JPS58152929A - Bearing supporting device - Google Patents

Bearing supporting device

Info

Publication number
JPS58152929A
JPS58152929A JP57035508A JP3550882A JPS58152929A JP S58152929 A JPS58152929 A JP S58152929A JP 57035508 A JP57035508 A JP 57035508A JP 3550882 A JP3550882 A JP 3550882A JP S58152929 A JPS58152929 A JP S58152929A
Authority
JP
Japan
Prior art keywords
stays
bearing
support device
stay
bearing support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57035508A
Other languages
Japanese (ja)
Other versions
JPS6150167B2 (en
Inventor
Kengo Takahashi
健吾 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57035508A priority Critical patent/JPS58152929A/en
Publication of JPS58152929A publication Critical patent/JPS58152929A/en
Publication of JPS6150167B2 publication Critical patent/JPS6150167B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/24Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To prevent damage of a bearing and destruction of a concrete wall, by flowing a coolant in radial and peripheral stays to decrease thermal elongation and thrust force of the radial stays in the radial direction. CONSTITUTION:A bracket disc 4a holding a bearing 2, radial stays 9 of hollow section radially protruded from this disc 4a to the outside and fixedly propped with the outside end to a concrete wall 8 through a base 7, and peripheral stays 10 of hollow section connecting the outside ends of these stays 9 are provided to flow a coolant in a coolant passage formed by mutually penetrating these stays 9 and both ends of the stays 10.

Description

【発明の詳細な説明】 本発明は軸受支持装置に係り、特に水車発電機等の案内
軸受(以下、軸受と称す)を支持するのに好適な軸受支
持装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bearing support device, and particularly to a bearing support device suitable for supporting a guide bearing (hereinafter referred to as a bearing) of a water turbine generator or the like.

近年の我が国の電力需要は昼夜の差が著しく、ピーク電
力の供給と夜間余剰電力の有効活用のため、水力発電設
備は大容量化してきている。このような大容量揚水発電
設備は経済性向上のために高速化されており、従来の3
00rpm級に対し、最近は700rpm級が計画され
ている。機械が高速化すると従来に見られなかった問題
が生じてくる。本発明の動機となった軸受支持装置の熱
膨張に基づくコンクリート壁の破壊および軸受間隙の減
少による軸受焼損もその一つである。
In recent years, there has been a significant difference in electricity demand in Japan between day and night, and hydroelectric power generation facilities have been increasing in capacity in order to supply peak electricity and make effective use of surplus electricity at night. These large-capacity pumped storage power generation facilities are becoming faster in order to improve economic efficiency, and the conventional 3
In contrast to the 00 rpm class, recently a 700 rpm class is being planned. As machines become faster, problems that have never been seen before arise. One example of this is the failure of the concrete wall due to thermal expansion of the bearing support device and the bearing burnout due to the reduction of the bearing gap, which is the motivation for the present invention.

第1図および第2図には軸受支持装置の従来例が示され
ている。回転軸1の周囲に配置した軸受2は軸受支持枠
3に収められ、さらに軸受支持枠3はブラケット円板4
aの内側に取り付けられる。
1 and 2 show a conventional example of a bearing support device. A bearing 2 arranged around the rotating shaft 1 is housed in a bearing support frame 3, and the bearing support frame 3 is further fitted with a bracket disc 4.
It is attached to the inside of a.

このブラケット円板4ae有するブラケット4は、ブラ
ケット、円板4aと放射状に突出したブラケットアーム
4bとからなり、ブラケットアーム4bの先端には防振
ステー5が取り付けられ、周囲のコンクIJ −ト壁8
に配置したペース7に対して板ばね6を介して突っ張り
固定されている。そして回転軸1の曲げ固有振動数に関
するブラケット4の横剛性は、これら軸受支持枠3から
板ばね6′−!での半径方向の圧縮を受ける合成剤さく
以下、この半径方向の合成剤さをkで示す)によってほ
ぼ決定される。ところでこのような軸受支持装置は、コ
ンクリート壁8の安全および軸受間隙の保持に関し次に
述べるような欠点を有しており、機械を高速化する上で
の障害となっている。
The bracket 4 having the bracket disc 4ae consists of a bracket, a disc 4a, and a radially protruding bracket arm 4b.A vibration isolation stay 5 is attached to the tip of the bracket arm 4b, and the surrounding concrete IJ-to-wall 8
It is tensioned and fixed via a leaf spring 6 to a pace 7 placed in the. The lateral rigidity of the bracket 4 with respect to the bending natural frequency of the rotating shaft 1 is determined by the plate spring 6'-! The radial strength of the composite material under radial compression is approximately determined by the radial strength of the composite material (denoted hereafter by k). However, such a bearing support device has the following drawbacks regarding the safety of the concrete wall 8 and the maintenance of the bearing gap, and is an obstacle to increasing the speed of the machine.

従来の装置では、運転時のブラケットアーム4bの熱膨
張によりコンクリート壁8に半径方向の突張力FBが発
生する。この突張力FRは上述の半径方向の合成剤さk
に比例する。一方、機械を高速化するには回転軸1の曲
げ固有振動数を上げる、すなわち合成剤さkをあげなけ
ればならない。従つて機械を高速化するとコンクリート
壁8の半径方向の突張力FRが必然的に大きくなる。こ
の突張力FRはコンクリート壁8によって支持すること
になるが、機械上部にブラケット4を配置する構造(第
1図参照)においては、構造的にコンクリート壁8をい
たずらに厚くできないため、大きな突張力FRを吸収す
ることができず、コンクリート壁8の破壊を生じる。こ
れに対して機械下部にブラケット4を配置する構造(図
示せず)においては、充分強固なコンクリート壁8また
はコンクリート基礎によって突張力FRを支持すること
になるが、この場合にはプラグ・ソトアーム4bの熱膨
張による伸び(以下、熱伸びと称す)によって逆に軸受
2が内側に押されることになる。コンクリート基礎径が
大きい場合、すなわちブラケットアーム4bの長さが大
きい場合には熱伸び量も大きく、熱伸び量は所要軸受間
隙量をはるかに越えてしまう。このため軸受2の表面と
回転軸10表面との間に金属接触が生じ、軸受焼損を発
生する。このように従来の軸受支持装置は、熱膨張によ
るコンクリート壁8の破壊および軸受間隙減少から金属
接触による軸受1の焼損を発生し易い欠点を有していた
In the conventional device, a radial tensile force FB is generated in the concrete wall 8 due to thermal expansion of the bracket arm 4b during operation. This tensile force FR is determined by the above-mentioned radial synthetic agent k.
is proportional to. On the other hand, in order to increase the speed of the machine, it is necessary to increase the natural bending frequency of the rotary shaft 1, that is, to increase the synthetic material k. Therefore, as the speed of the machine increases, the radial tensile force FR of the concrete wall 8 inevitably increases. This tensile force FR will be supported by the concrete wall 8, but in the structure in which the bracket 4 is placed on the top of the machine (see Figure 1), the concrete wall 8 cannot be made unnecessarily thick due to the structure, so a large tensile force FR will be supported. FR cannot be absorbed, resulting in destruction of the concrete wall 8. On the other hand, in a structure (not shown) in which the bracket 4 is placed at the bottom of the machine, the tensile force FR is supported by a sufficiently strong concrete wall 8 or concrete foundation, but in this case, the plug/soto arm 4b The bearing 2 is conversely pushed inward by the elongation due to thermal expansion (hereinafter referred to as thermal elongation). When the diameter of the concrete foundation is large, that is, when the length of the bracket arm 4b is large, the amount of thermal expansion is also large, and the amount of thermal expansion far exceeds the required bearing clearance amount. Therefore, metal contact occurs between the surface of the bearing 2 and the surface of the rotating shaft 10, causing bearing burnout. As described above, the conventional bearing support device has the disadvantage that the concrete wall 8 is destroyed due to thermal expansion and the bearing 1 is easily burnt out due to metal contact due to a reduction in the bearing gap.

本発明は以上の点に鑑みなされたものであり、その目的
とするところは、軸受の焼損、コンクリート壁の破壊を
防止した軸受支持装置を提供するにある。
The present invention has been made in view of the above points, and its object is to provide a bearing support device that prevents bearing burnout and concrete wall destruction.

すなわち本発明は、案内軸受を保持するブラケット円板
と、このブラケット円板から放射状に外側に突出し、そ
の外側端をペースを介してコンクリ−ト壁に突っ張り固
定した中空断面を有する半径ステーと、これら半径ステ
ーの外側端の間を連結した中空断面を有する周ステーと
を設け、これら半径ステーおよび周ステーの両端を互に
貫通して形成した冷媒通路に冷媒を流すようにしたこと
を特徴とするものである。
That is, the present invention includes: a bracket disk holding a guide bearing; a radius stay projecting radially outward from the bracket disk and having a hollow cross section whose outer end is fixed to a concrete wall through a pace; A peripheral stay having a hollow cross section is provided connecting the outer ends of these radius stays, and the refrigerant is made to flow through a refrigerant passage formed by mutually penetrating both ends of the radius stay and the peripheral stay. It is something to do.

以下、図示した実施例に基づいて本発明を説明する。第
3図から第6図には本発明の一実施例が示されている。
The present invention will be explained below based on the illustrated embodiments. An embodiment of the present invention is shown in FIGS. 3-6.

なお従来と同じ部品には同じ符号を付したので説明は省
略する。本実施例では軸受2を保持するブラケット円板
4aと、このブラケット円板4aから放射状に外側に突
出し、その外側端をペース7を介してコンクリート壁8
に突っ張り固定した中空断面を有する半径ステー9と、
これら半径ステー9の外側端の間を連結した中空断面を
有する周ステー10とを設け、これら半径ステー9およ
び周ステー10の両端を互に貫通して形成した  ゛ 
    、  冷媒通路に冷媒を流すようドした。すな
わち半径ステー9および周ステー10で直列の冷媒通路
(第5図参照)または並列の冷媒通路(第6図参照)を
形成し、これら冷媒通路である半径ステー9および周ス
テ=10内を冷媒が図中矢印で示しであるように、直列
または並列に流れるようにした。なお同図において11
は流れ止めである。このようにすることにより、半径ス
テー9は冷媒によって冷却されるようになるあて、運転
時の′半径ステー9の半径方向の熱伸び量は緩和されて
小さく、所要軸受間隙量以下となり、半径ステー9の熱
伸びによって軸受2が内側に押されることがなくなって
軸受2の焼損を防止することができる。また半径ステー
9の熱伸び量が減少するので、コンクリート壁8の半径
方向の突張力Fiも緩和されて、コンクリート壁8の破
壊を防止することができる。そしてまた軸受支持装置全
体の横剛性は、周ステー10の長手方向の剛性によって
半径ステー9の曲げ剛性を高めることができるので、次
式で示すことができるようになり、大きくすることがで
きる。
Note that parts that are the same as those in the conventional model are given the same reference numerals, and therefore their explanations will be omitted. In this embodiment, there is a bracket disc 4a that holds the bearing 2, and a bracket disc 4a that protrudes radially outward, and its outer end is connected to a concrete wall 8 through a pace 7.
a radius stay 9 having a hollow cross section fixed to the radius stay 9;
A circumferential stay 10 having a hollow cross section is provided which connects the outer ends of these radius stays 9, and both ends of these radius stays 9 and circumferential stays 10 are formed so as to penetrate through each other.
, I turned on the refrigerant to flow the refrigerant into the refrigerant passage. In other words, the radius stay 9 and the circumferential stay 10 form a series refrigerant passage (see Fig. 5) or a parallel refrigerant passage (see Fig. 6), and the refrigerant passes through the radius stay 9 and the circumferential stay 10, which are the refrigerant passages. were made to flow in series or in parallel as indicated by the arrows in the figure. In the same figure, 11
is a flow stop. By doing this, the radius stay 9 is cooled by the refrigerant, and the amount of thermal expansion of the radius stay 9 in the radial direction during operation is relaxed and small, and becomes less than the required bearing clearance amount. Since the bearing 2 is no longer pushed inward by the thermal elongation of step 9, it is possible to prevent the bearing 2 from being burnt out. Furthermore, since the amount of thermal expansion of the radial stay 9 is reduced, the tensile force Fi in the radial direction of the concrete wall 8 is also alleviated, and destruction of the concrete wall 8 can be prevented. Furthermore, the lateral rigidity of the entire bearing support device can be increased as can be expressed by the following equation, since the bending rigidity of the radius stay 9 can be increased by the longitudinal rigidity of the circumferential stay 10.

半径ステー9の半径方向剛性eKr、半径ステー9の曲
げ剛性iK、、半径ステー9の数をnとし、軸受支持枠
3を剛体と仮定すれば、軸受支持装置全体の横剛性に、
は、K、=n/2 (K、+に、)で与えられる。この
ように半径ステー9の半径方向剛性Kr4曲げ剛性に、
が共に横剛性K、の大きさに寄与するようになるので、
次に述べるように公知の構造例よりも横剛性は大きくな
る。すなわち第7図に示しである軸受支持枠12からコ
ンクリート壁8に放射状に半径ステー13を突出させ、
この半径ステー13の両端を軸受支持枠12、コンクリ
ート壁8に夫々固定した公知の装置では、半径ステー1
3の半径方向剛性Krが曲げ剛性K。
If the radial rigidity eKr of the radius stay 9, the bending rigidity iK of the radius stay 9, and the number of radius stays 9 is n, and the bearing support frame 3 is a rigid body, then the lateral rigidity of the entire bearing support device is:
is given by K,=n/2 (in K,+). In this way, the radial stiffness Kr4 bending stiffness of the radius stay 9,
Both will contribute to the size of the lateral stiffness K, so
As described below, the lateral rigidity is greater than that of the known structural example. That is, radius stays 13 are made to protrude radially from the bearing support frame 12 shown in FIG. 7 to the concrete wall 8,
In a known device in which both ends of the radius stay 13 are fixed to the bearing support frame 12 and the concrete wall 8, the radius stay 13
The radial stiffness Kr of 3 is the bending stiffness K.

に比べて極めて大きいので、装置全体の横剛性K。Since it is extremely large compared to , the lateral stiffness of the entire device is K.

は、Ki=n/2に−で与えられる。すなわち半径ステ
ー13の曲げ剛性に、は横剛性Ktの大きさに寄与しな
いので、その分だけ横剛性に、は小さい。第8図および
第9図に示しである半径ステー13に所謂■型鋼を使用
し、コンクIJ −ト壁8とは滑り支持装置14をもっ
て支持されるようにしたもの、第10図に示しである半
径ステーを一枚の円板状ブラケット15に置き換え、コ
ンクリート壁8とは同じく滑り支持装置14をもって支
持されるようにしたもの、第11図に示しである半径ス
テー13を軸受支持枠12から放射状に突出させ、半径
ステー13間を周ステー16で支持するようにし、コン
クリート壁8とは同じく滑り支持装置14をもって支持
されるようにしたもの等これら公知の装置例では、いず
れも滑り支持装置14でコンクリート壁8に支持してい
るので半径ステー13(または円板状ブラケット15)
の半径方向剛性Krは殆んど零で、曲げ剛性に、に比べ
て著しく小さく、従って装置全体の横剛性に、は、KL
 −n/2 K、で与えられる。すなわち半径ステー1
3(または円板状ブラケット15)の半径方向剛性にア
は装置全体の横剛性に、の大きさに寄与しないので、そ
の分だけ横剛性は小さい。
is given by - to Ki=n/2. That is, since the bending rigidity of the radius stay 13 does not contribute to the magnitude of the lateral rigidity Kt, the lateral rigidity is small accordingly. A so-called type steel is used for the radius stay 13 shown in FIGS. 8 and 9, and the concrete IJ-to wall 8 is supported by a sliding support device 14, as shown in FIG. 10. The radius stay 13 is replaced with a single disc-shaped bracket 15, and the concrete wall 8 is supported by a sliding support device 14 in the same way as the concrete wall 8. The radius stay 13 shown in FIG. In these known examples of devices, such as one in which the radial stays 13 are supported by circumferential stays 16, and the concrete wall 8 is also supported by a sliding support device 14, the sliding support device 14 Since it is supported on the concrete wall 8, the radius stay 13 (or disc-shaped bracket 15)
The radial stiffness Kr of is almost zero and is significantly smaller than the bending stiffness, so the lateral stiffness of the entire device is KL
−n/2 K, given by That is, radius stay 1
3 (or the disc-shaped bracket 15) does not contribute to the lateral rigidity of the entire device, so the lateral rigidity is small accordingly.

なお冷媒としては適度に温度調節された液体または気体
を使用するが、ダムの水温が一定である環境においては
ダムの水を使用すれば経済的である。
Note that as the refrigerant, a liquid or gas whose temperature is appropriately controlled is used, but in an environment where the water temperature of the dam is constant, it is economical to use dam water.

第12図および第13図には本発明の他の実施例が示さ
れている。本実施例では半径ステー9゜周ステー10を
立体トーラス状に組立てるようにした。この場合には立
体トーラス状に組立てたのでブラケットを兼用すること
ができるようになって、ブラケットの設置が不要となる
Another embodiment of the invention is shown in FIGS. 12 and 13. In this embodiment, the stay 10 having a radius of 9° and a circumferential stay 10 is assembled into a three-dimensional toroidal shape. In this case, since it is assembled into a three-dimensional torus shape, it can also be used as a bracket, making it unnecessary to install a bracket.

上述のように本発明は、半径ステーおよび周ステーに冷
媒を流すようにしたので、半径ステーは冷媒によって冷
却されるようになって、半径ステーの半径方向の熱伸び
量、突張力は緩和されて小さくなって軸受の焼損、コン
クリート壁の破壊が防止されるようになり、軸受の焼損
、コンクリート壁の破壊を防止した軸受支持装置を得る
ことができる。
As described above, in the present invention, since the refrigerant is made to flow through the radius stay and the peripheral stay, the radius stay is cooled by the refrigerant, and the amount of thermal expansion and thrust tension in the radial direction of the radius stay is alleviated. This makes it possible to prevent burning of the bearing and destruction of the concrete wall, thereby providing a bearing support device that prevents the burning of the bearing and the destruction of the concrete wall.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の軸受支持装置の軸受囲りの発電機の縦断
側面図、第2図は第1図のA−A線に沿う断面図、第3
図は本発明の軸受支持装置の一実施例の軸受囲りの縦断
側面図、第4図は第3図のB−B線に沿う断面図、第5
図は本発明の軸受支持装置の一実施例の冷媒通路を示す
平面図、第6図は同じく一実施例の冷媒通路を示す平面
図、第7図は従来の軸受支持装置の他の例の平面図、第
8図は同じく更に他の例の平面図、第9図は第8図のQ
−Q線に沿う断面図、第10図は従来の軸受支持装置の
更に他の例の平面図、第11図は同じく更に他の例の平
面図、第12図は本発明の軸受支持装置の他の実施例の
平面図、第13図は第12図のC−Q線に沿う断面図で
ある。 1・・・案内軸受、4a・・・ブラケット円板、9・・
・半径ステー、10・・・周ステー。 葛8m 15 ”I) tt図
Fig. 1 is a vertical sectional side view of a generator surrounding a bearing of a conventional bearing support device, Fig. 2 is a sectional view taken along line A-A in Fig. 1, and Fig. 3
The figures are a vertical sectional side view of the bearing surroundings of an embodiment of the bearing support device of the present invention, FIG. 4 is a sectional view taken along the line B-B in FIG.
The figure is a plan view showing a refrigerant passage of one embodiment of the bearing support device of the present invention, FIG. 6 is a plan view showing a refrigerant passage of the same embodiment, and FIG. A plan view, FIG. 8 is a plan view of another example, and FIG. 9 is a plan view of another example.
10 is a plan view of still another example of the conventional bearing support device, FIG. 11 is a plan view of still another example, and FIG. 12 is a plan view of the bearing support device of the present invention. A plan view of another embodiment, FIG. 13, is a sectional view taken along line C-Q in FIG. 12. 1... Guide bearing, 4a... Bracket disc, 9...
・Radius stay, 10...peripheral stay. Kudzu 8m 15”I) tt figure

Claims (1)

【特許請求の範囲】 1、案内軸受を保持するブラケット円板と、このブラケ
ット円板から放射状に外側に突出し、その外側端をペー
スを介してコンクリート壁に突っ張り固定した中空断面
を有する半径ステーと、これら半径ステーの外側端の間
を連結した中空断面を有する周ステーとを設け、これら
半径ステーおよび周ステーの両端を互に貫通して形成し
た冷媒通路に冷媒を流すようにしたことを特徴とする軸
受支持装置。 2、前記半径ステーおよび周ステーが、立体トーラス状
に組合わされたものである特許請求の範囲第1項記載の
軸受支持装置。 3、前記冷媒通路が、直列または並列の冷媒通路である
特許請求の範囲第1項記載の軸受支持装置。 4、前記冷媒が、ダムから導いた水である特許請求の範
囲第1項記載の軸受支持装置。 5、前記冷媒が、一定温度に調節した液体または気体で
ある特許請求の範囲第1項記載の軸受支持装置。
[Scope of Claims] 1. A bracket disk holding a guide bearing, and a radius stay having a hollow cross section that projects radially outward from the bracket disk and whose outer end is fixed to a concrete wall through a pace. , a circumferential stay having a hollow cross section is provided which connects the outer ends of these radius stays, and the refrigerant is made to flow through a refrigerant passage formed by penetrating both ends of these radius stays and the circumferential stays. bearing support device. 2. The bearing support device according to claim 1, wherein the radius stay and the circumferential stay are combined into a three-dimensional torus shape. 3. The bearing support device according to claim 1, wherein the refrigerant passage is a series or parallel refrigerant passage. 4. The bearing support device according to claim 1, wherein the refrigerant is water led from a dam. 5. The bearing support device according to claim 1, wherein the refrigerant is a liquid or gas adjusted to a constant temperature.
JP57035508A 1982-03-05 1982-03-05 Bearing supporting device Granted JPS58152929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57035508A JPS58152929A (en) 1982-03-05 1982-03-05 Bearing supporting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57035508A JPS58152929A (en) 1982-03-05 1982-03-05 Bearing supporting device

Publications (2)

Publication Number Publication Date
JPS58152929A true JPS58152929A (en) 1983-09-10
JPS6150167B2 JPS6150167B2 (en) 1986-11-01

Family

ID=12443697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57035508A Granted JPS58152929A (en) 1982-03-05 1982-03-05 Bearing supporting device

Country Status (1)

Country Link
JP (1) JPS58152929A (en)

Also Published As

Publication number Publication date
JPS6150167B2 (en) 1986-11-01

Similar Documents

Publication Publication Date Title
US8690526B2 (en) Hydroelectric turbine with passive braking
CA1092647A (en) Rim-type hydroelectric machine
US4060744A (en) Rotary electrical machine or vertical construction
JPS58152929A (en) Bearing supporting device
US3644053A (en) Water turbines
CN86104992A (en) The supporting structure of adjustable vane axial flow turbine drain ring
JP2004084557A (en) Vertical turbine and bearing device
JP5812973B2 (en) Journal bearing and steam turbine
JP6875891B2 (en) Rotating machine
JPS58207520A (en) Guide bearing pad
JPS6137765Y2 (en)
US4922150A (en) Vertical-axis electrical machine of umbrella design
JP3448155B2 (en) Pressure dam bearing
US4468570A (en) Hydraulic dynamic electric machine
JPS588821A (en) Bearing support device of rotary machine
JPS61129475A (en) Tube water wheel thrust bearing
JPS5837313A (en) Bearing support mechanism of vertical high speed rotary member
KR810001781B1 (en) Rim-type hydroelectric machine
JPS6056053B2 (en) Vertical water turbine generator
JPH07167132A (en) Thrust bearing device
JPS60249837A (en) Rotor of rotary electric machine
JPS5815455A (en) Vertical shaft type water-wheel generator
JPS6221992B2 (en)
JPS6098837A (en) Vertical shaft rotary electric machine
JPS6039890B2 (en) thrust bearing