郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3573582A priority Critical patent/JPS58153576A/en
Publication of JPS58153576A publication Critical patent/JPS58153576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PURPOSE:To generate superheated steam, by bringing waste gases of combustion into contact with ceramic balls to heat said balls, and bringing said balls into contact with solid powder and granules to heat the powder and granules then feeding the powder and granules together with air into a boiler and heating water tubes and steam tubes. CONSTITUTION:Waste gases 1 of combustion are fed into a heater 2 for ceramic balls and are brought into contact with ceramic balls 5 to heat the balls, whereafter the balls 5 are fed to one end of a rotary heat exchanger 8. Ceramic powder and granules 12 are fed into the exchanger 8 from the other end thereof, and are brought into counter current contact with the balls, whereby the powder and granules 12 are heated. The heated powder and granules 12 and air 41 are mixed to a heated solid-air mixture 23. Such mixture is fed into the lower part of a boiler 24 provided with a water tube groups 26 which evaporates the water flowing in the upper stages to steam and a steam tube group 27 which heats the steam flowing in the lower stages to super heated steam. The water in the group 26 and the steam in the group 27 are heated to generate superheated steam.

Description

【発明の詳細な説明】 本発明はガラス溶解炉やゴミ焼却炉等のダスト、ミスト
を含むダーティな排ガスの保有熱を利用し、効率よく水
蒸気特に過熱水蒸気を発生させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently generating steam, particularly superheated steam, by utilizing the heat retained in dirty exhaust gas containing dust and mist from glass melting furnaces, garbage incinerators, etc.

本発明によれは、熱媒体としてセラミック球例えばアル
ミナ球及び空気と固体粉粒例えば珪砂との混合物である
固気混合体を用い、まず第1に排ガスの熱をセラミック
球に与えて移動させ、次にセラミック球をh体粉浜体と
接触させて粉粒体を、加熱する。加熱されだ粉粒体を空
気と共にボイラーに送入し、ボイラー中の水管及び水蒸
気管を加熱して過熱水蒸気を発生させる。
According to the present invention, ceramic balls, such as alumina balls, and a solid-gas mixture, which is a mixture of air and solid powder particles, such as silica sand, are used as heat carriers, and the heat of the exhaust gas is first applied to the ceramic balls and transferred, Next, the ceramic sphere is brought into contact with the h-body powder body to heat the powder body. The heated powder and granules are fed into a boiler together with air, and the water tubes and steam tubes in the boiler are heated to generate superheated steam.

第1図は本発明方法を全体的に説明するフローシー?で
ある。
FIG. 1 is a flowchart that generally explains the method of the present invention. It is.

燃焼排ガス1はセラミック球加熱装置2の内部まで延び
るガス供給i13に導ひかれて装置内へ送入される。セ
ラミック球5は装置頂部の入口4よシ装置内へ投入され
、スクリューフィダー9による定量排出に伴い移動層を
形成しつつ下方へ落下して行く。送入された燃焼排ガス
1は、装置内のガス供給管の先端より装置内壁へ向って
放射状に複数個設置された断面逆U字形又は逆V字形の
分散樋5′と、先端自身より円周方向に偏流することな
く分散されセラミック球と効率よく向流的にセラミック
球を加熱する。
The combustion exhaust gas 1 is guided into the ceramic ball heating device 2 by a gas supply i13 extending into the device. The ceramic spheres 5 are introduced into the apparatus through the inlet 4 at the top of the apparatus, and as they are discharged in a fixed quantity by the screw feeder 9, they fall downward while forming a moving layer. The injected combustion exhaust gas 1 is distributed between a plurality of dispersion gutter 5' each having an inverted U-shaped cross section or an inverted V-shaped cross section, which are installed radially from the tip of the gas supply pipe inside the device toward the inner wall of the device, and a dispersion gutter 5' that is disposed radially from the tip of the gas supply pipe inside the device toward the inner wall of the device, The current is dispersed without being biased in any direction, and the ceramic spheres are efficiently heated countercurrently with the ceramic spheres.

分散樋5′は燃焼排ガスの円周方向への分散と同時にセ
ラミック球の均一な量降を促す。熱交換後の排ガスはガ
ス出口6より糸外へ排出される。
The dispersion gutter 5' disperses the combustion exhaust gas in the circumferential direction and at the same time promotes a uniform drop of the ceramic spheres. The exhaust gas after heat exchange is discharged from the gas outlet 6 to the outside of the yarn.

加熱されたセラミック球は・装置下部の出ロアよリュー
フィーダー9に入る。
The heated ceramic balls enter the Lew feeder 9 through the exit lower part of the lower part of the device.

セラミック球は、アルミナ、アルミナ系スピネル、コー
ジェライト等の耐熱性、耐摩耗性のセラミック球 図に示される。
Ceramic balls are shown in the diagram as heat-resistant and wear-resistant ceramic balls such as alumina, alumina-based spinel, and cordierite.

回転式熱交換装置8の一端に設けられたスクリューフィ
ーダー9の外筒の下部には金網あるいはパンチングメタ
ルからなるダスト除去部10が設けられ、排ガスとの接
触によりセラミック球に付着したダストはこの部分で除
去される。
A dust removal section 10 made of wire mesh or punched metal is provided at the bottom of the outer cylinder of the screw feeder 9 provided at one end of the rotary heat exchanger 8, and the dust that has adhered to the ceramic balls due to contact with the exhaust gas is removed from this section. will be removed.

回転式熱交換装置の他端にもスクリューフィーダー11
が設けられ、ここから加熱されるべきセラミック粉粒体
12が装置内に送入される。
A screw feeder 11 is also installed at the other end of the rotary heat exchanger.
is provided, from which the ceramic powder 12 to be heated is fed into the apparatus.

回転式熱交換装置の本体即ち回転体は、前記−粉粒体の
送入装置であるスクリューフィーダー11の方向に通常
37−9°下り勾配で傾斜して配置され、ガイドローラ
ー15上に回転可能に装架されている。16は回転体の
1転駆動手段をホし、本実施例ではモーターとこれによ
って回転される歯車及びこれとかみ合い、回転体を包囲
するラックとからなる0回転数は通常1分間に2〜5回
とする。13は加熱された粉粒体の排出口、14は熱交
換後のセラミック球の排出口を示す。
The main body of the rotary heat exchanger, that is, the rotating body, is arranged with a downward slope of 37-9 degrees in the direction of the screw feeder 11, which is the feeding device for the powder and granules, and is rotatable on the guide rollers 15. It is mounted on. Reference numeral 16 denotes a one-rotation driving means for the rotary body, and in this embodiment, the zero rotation speed is usually 2 to 5 per minute, which is composed of a motor, a gear rotated by the motor, and a rack that meshes with the gear and surrounds the rotary body. times. Reference numeral 13 indicates an outlet for the heated powder and granular material, and 14 indicates an outlet for the ceramic spheres after heat exchange.

回転体は、外筒17とこれと同心的に設けられた内筒1
8とからなる。内筒は多数め小孔を有するパンチングメ
タルあるいは金網からなり、各孔は粉粒体の通過を妨け
ないがセラミック球を通過させない寸法を有する。
The rotating body includes an outer cylinder 17 and an inner cylinder 1 provided concentrically with the outer cylinder 17.
It consists of 8. The inner cylinder is made of punched metal or wire mesh having a large number of small holes, and each hole has a size that does not prevent the passage of powder particles but prevents the passage of ceramic balls.

内筒と外筒との間には、この両者に固定された円周方向
に等間隔の多電の、スクリュー羽根19が設けられ、こ
れらは、内筒の孔を通過し外筒の底に達した粉粒体を回
転体の回転に伴なって粉粒体の出口に向けぞ押し出すと
同時に内筒を外筒と一体的に回転させる働きをする。更
に、スクリュー羽根の間に社、粉粒体供給側の一定長を
除き好ましくは円周方向に等間隔に複数列スクリュー羽
根と交差してスクレーノ(−板20が設けられ、外筒の
底面に内筒より抜は落ち回転に伴なってスクリュー羽根
により進行方向に粒体を上方にかき上け、内筒のセラ ミック球の充填面誉越えた成る高さで落下させて、再び
内筒内に戻して漸次高温の熱媒体粒子と接触させる。粉
体供給側の一定長にはスクレーパー板20が設けられて
いないので粉粒体はセラミック球上に落ちることがなく
、セラミックー子牛にi人している粉粒体はこの間のセ
ラミック粒子の進行に伴ない内筒より外筒底面にミック
球の供給側に移動する。こう してセラミック粒子は粉i体と完全に分離される。
Between the inner cylinder and the outer cylinder, there are provided multiple screw blades 19 fixed to both at equal intervals in the circumferential direction, and these blades pass through holes in the inner cylinder to the bottom of the outer cylinder. As the rotating body rotates, the powder and granules that have arrived are pushed out toward the outlet of the granules, and at the same time, the inner cylinder and the outer cylinder rotate integrally. Furthermore, a screw blade 20 is provided between the screw blades, and a screw plate 20 is preferably provided at equal intervals in the circumferential direction, except for a certain length on the powder supply side, and intersects with the screw blades in multiple rows. As the particles are removed from the inner cylinder and rotate, the screw blades scrape up the particles upward in the direction of movement, and they are dropped to a height that exceeds the filled surface of the ceramic balls in the inner cylinder, and then returned to the inner cylinder. The scraper plate 20 is not provided at a certain length on the powder supply side, so the powder particles do not fall onto the ceramic sphere, and the powder particles are brought into contact with the ceramic calves. During this time, as the ceramic particles advance, the powder particles move from the inner tube to the bottom surface of the outer tube toward the supply side of the mixer balls.In this way, the ceramic particles are completely separated from the powder particles.

内面のセラミック球の出口側の端部には、堰21が設け
られ、これは内筒内を回転と傾斜によって進行するセラ
ミック球の量をある一定のii(高さ)に保つ働きをす
る。
A weir 21 is provided at the end of the inner surface of the ceramic sphere on the outlet side, and this serves to maintain the amount of the ceramic sphere advancing within the inner cylinder by rotation and inclination at a certain constant ii (height).

熱交換後の冷却されたセラミック球はセラミック球の排
出口14より前記セラミック球のカロ熱装置2へ送られ
る。
The cooled ceramic balls after heat exchange are sent to the ceramic ball heating device 2 through the ceramic ball outlet 14.

加熱されたセラミック粉粒体は排出口13を出た後、フ
ァン22より供給される後述のボイラーから排出され、
サイクロンで粉粒分を除去された約100℃の空気と混
合され高温の固気混合体23を形成し、ボイラー24に
送入される。
After the heated ceramic powder leaves the discharge port 13, it is discharged from a boiler, which will be described later, supplied by a fan 22.
It is mixed with air at about 100° C. from which particulate matter has been removed in a cyclone to form a high-temperature solid-gas mixture 23, which is then sent to a boiler 24.

ボイラー24の詳細は第4図及び第5図に示される。Details of boiler 24 are shown in FIGS. 4 and 5.

固気混合体は、珪砂、アルミナ等のセラミック粉粒を1
0〜20Ay/NWtの固気比で含み、300〜400
℃の温度でボイラー下部の入口25よりボイラー内に送
入される。ボイラーの内部の上段には、水管群26.下
段には水蒸気管群27が、垂直方向に多数配設されてい
る。
The solid-gas mixture contains 1 ceramic powder such as silica sand or alumina.
Contains a solid-air ratio of 0 to 20 Ay/NWt, 300 to 400
It is fed into the boiler from the inlet 25 at the bottom of the boiler at a temperature of .degree. At the upper level inside the boiler, there is a group of water tubes 26. A large number of water vapor pipe groups 27 are vertically arranged in the lower stage.

28は汽水分離機を示し、外部より供給された水29は
上部の水管群の下部ヘッダー30より水管群に入り、上
昇する間に同郷混合体により向流的に加熱され、水蒸気
となって上部ヘッダー31“より汽水分離機に戻る。汽
水分離機で分離された水蒸気32は、水蒸気管群の上部
ヘッダー33より水蒸気管群に入り、この中を下降する
間に固気混合物によシ並流的に加熱され、過熱水蒸気3
5となって下部ヘッダー34より糸外へ取り出される。
Reference numeral 28 indicates a brackish water separator, in which water 29 supplied from the outside enters the water pipe group from the lower header 30 of the upper water pipe group, and as it rises, it is heated countercurrently by the homogeneous mixture, becoming steam and flowing to the upper part. The steam 32 separated by the steam separator enters the steam pipe group from the upper header 33 of the steam pipe group, and as it descends therein, it is converted into a solid-gas mixture in parallel flow. heated and superheated steam 3
5 and is taken out from the lower header 34.

ボイラー内には、中心線に沿って2つの円錐形を底で合
体した形状の分散器37が配置され、更に下向きの円錐
台形の仕切板36がボイラー内を垂直方向に一定間隔に
仕切っている。ボイラーの下部より送入された固気混合
物は、分散器37より分散され、仕切板36とボイラー
内壁との間の間隙38を通って上昇し、第5図に示す如
く巡回した流路を通って水蒸気管群及び水管群に効率よ
く接触しその内部の流体を加熱する。
Inside the boiler, a distributor 37 in the shape of two conical shapes joined at the bottom is arranged along the center line, and furthermore, partition plates 36 in the shape of a truncated cone facing downward partition the inside of the boiler at regular intervals in the vertical direction. . The solid-gas mixture introduced from the bottom of the boiler is dispersed by the disperser 37, rises through the gap 38 between the partition plate 36 and the inner wall of the boiler, and passes through the circulating flow path as shown in FIG. to efficiently contact the steam tube group and the water tube group and heat the fluid inside them.

ボイラー上部に達した固気混合物は、出口39よりサイ
クロン40に入り、ここで固体分即ちセラミック粉粒体
12が気体即ち空気から分離され回転式熱交換□装置8
に送入される。固体分の除去さnた空気41は、約10
0℃の温度を有し、空気循環用のファン22よシ再び加
熱されたセラミック粉粒体と混合される。サイ  4ク
ロンよシ排出された空気のうち余剰分は、バッグフィル
ター42に送られ、清浄化された後空放される。
The solid-gas mixture that has reached the upper part of the boiler enters the cyclone 40 through the outlet 39, where the solid content, i.e., the ceramic powder 12, is separated from the gas, i.e., the air, and is transferred to the rotary heat exchange device 8.
sent to The air 41 from which the solid content has been removed is approximately 10
It has a temperature of 0° C. and is mixed with the ceramic powder which is heated again by the fan 22 for air circulation. The surplus air discharged from the cyclone is sent to the bag filter 42, where it is purified and released into the air.

本発明方法の特長は次の通り。The features of the method of the present invention are as follows.

1、 間接加熱方式であるから、ガラス溶解炉。1. Glass melting furnace because it uses indirect heating method.

ゴミ焼却炉等のダーティな排ガスを熱源とする場合でも
ボイラーの金属の腐食が少い。
Even when the heat source is dirty exhaust gas from a garbage incinerator, etc., there is little corrosion of the metal in the boiler.

2、 ボイラーの伝熱は流動層タイプであり、伝熱係数
が極めて大きくとれるので、ボイラーがコンパクトにな
り且つ過熱蒸気が容易に得られる。       ゛ 3、 熱媒体である固気混合物は空、気循環用のファン
を出た100℃前後の空気に、同転式熱交換装置で加熱
された粉粒体(300〜400℃)が加わることにより
作られ、略々粉粒体と郷しい温度となってボイラーに入
るから、比較的小さなファン動力で大きな仕事量が得ら
れる。
2. The heat transfer of the boiler is a fluidized bed type, and the heat transfer coefficient is extremely large, so the boiler can be made compact and superheated steam can be easily obtained.゛3. The solid-gas mixture that is the heat medium is air, and the air at around 100℃ that comes out of the air circulation fan is added with powder (300 to 400℃) heated by a co-rotating heat exchanger. Because it enters the boiler as a powder and granules at a normal temperature, a large amount of work can be obtained with a relatively small fan power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を全体的に説明するフローシート、
第2図は回転式熱交換装置の長手方向の断面図、第3図
は回転式熱交換装置の縦方向の断面図、第4図は回転式
熱交換装置の外筒除去後の正面図、第5図はボイラーの
横方向の断面図、第6図はボイラーの縦方向の断面図を
示す。 1・・・・・・排ガス       2・・・・・・セ
ラミック球加熱装置5・・・・・・セラミック球   
 訃・・・・・回転式熱交換装置9・・・・・・スクリ
ューフィーf   11・・・・・・スクリューフィー
ダ12・・・・・・セラミック粉粒体  23・・・・
・・固気混合物24・・・・・・ボイラー     2
6・・・・・・水管群27・・・・・・水蒸気管群  
  28・・・・・・汽水分離機29・・・・・・水 
      32・・・・・・水蒸気35・・・・・・
過熱水蒸気    36・・・・・・仕切板37・・・
・・・分散器      40・・・・・・サイクロン
41・・・・・・空気 ’7’2TfJ ?4図
FIG. 1 is a flow sheet that generally explains the method of the present invention;
FIG. 2 is a longitudinal sectional view of the rotary heat exchange device, FIG. 3 is a longitudinal sectional view of the rotary heat exchange device, and FIG. 4 is a front view of the rotary heat exchange device after the outer cylinder is removed. FIG. 5 shows a lateral sectional view of the boiler, and FIG. 6 shows a longitudinal sectional view of the boiler. 1... Exhaust gas 2... Ceramic bulb heating device 5... Ceramic bulb
Death...Rotary heat exchanger 9...Screw feed f 11...Screw feeder 12...Ceramic powder 23...
...solid-gas mixture 24 ...boiler 2
6...Water tube group 27...Steam pipe group
28...Brackish water separator 29...Water
32...Water vapor 35...
Superheated steam 36... Partition plate 37...
...Distributor 40...Cyclone 41...Air '7'2TfJ? Figure 4

Claims (1)

【特許請求の範囲】 1)燃焼排ガスを用いて水蒸気を発生する方法において
1 、燃焼排ガス(1)をセラミック球加熱装# (2)に
送入しセラミック球(5)と接触させることによシセラ
ミック球を加熱する工程; 前記加熱されたセラミック球を回転式熱交換装置(8)
の一端に送入し、装置の他端より送入されたセラミック
粉粒体(12)と向流的に反復して接触させ該セラミッ
ク粉粒体を加熱する工程; 前記加熱されたセラミック粉粒体を空気(41)と混合
して加熱された固気混合物(23)を形成し、核固気混
合物を、上段に水を流して水蒸気化するための水管*(
26)を備え下段に水蒸気を流して過熱木犀気化するた
めの蒸気管群(27)を備えたボイラー(24)の下部
に送入し、管群と接して上昇させ水管群内の水を加熱す
ることによって水蒸気を発生させ、次いで水蒸気管群内
の水蒸気を加熱することによって過熱水蒸気を発生させ
る工程;前記固気混合物をボイラー上部より排出しサイ
クロン(40)に送入し、固気混合物より粉粒体を分離
し、粉粒体を前記回転式熱交換装置(8)の他端へ送入
する工程より構成される水蒸気の発生方法。
[Claims] 1) In the method of generating steam using combustion exhaust gas, 1) the combustion exhaust gas (1) is introduced into a ceramic ball heating device # (2) and brought into contact with a ceramic ball (5). Step of heating the ceramic sphere; heating the heated ceramic sphere in a rotary heat exchanger (8)
a step of repeatedly bringing the ceramic powder into contact with the ceramic powder (12) fed from the other end of the device in a countercurrent manner to heat the ceramic powder; the heated ceramic powder; A water pipe *(
The boiler (24) is equipped with a steam pipe group (27) for vaporizing the superheated water vapor by flowing water vapor into the lower part of the boiler. A step of generating steam by heating the steam, and then generating superheated steam by heating the steam in the steam pipe group; discharging the solid-gas mixture from the upper part of the boiler and feeding it into the cyclone (40); A steam generation method comprising the steps of separating granular material and feeding the granular material to the other end of the rotary heat exchanger (8).
JP3573582A 1982-03-09 1982-03-09 Generating method of steam Pending JPS58153576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3573582A JPS58153576A (en) 1982-03-09 1982-03-09 Generating method of steam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3573582A JPS58153576A (en) 1982-03-09 1982-03-09 Generating method of steam

Publications (1)

Publication Number Publication Date
JPS58153576A true JPS58153576A (en) 1983-09-12

Family

ID=12450081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3573582A Pending JPS58153576A (en) 1982-03-09 1982-03-09 Generating method of steam

Country Status (1)

Country Link
JP (1) JPS58153576A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959697B1 (en) 2009-11-11 2010-05-26 (주)인터바이오 Burner for Boiler using Biomass Solid Fuel
US8646415B2 (en) 2009-03-18 2014-02-11 Ex-Tar Technologies System and method for zero liquid discharge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8646415B2 (en) 2009-03-18 2014-02-11 Ex-Tar Technologies System and method for zero liquid discharge
KR100959697B1 (en) 2009-11-11 2010-05-26 (주)인터바이오 Burner for Boiler using Biomass Solid Fuel

Similar Documents

Publication Publication Date Title
GB2052705A (en) Apparatus for drying and granulating wet pasty and/or fusible materials
CN1059753A (en) Gasification substance gasification and/or gas conversion process and device and the high-temperature heat-exchanging of implementing this method
US3330046A (en) Method and apparatus for exchanging heat between solid particles and gases
JPH05104098A (en) Method for drying water-containing sludge and apparatus therefor
CN104066816A (en) Coal dry distillation device
US4120644A (en) Apparatus for regeneration of spent active carbon
JPS6352933B2 (en)
EP0073650B1 (en) Fluidized bed heat exchanger
US5992041A (en) Raining bed heat exchanger and method of use
US4002524A (en) Method and apparatus for evaporating liquid
CN1767893A (en) Method and plant for the conveyance of fine-grained solids
US3705620A (en) Two-stage material cooler
US4629421A (en) Gas and solid particulate material heat exchanger
JPS58153576A (en) Generating method of steam
CN107879595A (en) A kind of deflector type device for preheating glass batch
JP2004508930A5 (en)
SE505629C2 (en) Chemical constituents recovery system and / or thermal energy when heated in circulating fluidized bed
US4523906A (en) Device for drying gypsum
WO2001036887A1 (en) A fluidized bed apparatus
US4255131A (en) Apparatus and method for heating an aggregate material
US4582521A (en) Melting furnace and method of use
US4199872A (en) Regeneration apparatus for producing sulfur dioxide
US2492132A (en) Process for heat-treating and drying particle-form absorbent solids
JPH0526577A (en) Horizontal type rotary kiln device
US3619422A (en) Process of drying sewage sludge